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ABSTRACT 

TRAF6 SIGNALING IN SKELETAL MUSCLE ATROPHY AND REGENERATION 

Pradyut K Paul 

December 1 st, 2011 

Skeletal muscle is the most abundant tissue in our body that provides a structural 

framework and regulates important biological processes. It is also a primary reservoir of 

protein. Skeletal muscle maintains its structural and functional integrity by finely 

balancing the rates of protein synthesis and degradation. Skeletal muscle also has a very 

well defined regeneration program to cope with muscle injuries. A disruption in any of 

these delicately balanced intracellular mechanisms of skeletal muscle results in 

devastating conditions such as atrophies and chronic injuries. Majority of these 

debilitating conditions in skeletal muscle eventually lead to morbidity and increased 

mortality and do not have available therapeutic interventions. 

The main aim of my research has been focused on understanding the role of an 

important adapter molecule tumor necrosis factor associated factor 6 (TRAF6) in skeletal 

muscle wasting and injury-induced regeneration. Using genetic mouse models of TRAF6 

muscle-specific knock-out, this study has elucidated the regulatory role of TRAF6 in 

intracellular signaling pathways in skeletal muscle catabolism. In atrophic conditions, 

accelerated proteolytic degradation and activation of major catabolic mechanisms of 
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skeletal muscle (p38MAPK, c-Jun N-terminal kinase, AMP activated kinase and NF-KB) 

cause of loss of skeletal muscle protein content and thus lead to reduced muscle fiber size 

and contractile ability. Myosin heavy chain, a major contractile protein of skeletal muscle 

is selectively targeted for degradation in response to different atrophic stimuli. In 

starvation-induced atrophy, endoplasmic reticulum stress and unfolded protein response 

were also found to be activated in addition to proteolytic mechanisms. Surprisingly, 

TRAF6 depletion in skeletal muscle of mice repressed activation of all these mediators of 

skeletal muscle atrophy and consequently, inhibited skeletal muscle atrophy. Taken 

together, this study has identified TRAF6 as an important regulator of skeletal muscle 

catabolic mechanisms in disuse and starvation-induced atrophy. 

Injury-induced regeneration of skeletal muscle is a highly complex interplay of 

different signaling networks and effectors. Our results show that TRAF6 activates pro­

inflammatory signaling and promotes inflammation and necrosis in skeletal muscle and 

its depletion reduces inflammation and accelerates skeletal muscle regeneration. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Skeletal Muscle Remodeling 

In skeletal muscles, environmental demands and catabolic cues initiate 

intracellular molecular mechanisms that eventually promote adaptive modifications in 

muscle architecture and protein composition. Skeletal muscle remodeling occurs in 

several myopathic abnormalities such as muscle atrophy, muscle injury and regeneration, 

metabolic disorders, muscle dystrophy and myositis. This study focuses on understanding 

upstream events in molecular mechanisms that lead to muscle remodeling in muscle 

atrophy and injury-induced regeneration. 

Skeletal muscle atrophy or wasting is an exceedingly debilitating condition that 

occurs in response to several stress stimuli and chronic diseases. Muscle atrophy is 

characterized by significant loss of myofibrillar proteins that causes altered myo­

architecture and reduced myofiber size and leads to a reduced muscle tone and 

compromised contractile ability (1). This devastating complication can occur as a 

consequence to an astonishing array of catabolic conditions. Stress conditions such as 

disuse (denervation), immobilization and aging are known to promote skeletal muscle 

atrophy (2). Muscle atrophy is also a common co-morbidity in a large number of chronic 

disease states such as cancer, diabetes, chronic heart failure, chronic obstructive 



pulmonary disorder (COPD), renal failure, sepsis and cystic fibrosis (1). An atrophic 

response is always related to a reduced survival rate, poor functional status and health­

related quality of life (2). Metabolic alterations such as starvation or nutrient deprivation 

can also induce atrophy (3). Regardless of the stimulating events, the characteristic 

features of the atrophy remain the same in all atrophic programs. Loss of muscle protein 

is a common denominator in almost all atrophic programs. Skeletal muscles are known to 

be highly plastic and they exhibit little tum-over in normal physiological conditions. 

However, in atrophic conditions, there is a significant reduction in muscle protein content 

which is caused by an imbalance between rate of protein synthesis and protein 

degradation. Since muscles are the primary reservoir of proteins in the body, in certain 

conditions, it becomes necessary to mobilize muscle proteins into free amino acids. 

While such an adaptation is required and is beneficial in transient states, it is extremely 

detrimental in sustained catabolic conditions. Though it is now well established that 

intracellular pathways of proteolytic degradation are the primary systems of muscle 

protein loss in atrophic conditions, the upstream mechanisms leading to activation of 

proteolytic systems are as diverse as their extracellular stimuli. These catabolic signaling 

mechanisms have therefore, occupied the center stage of investigations aimed to explore 

skeletal muscle atrophy. 

Under several pathophysiological conditions of muscles such as dystrophy, 

degenerative diseases and severe injury; adult skeletal muscles sustain damage and 

undergo regeneration. Injury-induced muscle regeneration is an integrated response to 

muscle injury or disease that involves the degeneration of damaged muscle fibers, 

inflammation, and satellite cell proliferation and differentiation into new myofibers 
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(myogenesis). Skeletal muscle injuries can be classified into two types, acute and 

chronic. In acute injury such as sports or exercise injuries and toxin-induced injuries, 

necrotic tissue is removed by a transient infiltration of inflammatory cells followed by 

repair mediated by resident stem cells. However, in chronic injuries such as in several 

dystrophies, the causal molecular defects retain the degenerative microenvironment and 

thus make inflammatory infiltration persistent which further causes degeneration of 

newly regenerated fibers (4). Despite the diverse types of injury stimuli, all regeneration 

programs share many common elements such as removal of dead or damaged fibers by 

inflammatory cells and repair mediated by muscle-resident stem cells known as satellite 

cells (5). 

1.2 Common Catabolic Signaling Pathways in Muscle Atrophy and Regeneration 

All the major tissues contain several proteolytic pathways that are recruited in a 

context-dependent manner either to maintain homeostasis or to restore normal 

physiological conditions in a catabolic state. Similarly, skeletal muscle also contains at 

least five different proteolytic pathways that include ubiquitin-proteasome system, 

autophagy-lysosome system, Ca2+-dependent calpains, caspase systems and matrix­

metalloproteinases (MMPs). Among these, Ca2+ -dependent calpains are believed not to 

play any significant role in skeletal muscle atrophy (6). Calpains are neither 

systematically activated in different models of atrophy nor they degrade major contractile 

proteins (6). Role of caspases (except caspase 3) and MMPs in development of skeletal 

muscle atrophy is comparatively less explored and poorly documented. On the other 

hand, there are several compelling evidences that ubiquitin-proteasome (UPS) and 

autophagy-lysosome systems playa key role in modulating mass of skeletal muscles in 
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atrophic conditions (1, 7-18). Degradation of proteins by UPS is a two step process. First, 

the target proteins are tagged with polyubiquitin-chains by covalent attachment and then 

tagged proteins are degraded by a large, multi-subunit complex known as 26S 

proteasome. Ubiquitin is a highly evolutionarily conserved 76-residue polypeptide; it is 

conjugated to the target protein substrate via a three-step cascade mechanism. Initially, 

the ubiquitin-activating enzyme El activates ubiquitin in an ATP-dependent reaction to 

generate a high-energy intermediate called El-S-ubiquitin. Next in the cascade are 

ubiquitin-conjugating enzymes (UBCs) or E2 enzymes that transfer the activated 

ubiquitin moiety from E 1, via another intermediate, E2-S-ubiquitin, to the substrate of 

that family. There are several classes of E3 enzymes and depending on the class, 

ubiquitin is transferred in a unique way from the E2 enzyme to an active site Cys residue 

on the E3, which generates a third intermediate, ubiquitin-S-E3, before its transfer to the 

ligase-bound substrate. A class of E3-ligases that contain RING finger, catalyzes direct 

transfer of the activated ubiquitin moiety to the E3-bound substrate. E3s catalyze the last 

step in the conjugation process; they covalently attach ubiquitin to the substrate. The 

ubiquitin molecule is generally transferred to an E-NH2 group of an internal Lys residue 

in the substrate to generate a covalent isopeptide bond. The choice of Lys-residue is of 

crucial importance since different E3 ligases can poly-ubiquitinate a substrate through 

different Lys-residues which can mark target substrates for either activation or 

degradation. Nevertheless, all E3s synthesize a polyubiquitin chain by successive 

attachment of ubiquitin moieties to internal Lys residues on the previously conjugated 

ubiquitin molecule. The poly-Ub tagged substrates are recognized by downstream 26S 

proteasome complex and degraded. However, within UPS, the only specificity is 
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introduced by the E3 ubiquitin ligases and therefore E3s playa key role in the ubiquitin­

mediated proteolytic cascade since they serve as the specific recognition factors of the 

system (10, 19-21). 

The other major pathway for degradation of cellular proteins is autophagy­

lysosomal system (ALS). ALS also contributes significantly in the maintenance of the 

balance between protein synthesis and protein turnover. The protein turnover that occurs 

at a subcellular scale is mediated primarily by lysosomes. Lysosomal degradation is 

executed by three different subtypes of autophagy known as macroautophagy, chaperone­

mediated autohagy, and microautophagy (22). While microautophagy is not yet well 

characterized in eukaryotic systems and macroautophagy is primarily involved in 

degadation of cellular compartments, the chaperone-mediated autophagy (CMA) is found 

to be a major mechanism that is responsible for degradation of cytosolic proteins (22). In 

context of skeletal muscle remodeling, both macroautophagy and CMA are found to be 

involved in regulating degradation of defunct cellular compartments and poly-Ub tagged 

protein aggregates. Many of the catabolic conditions that cause muscle atrophy, are also 

known to induce autophagy (8, 14, 17, 18). Upon autophagic induction, formation of a 

single-membrane vesicle begins in the cytosol, that results in the sequestration of 

cytoplasmic components and protein aggregates. This single membrane vesicle or 

"lysosome" is an essential component of ALS and contains hydro lases at low pH that 

assist in unfolding and degradation of proteins. Target recognition and delivery is carried 

out by different mechanisms depending on the type of target and cellular conditions (23, 

24). In macroautophagy, cytosolic cargo is sequestered inside a de novo formed double 

membrane vesicle or autophagosome. The autophagosome formation is preceded by 
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recruitment of autophagic machinery to poly-Ub tagged protein and protein aggregates. 

Selective degradation of the aggregates is also mediated by target recognition proteins 

such as p62 or NBRl, which interact directly with ubiquitin moieties and with LC3, one 

of the essential autophagy proteins that associate with the autophagosome membrane 

(25). Although autophagy is extensively investigated in other systems, it is only recently 

that macroautophagy has been implicated in skeletal muscle remodeling (13-15, 18). 

Along with UPS, ALS constitutes an essential component of cellular quality control 

system (26). More recent evidence has suggested that UPS and ALS both share a set of 

attributes such as target recognition and tagging (27). In addition, there are other points of 

convergence between these two proteolytic systems which indicates that these two 

pathways might share a common regulator that dictates their coordinated actions In 

catabolic conditions including those leading to skeletal muscle remodeling. 

Several other signaling pathways (such as p38 MAPK, ERK1/2, JNK, PI3K1Akt 

and AMPK-FoxO) are shown to be involved in skeletal muscle remodeling. An important 

kinase p38 MAPK is reported to trigger TNFa-induced skeletal muscle atrophy and is 

also known to promote myogenesis (28, 29). Extracellular regulated kinase ERK1I2 is 

shown to be involved in pathogenesis of skeletal muscle wasting (30-32). c-Jun N­

terminal kinase (JNK) has also been shown to negatively regulate skeletal muscle mass 

through insulin signaling and caspases (28, 33-36). PI3K1Akt kinase is a positive 

regulator of muscle mass and causes muscle hypertrophy and is implicated downstream 

of insulin-like growth factor l(IGF-l) signaling through regulation of muscle specific E3 

ubiquitin-ligase where it blocks transcriptional activation of genes by phosphorylating 

forkhead transcription factors (FoxO). AMP activated kinase (AMPK) is an upstream 
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regulator of FoxO and is shown to augment muscle atrophy and inhibit myoblast 

differentiation (37-40). Downstream of AMPK, FoxO transcription factors have recently 

been reported to be involved in development of muscle atrophy by regulating some key 

components of proteolytic machinery (13,14,17,41,42). 

Nuclear factor-kappa B (NF-KB) has emerged as a central regulator of skeletal 

muscle remodeling. NF-KB is not only implicated downstream of several catabolic 

pathways in skeletal muscles (30, 43-45), but has also been found to be induced in a vast 

majority of skeletal muscle disorders (7, 10, 46, 47). NF-KB upregulates expression of 

muscle specific E3 ubiquitin-ligases, interacts with components of ALS, promotes 

myogenesis and inhibits myoblast differentiation. Taken together, the diverse interactions 

of NF-KB make it a point of convergence for all the major signaling pathways that 

regulate skeletal muscle remodeling. 

Among the remaining factors that influence skeletal muscle, the most important 

are cytokines. With some exceptions, majority of cytokines are known to be a negative 

regulator of skeletal muscle growth, proliferation and differentiation. While TWEAK, 

TNFa and IL-l~ are well known to negatively regulate skeletal muscle mass (48-53), 

IL4, IL6 and IL 1 ° have been shown to have beneficial effects on skeletal muscle 

remodeling (54, 55). Pro-inflammatory and pro-myogenic cytokines in association with 

chemokines (CCL2 and CCL5) and NF-KB play an important role in skeletal muscle 

injury and regeneration especially when there is a significant interplay between myeloid 

and myogenic cells that decides impairment or improvement in injury-induced 

regeneration. 
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1.3 The TRAF6 Signaling and Muscle Remodeling 

TRAF6 belongs to a family of conserved intracellular adaptor proteins. These 

proteins are involved in transduction of signals from cytosolic domain of tumor necrosis 

factor-receptor (TNFR)-superfamily, the Epstein-Barr virus protein LMP1, the 

interleukin-l receptor (IL-IR) and transforming growth factor-~ (TGF-~) receptor (56, 

57). There are seven mammalian TRAFs (TRAFI-7) identified so far (58-60). All 

TRAFs comprise a conserved C-terminal domain, the TRAF domain (which further 

consists of a more divergent N-proximal domain known as TRAF-N and a highly 

conserved C-proximal sub-domain known as TRAF-C)and an N-terminal zinc-binding 

RING-domain (58, 59). While the TRAF domain is responsible for homo- and 

heterodimerization of the TRAF proteins and their direct and indirect interactions with 

associated surface receptors; the N-terminal domain (except TRAF1) has been shown to 

be crucial for the activation of downstream signaling cascades (61, 62). TRAF proteins 

exhibit a specificity for receptors, heterodimerization partners, adaptor molecules, and 

downstream signal transducers with which these interact, and this specificity originates 

from their structural differences (61). Distinct from other TRAF proteins, TRAF2 and 

TRAF6 have been shown to have E3 ubiquitin ligase activity (63). Further, TRAF2 and 

TRAF6, in association with dimeric ubiquitin-conjugating enzyme Ubcl3lUevlA, 

catalyze formation of unique Lys63 linked poly-ubiquitin chain instead of conventional 

Lys48 ubiquitin chains. Unlike Lys48 polymer, Lys63 polymer has been shown to 

mediate activation of target proteins instead of degradation (13, 39, 64, 65). TRAF6 is 

further distinguished by features of auto-ubiquitination which results in activation of 

more downstream kinases (66) and there are some reported remarkable differences 

between receptor recognition by TRAF6 and TRAF2 (67). 
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Several recent studies have cumulatively suggested that TRAF6 is the most 

unique of mammalian TRAFs not only due to its gene structure and homology, but also 

due to its capability to mediate signals stemming from various receptor families (59). 

Recent findings have shown that TRAF6 mediates and in certain cases is indispensible 

for signaling pathways downstream of TRANCE-RANK axis (68, 69), CD40 signaling 

(70, 71) and IL-IR1TLR axis (6, 67). It is now well established that downstream of these 

receptors, TRAF6 is a central regulator in activation of many signaling pathways 

including NF-KB, p38-MAPK, phosphatidylinositol 3-kinase (PI3K)/Akt, c-Jun N­

terminal kinase (JNK) and AMPK kinase (10, 30, 39, 72-76). In addition, TRAF6 also 

interacts with p62/SQSTMI-LC3 and Beclin-l; both of these axes are well known to be 

involved in autophagic degradation of target proteins (48, 77). More recently TRAF6 has 

been reported to interact with cytoplasmic domain of Fn14 receptor and thus might be 

involved in signaling pathways downstream of FnI4(78). TRAF6 is also involved in 

activation of unfolded protein response (UPR) and ER stress; a recent report provides the 

first evidence that TLR-mediated signaling regulates activation of XBPI (an essential 

component of IREI-XBPI branch of UPR) through TRAF6 (11, 79). Despite the 

identification of a vast array of signaling pathways and effector molecules, which TRAF6 

is involved in or interacts with, it has only been studied in very limited contexts. While 

the pathways regulated by TRAF6 are shown to be involved in catabolic conditions in 

different systems and settings, its role is extensively explored in immune system and 

development of osteoblasts and osteoclasts (30, 39, 80). However, majority of signaling 

pathways regulated by TRAF6 have been implicated in skeletal muscle atrophy. Taken 
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together, molecular interactions and regulatory effects of TRAF6, indicate that TRAF6 

may playa pivotal role in regulation of skeletal muscle homeostasis (Figure 1.1, 1.2). 

1.4 Contribution of TRAF6-mediated Pathways in Skeletal Muscle Atrophy 

The role of TRAF6 in skeletal muscle remodeling remains unexplored. Its 

involvement in molecular mechanisms that play key roles in skeletal muscle atrophy, 

injury and regeneration led to a hypothesis that TRAF6 might act as a negative regulator 

of skeletal muscle mass and thus may greatly influence skeletal muscle remodeling. This 

study is the first one to identify role of TRAF6 in development of catabolic responses in 

skeletal muscle. Experiments conducted through-out this study aim at exploring the 

molecular mechanisms regulated by TRAF6 and the downstream effects that lead to 

muscle atrophy or altered regeneration. Findings of this study will not only be vital to our 

understanding of the role that TRAF6 plays in muscle wasting and injury-induced 

regeneration, but may also lead to the identification of potentially new targets that can be 

utilized for the treatment of these skeletal muscle anomalies. 
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Figure 1.1 and 1.2: TRAF6 Mediated Regulation of Signaling Pathways Relevant to 

Skeletal Muscle Remodeling 
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CHAPTER TWO 

TARGETED ABLATION OF TRAF6 INHIBITS SKELETAL MUSCLE 

WASTING IN MICE 

2.1 INTRODUCTION 

Skeletal muscle atrophy or wasting is a complex catabolic response and a 

devastating complication of stress conditions such as disuse (denervation), 

immobilization and aging and a large number of chronic disease states such as cancer, 

diabetes, chronic heart failure, and cystic fibrosis (1). Despite the diversity in stimuli 

inducing muscle atrophy, an accelerated proteolysis of muscle proteins results from 

stimulated intracellular proteolytic pathways and leads to a loss of fiber cross-sectional 

area (CSA), protein content, and functional strength in skeletal muscle (1, 81). Recent 

findings indicate that skeletal muscles respond to different atrophic conditions by 

activating a complex network of biochemical and transcriptional pathways, leading to the 

expression of a set of genes termed "atrogenes" (81, 82). Many atrogenes are the 

components of ubiquitin-proteasome system (UPS) that provides a mechanism for 

selective degradation of regulatory and structural proteins (11, 26, 83). Two such 

atrogenes which are also E3 ubiquitin ligases, muscle RING-finger 1 (MuRFl) and 

muscle atrophy F -box (MAFbx; also called Atrogin-l), have now been identified to be 

consistently up-regulated in several distinct paradigms of skeletal muscle atrophy in both 
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rodents and humans (9, 27). Their catabolic role in skeletal muscle has been established 

by the finding that targeted deletion of MAFbx or MuRF 1 rescues atrophy in several 

conditions (9, 27, 84). Another major intracellular proteolytic degradation pathways, the 

autophagy-lysosomal system (ALS) has now been shown to playa crucial role in 

myofibril proteolysis in skeletal muscle (18). Accumulating evidence further indicates 

that these two pathways may function in a coordinated manner to augment protein 

degradation in different atrophy conditions (13, 14,24). 

Nuclear factor kappa B (NF-KB) is a proinflammatory transcription factor that 

regulates the expression of a large number of genes, including those involved in skeletal 

muscle proteolysis and fibrosis (85). Increased activation ofNF-KB has been consistently 

observed in skeletal muscle in distinct models of atrophy (47). One of the important 

mechanisms by which NF-KB induces muscle atrophy is through upregulation of MuRFl 

(46, 86). In addition to NF -KB, several other signaling pathways have also been found to 

contribute to loss of skeletal muscle mass in catabolic conditions. Activation of p38 

MAPK and AMP-activated protein kinase (AMPK) stimulates atrophy by augmenting the 

expression of MAFbx and MuRFl (17, 37, 87), whereas c-Jun N-terminal kinase (JNK) 

has been implicated in the activation of caspases in atrophying skeletal muscles (36). 

Moreover, the activation of AMPK and NF-KB may also stimulate muscle proteolysis 

through enhancing the activity of autophagy-lysosomal system (17, 38, 88, 89). 

However, the proximal signaling events leading to the activation of various proteolytic 

systems in different types of atrophy remain enigmatic. It remains unknown whether the 

activation of various catabolic pathways is regulated through upstream activation of a 
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common signaling network or if they are regulated through independent mechanisms in 

skeletal muscle in atrophy conditions. 

TRAF6 has recently been reported to be crucial for the activation of many 

signaling pathways including NF-KB, MAPK, and phosphatidylinositol 3-kinase 

(PI3K)/Akt in response to cytokines and microbial products (10, 30, 39, 75, 76). Of note 

is the discovery that among all known TRAFs, only TRAF6 interacts with scaffold 

protein p62/Sequestosome 1, which is involved in regulation of autophagy and trafficking 

of proteins to the proteasome (48, 77, 90-92). More recently, it has been found that 

TRAF6 promotes the Lys-63-linked ubiquitination of Beclin-l, which is critical for the 

induction of autophagy, in response to Toll-like receptor 4 signaling (93). Since TRAF6 

regulates activation of several signaling cascades and proteolytic systems, which are also 

activated in atrophying skeletal muscle, it was of obvious interest to indentify whether 

TRAF6 plays a critical role in regulation of skeletal muscle mass in different catabolic 

conditions. This study aimed to investigate the physiological functions of TRAF6 in 

differentiated skeletal muscle and in catabolic conditions. Because conventional TRAF6-

null mice die perinatally and neonatally because of severe osteoporosis and other defects 

(68, 94, 95), for this study, we have generated skeletal muscle-specific TRAF6 knockout 

mice. Our results show that muscle-specific depletion of TRAF6 preserves skeletal 

muscle mass, fiber size, and contractile functions in response to denervation. 

Furthermore, specific inhibition of TRAF6 also inhibits skeletal muscle wasting in a 

mouse model of cancer cachexia. 
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2.2 MATERIALS AND METHODS 

Mice 

A detailed protocol for the generation of floxed TRAF6 (TRAF6f/f) mice has 

been described previously (94). C57BL6 and MCK-Cre (strain B6.FVB (129S4)-Tg 

(Ckmm-cre) 5 Khn/J) were obtained from Jackson ImmunoResearch Laboratories, Inc. 

To investigate the role of TRAF6 in skeletal muscle, we developed a conditional TRAF6 

gene inactivation strategy based on the Cre-LoxP system. TRAF6floxiflox (TRAF6 f/f
) 

mice were crossed with muscle creatine kinase (MCK)-Cre mice in which Cre-mediated 

recombination occurs in postmitotic myofibers but not in muscle progenitor cells (96). 

The muscle-specific TRAF6 knockout thus generated (TRAF6mko henceforth) were 

subjected to various experimental procedures and compared with TRAF6 f/f mice as 

control. 

Animal Procedures 

Sciatic denervation was performed by anesthetizing the mice with an 

intraperitoneal injection of A vertin (2,2,2,-tribromoethanol), shaving the left hind 

quarters, making a 0.5-cm incision ~ 0.5 cm proximal to the knee on the flank of the right 

leg, separating the muscles at the fascia and lifting out the sciatic nerve with a surgical 

hook or forceps, removing a 2-3-mm piece of sciatic nerve, and finally closing the 

incision with surgical sutures. 

Skeletal muscles from diabetic mice were provided by Dr. Sanjay Srivastava 

(Diabetes and Obesity Center, University of Louisville, Louisville, KY). Diabetes was 

induced in 6-wk-old male C57BL6 mice by repeated low-dose STZ (55 mg/kg/d for six 
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consecutive days, i.p.) treatment as described previously (97). Mice treated with vehicle 

only (O.OS mM sodium citrate, pH 4.S) served as controls. 1 wk after the last injection of 

STZ, blood was collected from the tail vein. All the STZ-injected mice had blood glucose 

>400 mg/dL. Mice were sacrificed S d after measuring the blood glucose levels. For the 

cancer cachexia model, LLC cells (2 x 106 cells in 100 III saline; American Type Culture 

Collection) were injected subcutaneously into the flanks of 3-mo-old mice as described 

previously (46). Mice were weighed daily and sacrificed 14 d after injection to study 

muscle atrophy. 

For studying NF-KB reporter gene activity, TA muscle was e1ectroporated with p 

NF-KB -Luc (Takara Bio Inc.) and pRL-TK (Promega) as described previously (S3). All 

experimental protocols with mice were approved in advance by the Institutional Animal 

Care and Use Committee at University of Louisville. 

Cell culture 

C2C12 cells (a myoblastic cell line) were obtained from American Type Culture 

Collection. These cells were grown in DME containing 10% FBS. To induce 

differentiation, the cells were incubated in differentiation medium (2% horse serum in 

DME) for 96 h as described previously (98, 99). TRAF6+1+ and TRAF6-1
- MEFs were 

cultured in DME with 10% FBS~ The cells were plated in 6-well tissue culture plates 

before treatment with recombinant TWEAK protein (R&D Systems) for measurement of 

DNA-binding activity ofNF-KB by EMSA. For NF-KB reporter gene assays, cells plated 

in 24-well tissue culture plates were transfected with pNF-KB-Luc plasmid (Takara Bio 

Inc.) using Effectene transfection reagent according to the protocol suggested by the 
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manufacturer (QIAGEN). Transfection efficiency was controlled by cotransfection of 

cells with Renilla luciferase-encoding plasmid pRL-TK (Promega). After treatment with 

TWEAK, specimens were processed for luciferase expression using a Dual luciferase 

assay system with reporter lysis buffer per the manufacturer's instructions (Promega). 

Luciferase measurements were made using a luminometer (Berthold Detection Systems). 

Histology and morphometric measurements 

Hind limb muscles (Soleus and TA) of mice were isolated, frozen in isopentane 

cooled in liquid nitrogen, and sectioned in a microtome cryostat. For the assessment of 

tissue morphology or visualization of fibrosis, 1 O-~m-thick transverse sections of 

muscles were stained with H&E, and staining was visualized (without any imaging 

medium) at room temperature on a microscope (Eclipse TE 2000-U) using a Plan lOx, 

NA 0.25 PHI DL or Plan-Fluor EL WD 20 x, NA 0.45 PhI DM objective lens, a digital 

camera (Digital Sight DS-Fil), and NIS Elements BR 3.00 software (all from Nikon). 

The images were stored as JPEG files, and image levels were equally adjusted using 

Photoshop CS2 software (Adobe). Fiber CSA was analyzed in H&E-stained Soleus or 

TA muscle sections. For each muscle, the distribution of fiber CSA was calculated by 

analyzing 200-250 myofibers using NIS Elements BR 3.00 software (Nikon) as 

described previously (53). 

Transmission electron microscopy 

Control and denervated T A muscle isolated from TRAF6f/f and TRAF6mko mice 

were fixed in 3% glutaraldehyde in 0.1 M cacodylate buffer overnight followed by fixing 
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in 1 % cacodylate buffered osmium tetroxide. The tissue was dehydrated through a series 

of graded alcohols, and embedded in LX-II2 plastic (Ladd Research Industries). 

Longitudinal sections (80 nm) were cut using an ultramicrotome (LKB) and stained with 

uranium acetate and lead citrate. Samples were analyzed using a transmission electron 

microscope (CM 12; Philips) operating at 60 kV. The pictures were captured at 8,800x 

magnification using a 3.2 megapixel digital camera (Sia-7C; Kodak) at room 

temperature. No imaging medium was used to visualize the pictures, and images were 

stored as JPEG files. Image levels were equally adjusted using Photoshop CS2 software. 

RNA isolation and QRT -peR 

Isolation of total RNA and QRT-PCR were performed using a method that has 

been described previously (98, 99). In brief, RNA was extracted from homogenized 

tissues using TRIzol reagent (Invitrogen) and an RNeasy Mini kit (QIAGEN) following 

manufacturer's protocol. The quantification of mRNA expression was performed using 

the SYBR Green dye method on a 7300 Sequence Detection system (Applied 

Biosystems). 1 Ilg of purified RNA was used to synthesize first strand cDNA with a 

reverse transcription system using an oligo (dT) primer (Applied Biosystems) and 

Omniscript reverse transcription kit (QIAGEN). The first strand cDNA reaction (0.5 Ill) 

was subjected to real-time PCR amplification using gene-specific primers. The sequence 

of the primers used is described in appendix 1. 

Approximately 25 III of reaction volume was used for the real-time PCR assay 

that consisted of 2x (12.5 Ill) Brilliant SYBR Green QPCR Master mix (Applied 

Biosystems), 400 nM of primers (0.5 III each from the stock), 11 III water, and 0.5 III of 
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template. The thermal conditions consisted of an initial denaturation at 95°C for 10 min 

followed by 40 cycles of denaturation at 95°C for 15 s, annealing and extension at 60°C 

for 1 min, and, for a final step, a melting curve of 95°C for 15 s, 60°C for 15 s, and 95°C 

for 15 s. All reactions were performed in duplicate to reduce variation. Data 

normalization was accomplished using the endogenous control (~-actin), and the 

normalized values were subjected to a 2-MCt formula to calculate the fold change between 

the control and experimental groups. 

Immunoprecipitation and Western blotting 

Levels of different proteins in skeletal muscle were determined by performing 

immunoblotting as described previously (100). In brief, tissues were washed with PBS 

and homogenized in Western blot lysis buffer A (50 mM Tris-CI, pH 8.0, 200 mM NaCI, 

50 mM NaF, 1 mM DTT, 1 mM sodium orthovanadate, 0.3% IGEPAL, and protease 

inhibitors). Approximately 100 J..lg of protein was resolved on each lane on 10-12% SDS­

PAGE, electrotransferred onto nitrocellulose membrane, and probed using anti-TRAF6 

(1:1,000; Millipore), anti-TRAF3 (1:1,000; Santa Cruz Biotechnology, Inc.), anti-TRAF4 

(1:1,000; Santa Cruz Biotechnology, Inc.), anti-TAB 1 (1:1,000; Cell Signaling 

Technology), anti-phospho p65 (1 :500; Cell Signaling Technology), anti-p65 (1: 1 ,000; 

Santa Cruz Biotechnology, Inc.), anti-phospho-JNKI/2 (1:1,000; Cell Signaling 

Technology), anti-JNKl/2 (1: 1 ,000; Cell Signaling Technology), anti-phospho p38 

(1 :200; Cell Signaling Technology), anti-p38 (1: 1 ,000; Cell Signaling Technology), anti­

phospho-AMPK (1 :500; Cell Signaling Technology), anti-AMPK (1: 1 ,000; Cell 

Signaling Technology), anti-phospho Akt (1 :500; Cell Signaling Technology), anti-Akt 
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(1 :500; Cell Signaling Technology), anti-mTOR (1: 1 ,000; Cell Signaling Technology), 

anti-phospho-mTOR (1:1,000; Cell Signaling Technology), anti-LC3B (1:1,000; Cell 

Signaling Technology), anti-Beclin-1 (1:1,000; Cell Signaling Technology), anti-Fn14 

(1: 1 ,000; Cell Signaling Technology), MF-20 (1: 1,000; Development Studies Hybridoma 

Bank, University of Iowa), anti-laminin (1: 1 ,000; Sigma-Aldrich), anti-tropomyosin 

(1 :2,000; Sigma-Aldrich), anti-troponin (1: 1 ,000; Sigma-Aldrich), anti-sarcomeric 0-

actin (1: 1,000; Sigma-Aldrich), anti-nNOS (1 :500; Santa Cruz Biotechnology, Inc.), anti­

dystrophin (1 :200; Development Studies Hybridoma bank, University of Iowa), anti­

tubulin (1 :5,000; Cell Signaling Technology), and anti-MuRF1 (1: 1 ,000; R&D Systems), 

then detected by chemiluminescence. The bands were quantified using ImageQuant TL 

software (GE Healthcare). 

To study the auto-ubiquitination of TRAF6, muscle extract (400 Ilg protein) was 

incubated overnight with 1 Ilg anti-TRAF6 antibody (Millipore) in 600 III of lysis buffer 

followed by addition of protein A-Sepharose beads and incubation at 4°C for additional 2 

h. The beads were washed with lysis buffer and finally suspended in Laemmli' s sample 

buffer (2x). Proteins were resolved on 10% SDS-PAGE gel and immunoblotted using 

anti-ubiquitin (1: 1 ,000; Sigma-Aldrich). 

Kinase assays 

For JNK assay, 700 Ilg of muscle extract was immunoprecipitated with anti­

JNK1 (1 Ilg per sample) overnight at 4°C. This was followed by addition of 30 III of 

protein A-Sepharose beads. After 2 h, the beads were washed two times with lysis buffer 

A and two times with kinase assay buffer, then resuspended in 20 III of kinase assay 
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mixture containing 50 mM Hepes, pH 7.4, 20 mM MgCI2, 2 mM dithiothreitol, 20 ~Ci of 

[y-32P] ATP, 10 ~M of unlabeled ATP, and 2 ~g of substrate glutathione S-transferase-c­

Jun (amino acid residues 1-79). After incubation at 37°C for 20 min, the reaction was 

terminated by boiling with 10 ~l of 4x Laemmli sample buffer for 3 min. Finally, the 

protein was resolved on a 10% polyacrylamide gel, then the gel was dried and the 

radioactive bands were visualized and quantitated by using a PhosphorImager and 

ImageQuant TL software (GE Healthcare). 

The activity of Akt was assayed similar to JNKI except that anti-Phospho-Akt 

conjugated Sepharose beads (Cell Signaling Technology) were used for 

immunoprecipitation, and GSK-3 fusion protein (Cell Signaling Technology) was used as 

a substrate in the reaction mixture. The activity of p38 kinase was measured using a 

nonradioactive p38 MAP Kinase Assay kit according a protocol suggested by the 

manufacturer (Cell Signaling Technology). Similarly, AMPK was assayed using a 

commercially available kit (MBL International). 

Electrophoretic Mobility Shift Assay 

NF-KB activation in skeletal muscle was analyzed by EMSA as described 

previously (100), with some modifications. In brief, T A muscles isolated from mice were 

immediately frozen in liquid nitrogen and suspended at 1 mg of muscle weight per 18 ~l 

of low-salt lysis buffer (10 mM Hepes, pH 7.9, 10 mM KCI, 1.5 mM MgCI2, 0.1 mM 

EDTA, 0.1 mM EGTA, 1 mM dithiothreitol, 0.5 mM phenylmethylsulfonyl fluoride, 2.0 

~g/ml leupeptin, 2.0 ~g/ml aprotinin, and 0.5 mg/ml benzamidine) followed by 

mechanical grinding using a motor and pestle. Cells in the lysis buffer were allowed to 
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swell on ice for 10 min followed immediately by three cycles of freeze/thaw lysis. The 

tubes containing the lysed muscle cells were then vortexed vigorously for lOs, and the 

lysate was centrifuged for 30s at 14,000 rpm. The supernatant (cytoplasmic extract) was 

removed and saved at -70°C for further biochemical analyses. The nuclear pellet was 

resuspended in 4 ~l of ice-cold high-salt nuclear extraction buffer (20 mM Hepes, pH 7.9, 

420 mM NaCI, 1 mM EDTA, 1 mM EGTA, 150 mM MgCI2, 25% glycerol, 1 mM 

dithiothreitol, 0.5 mM phenylmethylsulfonyl fluoride, 2.0 ~glml leupeptin, 2.0 ~glml 

aprotinin, and 0.5 mg/ml benzamidine) per milligram of original muscle weight and was 

incubated on ice for 30 min with intermittent vortexing. Samples were centrifuged for 5 

min at 4°C, and the supernatant (nuclear extract) was either used immediately or stored at 

- 80°C. The protein content was measured with the method of the Bio-Rad Laboratories 

protein assay reagent. EMSAs were performed by incubating 20 ~g of nuclear extract 

with 16 fmol of the 32p end-labeled NF-KB consensus oligonucleotides 5'­

AGTTGAGGGGACTTTCCCAGGC-3' (Promega) for 15 min at 37°C. The incubation 

mixture included 2-3 ~g of poly dI-dC in a binding buffer (25 mM Hepes, pH 7.9, 

0.5 mM EDTA, 0.5 mM dithiothreitol, 1% Nonidet P-40, 5% glycerol, and 50 mM 

NaCI). The DNA-protein complex thus formed was separated from free oligonucleotide 

on 7.5% native polyacrylamide gel using buffer containing 50 mM Tris, 200 mM glycine, 

pH 8.5, and 1 mM EDT A. The gel was dried, and the radioactive bands were visualized 

and quantitated by a PhosphorImager (GE Healthcare) using ImageQuant TL software. 
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Skeletal muscle functional analysis 

The skeletal muscle force production in isometric contraction was performed as 

described previously (53, 101). In brief, soleus muscle from control or denervated hind 

limb of mice was rapidly excised and placed in Krebs-Ringer solution. The muscle was 

mounted between a Fort25 force transducer (World Precision Instruments) and a 

micromanipulator device in a temperature-controlled myobath (World Precision 

Instruments). The muscle was positioned between platinum wire stimulating electrodes 

and stimulated to contract isometrically using electrical field stimulation (supramaximal 

voltage, 1.2-ms pulse duration) from a Grass S88 stimulator (Grass Technologies). In 

each experiment, muscle length was adjusted to optimize twitch force (optimal length, 

Lo). The muscle was rested for 15 min before the tetanic protocol was started. The output 

of the force transducer was recorded in computer using LABORATORY-TRAX-4 

software. To evaluate a potentially different frequency response between groups, tetani 

were assessed by sequential stimulation at 25, 50, 75, 100, 150, 200, and 300 Hz with 

100 s rest in between. 

Statistical analysis 

Results are expressed as mean ± SD. The Student's t test or analysis of variance 

was used to compare quantitative data populations with normal distributions and equal 

variance. A value of P < 0.05 was considered statistically significant unless otherwise 

specified. 
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2.3 RESULTS 

2.3.1 Atrophic Stimuli Increase Expression of TRAF6 in Skeletal Muscle 

Although TRAF6 is expressed in several cell types, it remains unknown how the 

expression of TRAF6 is regulated in skeletal muscle cells. Using C2C12 myoblasts, we 

first studied how the levels of TRAF6 protein change at different time points after 

induction of differentiation. As shown in Figure 2.1 A, TRAF6 is expressed in 

proliferating myoblasts, but its levels are dramatically reduced in differentiated 

myotubes. Reduced levels of TRAF6 protein appear to be a result of its reduced 

expression because transcript levels of TRAF6 were also significantly reduced in 

myotubes compared with myoblasts (Figure 2.1 B). Interestingly, the expression of other 

TRAFs was not affected during myogenic differentiation (Figure 2.1 A). Furthermore, 

TRAF6 is highly expressed in developing skeletal muscle of young animals but its levels 

are reduced in adult animals (Figure 2.1 C). We next determined whether the expression 

of TRAF6 changes in skeletal muscle in different atrophy conditions. As a model of 

denervation-induced muscle atrophy, C57BL6 mice were denervated for 4 d as described 

previously (53). Lewis lung carcinoma (LLC) cells have been widely used to generate a 

model for cancer cachexia-induced muscle wasting in mice (46). To determine how 

expression of TRAF6 is regulated in cachexia, C57BL6 mice were given a single 

subcutaneous injection of LLC cells (in the left flank), which led to the growth of tumors 

at the site of injection. After 12 d of tumor induction, the right hind limb muscles were 

isolated and analyzed for TRAF6 expression. To induce type I diabetes, C57BL6 mice 

were treated with chronic intraperitoneal injections of streptozotocin (STZ) for 5 d as 

described previously (97). Finally, skeletal muscles of control and challenged mice were 
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isolated and processed for studying mRNA and protein levels using quantitative real-time 

PCR (QRT-PCR) and Western blotting, respectively. As shown in Figure 2.1 D, the 

mRNA levels of TRAF6 were significantly upregulated in tibial anterior (T A) muscle of 

mice subjected to denervation, cancer cachexia, or diabetes. Consistent with mRNA 

levels, the protein levels of TRAF6 were also found to be increased in T A (contains 

predominantly fast-type fiber) and soleus (contains both slow- and fast-type fibers) in all 

the three models of atrophy studied (Figure 2.1, E and F). 

Because TRAF6 is an E3 ubiquitin ligase that undergoes lysine-63-linked 

autoubiquitination in response to cytokines and microbial products (30, 39), we also 

investigated whether TRAF6 is ubiquitinated in skeletal muscle under the conditions of 

atrophy. Protein extracts prepared from control, and denervated TA muscles were 

immunoprecipitated with TRAF6 antibody followed by Western blotting using ubiquitin 

antibody. A marked increase in ubiquitinated TRAF6 protein was noticeable in 

denervated skeletal muscle compared with control muscle (Figure 2.1 G). These 

observations suggest that expression and autoubiquitination of TRAF6 are stimulated in 

skeletal muscle in settings of atrophy. 

2.3.2 Muscle-Specific Depletion of TRAF6 does not Cause any Overt Phenotype in 

Mice 

The design of targeting construct to generate muscle-specific TRAF6 knockout 

(TRAF6mko
) mice is described in Figure 2.2 A and in a published article (94). The 

breeding strategy for generation of TRAF6mko and littermate TRAF6 f/f mice is depicted in 

Figure 2.2 B. Depletion of TRAF6 in skeletal muscle tissues was assessed by 
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semiquantitative reverse-transcription peR using TRAF6 exon 7, internal ribosome entry 

site (IRES), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) primers. A 

significant reduction in TRAF6 transcript levels in skeletal muscle was noticeable in 

TRAF6mko mice, whereas levels of IRES and GAPDH were comparable between 

e57BL6 (wild-type), TRAF6f/f
, and TRAF6mko mice (Figure 2.2 e). By performing 

Western blotting, we also measured protein levels of TRAF6 in skeletal muscle and other 

tissues of 6-wk-old TRAF6f/f and TRAF6mko mice. As shown in Figure 2.2 D, the protein 

levels of TRAF6 were considerably reduced in gastrocnemius (GA) and TA muscle of 

TRAF6mko compared with TRAF6f/f mice. There was no major difference in the levels of 

TRAF6 in other tissues (e.g., heart, liver, and spleen). Furthermore, the expression of 

some other TRAFs (e.g., TRAF3 and TRAF4) and an adapter protein TABI did not 

change in skeletal muscle and other tissues of TRAF6mko and TRAF6f/f mice, which 

indicated depletion of TRAF6 specifically in skeletal muscle of TRAF6mko mice (Figure 

2.2 D). 

TRAF6mko pups were viable, born in the expected Mendelian ratio, and 

indistinguishable from their littermate TRAF6f/f mice. There was no significant difference 

in overall body weight or individual muscle tissue weights between littermate TRAF6f/f 

and TRAF6mko mice. At the age of 10 d (young) and 8 wk (adult), we analyzed muscle 

tissues of TRAF6f/f and TRAF6mko mice. Hematoxylin and eosin (H&E) staining of 

muscle section and histomorphometric analysis showed that the fiber eSA was 

comparable in TRAF6f/f and TRAF6mko mice (Figure 2.2, E and F). Depletion of TRAF6 

in skeletal muscle did not affect the count of fibers per unit area in young or adult mice 

(Figure 2.2 G). 
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Measurement of serum levels of creatine kinase (CK) in TRAF6f/f and TRAF6mko 

mice showed no significant difference, which suggests that depletion of TRAF6 does not 

cause any overt myopathy in mice (Figure 2.2 H). We also investigated whether TRAF6 

regulates the composition of oxidative (type I, slow-type) and glycolytic (type II, fast­

type) fibers in skeletal muscle of mice. Staining of soleus muscle section with both anti­

myosin heavy chain (MyHC) type I and anti-MyHC type II followed by counting of each 

type of fiber showed that depletion of TRAF6 does not affect fiber composition in 

skeletal muscle of mice (Figure 2.2 I). Finally, we also found that specific muscle force 

produced in isometric contractions was similar in TRAF6f/f and TRAF6mko mice (Figure 

2.2 J). These observations suggest that TRAF6 depletion does not produce any overt 

phenotype in differentiated muscle of mice. 

2.3.3 Depletion of TRAF6 Rescues Denervation-Induced Muscle Atrophy 

Left hind limb muscles of 3-mo-old TRAF6f/f and TRAF6mko mice were 

denervated by transecting sciatic nerve, whereas the right hind limb was sham-operated. 

Gross analyses 14 dafter denervation showed that the loss of GA muscle was 

considerably reduced in TRAF6mko mice compared with TRAF6f/f mice (Figure 2.3 A). 

We also measured wet weights of different muscles (soleus, TA, and GA) from tendon to 

tendon. Interestingly, denervation-induced loss of soleus, TA, and GA muscle weight was 

significantly rescued in TRAF6mko compared with TRAF6f/f mice (Figure 2.3 B). We next 

performed H&E staining on T A and soleus muscle sections of control and denervated 

TRAF6f/f and TRAF6mko mice and quantified fiber CSA. Interestingly, fiber CSA was 

significantly preserved in TA (Figs. 2.3, C and D) and soleus (Figs. 2.3, E and F) muscle 
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of TRAF6mko mIce compared with littermate TRAF6f/f mice upon denervation. 

Furthermore, force production III isometric contraction was significantly higher in 

denervated soleus muscle of TRAF6mko mice compared with TRAF6f/f mice 

(Figure 2.3 G). 

2.3.4 Inhibition of T ARF6 Prevents Proteolysis in Denervated Skeletal Muscle 

Skeletal muscle atrophy can occur due to enhanced proteolysis, reduced protein 

synthesis, or both (1, 26). We investigated the possibility of whether TRAF6 affects 

myofibril proteolysis or if it represses expression of specific muscle proteins in 

denervated skeletal muscle. Sham-operated or denervated TA muscles were isolated from 

TRAF6f/f and TRAF6mko mice, and muscle extracts made were used to measure the levels 

of specific muscle proteins by Western blotting. As shown in Figure 2.4 A, the levels of 

MyHCs were considerably reduced in denervated TA muscle compared with sham­

operated TRAF6f/f mice. Interestingly, the denervation-induced loss of MyHC was 

rescued in TRAF6mko mice (Figure 2.4 A). Quantification of band intensities from 

immunoblots confirmed that the levels of MyHC were significantly higher in denervated 

TA muscle of TRAF6mko mice compared with TRAF6f/f mice (Figure 2.4 B). Consistent 

with a previously published study (19), we found that the protein levels of tropomyosin 

were increased in denervated muscle, though there was no major difference in the levels 

of tropomyosin in denervated muscle of TRAF6mko mice compared with TRAF6f/f mice 

(Figure 2.4 A). We also did not find any significant difference in the levels of many other 

muscle proteins such as troponin, neuronal nitric oxide synthase (nNOS), laminin, ~­

dystroglycan, dystrophin, utrophin, and sarcomeric a-actin in control and denervated 
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skeletal muscle of TRAF6f/f and TRAF6mko (Figure 2.4 A). These data are in agreement 

with previously published findings that muscle wasting involves degradation of only 

select muscle proteins (7, 53). 

To further determine whether increased levels of MyHC in denervated skeletal 

muscle of TRAF6mko compared with TRAF6f/f mice were a result of its reduced 

degradation or increased expression, we measured mRNA levels by QRT-PCR. 

Interestingly, there was no significant difference between mRNA levels of MyHC 

between control and denervated T A muscle of TRAF6f/f and TRAF6mko mice (Figure 2.4 

C). Collectively, these results indicate that the inhibition of TRAF6 prevents the 

proteolytic degradation of MyHC without affecting its expression in denervated skeletal 

muscles. 

2.3.5 TRAF6 is Required for the Activation of Ubiquitin-Proteasome and 

Autophagy Systems in Denervated Skeletal Muscles 

The ubiquitin-proteasome system is the major pathway that causes the 

degradation of muscle proteins in various atrophying conditions (82, 83). Previous 

studies have reported enhanced expression of several components of the ubiquitin­

proteasome system and an increase in the amounts of ubiquitinated proteins in different 

muscle-wasting conditions, including denervation (82, 83). Among several markers of 

muscle atrophy, two atrogenes, MAFbx/Atrogin-l and MuRFl, have been found to be 

highly expressed in atrophying muscles (9, 27). To determine whether TRAF6 is 

involved in expression of MAFbx and MuRFl, we measured their transcript levels in 

denervated skeletal muscle using QRT-PCR technique. In agreement with published 
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reports (9, 27), mRNA levels of both MAFbx and MuRFI were found to be drastically 

increased in denervated TA muscles compared with sham-injured control muscle (Figure 

2.5 A). Interestingly, mRNA levels of MAFbx and MuRFI were significantly down­

regulated in denervated muscle of TRAF6mko mice compared with TRAF6f1f
, which 

suggests that TRAF6 regulates the expression of these two atrogenes in denervated 

skeletal muscle (Figure 2.5 A). 

Accumulating evidence suggests that autophagy-lysosome mediated proteolysis 

also contributes to degradation of muscle protein during atrophy (13, 18). We next sought 

to determine whether TRAF6 affects autophagy in denervated skeletal muscle. To answer 

this question, we compared the mRNA levels of major autophagy-related genes LC3B, 

Beclinl, and Gabarapll, which are reported to be significantly up-regulated in 

denervated muscles (13). Our results showed that the mRNA levels of LC3B, Beclinl, 

and Gabarapll were significantly reduced in denervated skeletal muscle of TRAF6mko 

mice compared with TRAF6f1f mice (Figure 2.5 B). In agreement with their mRNA 

levels, the protein levels ofMuRFl, LC3B, and Beclinl were also found to be reduced in 

denervated muscle of TRAF6mko compared with TRAF6f1f mice (Figure 2.5 C). 

To further ascertain whether depletion of TRAF6 rescues autophagy, we analyzed 

control and denervated skeletal muscle of TRAF6f/f and TRAF6mko mice by transmission 

electron microscopy. As shown in Figure 2.5 D, sham-operated skeletal muscle of both 

TRAF6f/f and TRAF6mko mice contained well-organized myofibrillar structure, and 

normal subsarcolemmal and intermyofibrillar distribution of mitochondria (indicated by 

black and blue arrows), with no evidence of autophagosome formation. In contrast, 

denervated muscle of TRAF6f/f mice showed disorganization of mitochondria in 
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intermyofibrillar as well as sub sarcolemmal space and a drastic increase in autophagic 

vacuole formation (Figure 2.5 D, white arrows) and fusion of mitochondria with 

autophagosome membrane (red arrows). Interestingly, all these characteristics of muscle 

atrophy and autophagy were considerably reduced in denervated muscle of TRAF6mko 

mice (Figure 2.5 D). Collectively, these results suggest that TRAF6 is involved in the 

activation of both ubiquitin-proteasome and autophagy systems in denervated skeletal 

muscle. 

2.3.6 TRAF6 Mediates the Activation of JNK, P38 MAPK, and AMPK in 

Denervated Skeletal Muscle 

Recent findings have identified several signaling pathways that regulate skeletal 

muscle mass in both hypertrophy and atrophy conditions (26, 84). Because TRAF6 is a 

major adaptor protein involved in activation of various cell signaling pathways, we next 

investigated whether TRAF6 functions through the activation of specific signaling 

proteins in atrophying skeletal muscle. Control and denervated T A muscle from TRAF6f/f 

and TRAF6mko mice were isolated, and muscle extracts were analyzed by in vitro kinase 

assays and Western blotting using antibodies that determine phosphorylated or total 

levels of specific proteins. Our results showed that denervation augments the kinase 

activity and phosphorylation of JNK1I2 (Figure 2.6 A) and p38 MAPK (Figure 2.6 B) in 

skeletal muscle of mice. Importantly, we found that the depletion of TRAF6 was 

sufficient to block the activation of JNK1/2 (fold change in kinase activity: TRAF6f1f
, 

15.83 ± 0.41, vs. TRAF6mko
, 12.11 ± 0.10) and p38 MAPK (fold change in kinase 

activity: TRAF6f/f
, 10.76 ± 0.74, vs. TRAF6mko

, 7.31 ± 0.40) in denervated muscles. In 
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addition, we also found that the phosphorylation of AMPK as well as its kinase activity 

were significantly inhibited (fold change in kinase activity: TRAF6f/f
, 4.15 ± 0.24, vs. 

TRAF6mko
, 2.57 ± 0.39) in denervated skeletal muscle of TRAF6mko compared with 

TRAF6f/f mice (Figure 2.6 C). Because JNK, p38 MAPK, and AMPK are linked with 

skeletal muscle atrophy (17, 36, 87), their reduced activation in denervated skeletal 

muscle of TRAF6mko suggests that TRAF6 might be mediating skeletal muscle atrophy 

through the downstream activation of these kinases in response to denervation. 

Interestingly, levels of kinase activity and/or phosphorylation of Akt and mTOR, 

which are involved in anabolic pathways (26, 84), were similar in denervated muscle of 

TRAF6f/f and TRAF6mko mice (Figure 2.6, D and E). These results suggest that TRAF6 

mediates the activation of selective pathways, especially those involved in catabolic 

mechanisms in denervated muscles. 

2.3.7 TRAF6 is Involved in Denervation-Induced Activation of NF-KB in Skeletal 

Muscle 

Accumulating evidence suggests that NF-KB is a major transcription factor, the 

activation of which causes severe muscle wasting in response to diverse stimuli (Li et aI., 

2008). We investigated whether TRAF6 plays a role in activation ofNF-KB in denervated 

skeletal muscle. Sham and denervated T A muscle were isolated from TRAF6f1f and 

TRAF6mko mice, and nuclear extracts were analyzed for NF-OB activity by an 

electrophoretic mobility shift assay (EMSA). The denervation-induced activation of NF­

KB in skeletal muscle was inhibited in TRAF6mko mice compared with TRAF6f/f mice 

(Figure 2.7, A and B). Furthermore, transcriptional activation of NF-KB measured after 
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electroporating an NF-KB reporter plasmid (Figure 2.7 C) and the levels of 

phosphorylation ofNF-KB subunit p65 (Figure 2.7 D) were also significantly inhibited in 

denervated muscle of TRAF6mko mice compared with TRAF6
f/f mice. This suggests that 

TRAF6 is required for the activation ofNF-KB upon denervation. 

It has been recently reported that TNF-like weak inducer of apoptosis (TWEAK) 

cytokine is a major mediator of denervation-induced skeletal muscle atrophy in mice 

(Mittal et aI., 2010). Normal skeletal muscle expresses TWEAK but not its receptor 

Fn14. However, in response to denervation, the expression ofFn14 goes up dramatically; 

this allows for TWEAK activation ofNF-KB (53). We first investigated whether TRAF6 

regulates the expression of Fn14 in response to denervation. No major difference was 

noticed in Fn14 protein levels between TRAF6 f/f and TRAF6mko mice upon denervation 

(Figure 2.7 E). We next asked whether TRAF6 is involved in TWEAK-induced 

activation of NF-KB. To answer this question, we used TRAF6-deficient mouse 

embryonic fibroblasts (MEFs). Interestingly, TWEAK-induced increases in DNA­

binding activity (Figure 2.7 F) and transcriptional activation of NF-KB (Figure 2.7 G) 

were significantly inhibited in TRAF6-1
- MEFs compared with TRAF6+1+, which indicates 

that TRAF6 is required for the activation ofNF-KB in response to TWEAK. 

2.3.8 Depletion of TRAF6 Prevents Skeletal Muscle Wasting in Response to Tumor 

Growth 

Tissue loss is a common consequence in cancer cachexia (102). To understand 

whether TRAF6 plays any role in cancer cachexia and subsequent muscle loss, 

TRAF6mko and TRAF6f1f mice were injected with LLC cells in the left flank. Although no 
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significant difference was observed in tumor growth in these two mice, skeletal muscle of 

TRAF6f/f mice showed a significant reduction in fiber CSA 14 d after inoculation with 

LLC cells (Figure 2.8, A and B). Surprisingly, fiber CSA in LLC-bearing TRAF6mko 

mice was almost completely preserved, which indicates that the TRAF6 mediates the loss 

of muscle mass in response to tumor growth (Figure 2.8 B). Though the molecular basis 

of cachexia is not yet fully resolved, a majority of factors that induce cachexia involve 

the activation of NF-K13 at the distal end of their signaling cascade (47). This has been 

corroborated by the finding that the inhibition of NF -K13 prevents tumor-induced muscle 

loss in mice (46). We investigated whether TRAF6 functions through the activation of 

NF-K13 in this model of cancer cachexia. Our results showed a significant inhibition in 

DNA-binding activity of NF-KB in skeletal muscle of LLC-bearing TRAF6mko mice 

compared with TRAF6f/f mice (Figure 2.8 C). Furthermore, the expression of MuRFl, 

LC3B, and Beclinl was blocked in LLCinjected TRAF6mko compared with TRAF6f/f 

mice; this indicates that, similar to denervation, inhibition of TRAF6 prevents tumor­

induced activation of ubiquitin-proteasome and autophagy- lysosomal systems in 

skeletal muscle (Figure 2.8 D). 
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2.4 CONCLUSION AND DISCUSSION 

The results of the present study indicate a novel role of TRAF6, formerly known 

as an E3 ubiquitin ligase with involvement in several signaling pathways, in upstream 

regulation of muscle atrophy. More recently, understanding about the intracellular 

signaling pathways governing skeletal muscle mass in response to both atrophy and 

hypertrophy stimuli has taken a quantum leap, though most of the recent investigations 

were focused on studying the role of various effector kinases and downstream 

transcription factors (17, 36, 37, 84, 87). The initial events that trigger the activation of 

one or multiple signaling pathways in the conditions of atrophy or hypertrophy remain 

poorly defined. Our study has identified TRAF6 as a major upstream regulator of skeletal 

muscle atrophy in response to both physiological (e.g., denervation) and pathological 

(e.g., cancer cachexia) stimuli. Although it remains unknown what elicits the expression 

and autoubiquitination of TRAF6 in atrophying muscle, it was of interest to note that 

proliferating myoblasts express high levels of TRAF6, which is considerably reduced 

after their differentiation into myotubes. Therefore, it appears that the reduced expression 

of TRAF6 in differentiated muscle could be a mechanism to prevent the activation of 

various catabolic pathways under normal conditions. In contrast, elevated levels of 

TRAF6 in undifferentiated myoblasts or in skeletal muscle of young animals is consistent 

with published findings that TRAF6 may be required for the proliferation and 

differentiation of muscle progenitor cells during skeletal muscle development (103, 104). 

Skeletal muscle atrophy, in different catabolic conditions, involves the 

downstream activation of the ATP-dependent ubiquitin-proteasome system (83). It has 

been found that in almost all muscle-wasting conditions, the expression of two muscle-

36 



specific E3 ubiquitin ligases, MAFbx and MuRF 1, which label the target proteins for 

degradation by 26S proteasome, is highly up-regulated (9, 27, 82). Moreover, a few 

substrates that MAFbx and MuRF 1 target in atrophying skeletal muscle have now been 

identified (105-107). This study suggests that one of the mechanisms by which TRAF6 

induces degradation of muscle protein is through augmenting the expression of both 

MAFbx and MuRFl in denervated skeletal muscle (Figure 2.5 A). Furthermore, these 

results demonstrating that the degradation of MyHC is significantly blocked in 

denervated skeletal muscle of TRAF6mko mice (Figure 2.4) are in agreement with recent 

reports that MuRFl targets thick filament proteins including MyHC in skeletal muscle 

(l05,108). 

Although the exact mechanisms by which TRAF6 augments the expression of 

MAFbx and MuRFl are not clear, it has been consistently observed that the activity of 

TRAF6 is stimulated in response to many receptor-mediated events. The N-terminal 

RING domain of TRAF6 is required for its ability to signal by functioning as an E3 

ubiquitin ligase, which catalyzes the synthesis of a polyubiquitin chain linked through 

Lys-63 (K63) residue in ubiquitin (10, 109). This autoubiquitination of TRAF6 serves as 

a scaffold to recruit molecules required for the activation of kinase complexes such as 

transforming growth factor ~-activated kinase 1 (TAK1) and IKB kinase (21, 39). The 

TAK1-TAB2 (or TAB3) complex that is activated potentially through TRAF6-dependent 

ubiquitination can phosphorylate IKK~ at Ser-177 and Ser-181 in the activation loop, 

leading to the activation of IKK and subsequently NF-KB (110). The activated TAK1 

complex can also phosphorylate members of the MKK family, leading to the activation of 

JNK and p38 kinase (20, 22, 66). Interestingly, recent studies suggest that the activation 
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of NF -KB in skeletal muscle up-regulates the expression of MuRF 1 in response to a 

variety of catabolic stimuli, including denervation and tumor growth (46, 47, 53, 86). 

Furthermore, there are also published studies suggesting that the p38 MAPK augments 

the expression of MAFbx in response to inflammatory cytokines and bacterial products 

(24, 87). Because depletion of TRAF6 in skeletal muscle blocked the activation of both 

NF-KB and p38 MAPK in denervated skeletal muscle (Figs. 2.6 Band 2.7), it is likely 

that TRAF6 augments the expression of MuRFl and MAFbx through the activation of 

NF-KB and p38 MAPK, respectively, by stimulating the activity of TAKI signalosome. 

The present study also provides novel evidence that the TWEAK-FnI4 dyad, a major 

regulator of denervation-induced skeletal muscle atrophy (53), stimulates NF-KB 

activation through the recruitment ofTRAF6 (Figure 2.7, F and G). 

In addition to the ubiquitin-proteasome system, the autophagy-lysosomal 

pathway has also been implicated in myofibril degradation in various atrophying 

conditions (13, 18). Though it was initially considered as an important mechanism for 

removal of ubiquitinated protein aggregates and cytoplasmic organelles under the 

conditions of stress, recent evidence indicates that the activation of this pathway may also 

be a protective mechanism for muscle fibers in the conditions of atrophy (13, 15, 18). 

Mitochondria are one of the most important organelles that undergo alterations in their 

content, shape, and function in conditions of muscle wasting (99, 111). More recently, it 

has been found that the mitochondrial fission is a prerequisite for skeletal muscle atrophy 

in response to starvation or after overexpressionof Fox03, and that the autophagy­

lysosomal system is the major mechanism for the removal of disintegrating mitochondria 

in these conditions (17). The removal of leaky mitochondria, releasing pro-apoptotic 

38 



factors such as cytochrome c and apoptosis-inducing factor, may protect cells by 

preventing activation of apoptosis (17, 23, 24). The protective role of autophagy in 

skeletal muscle in catabolic conditions has also been highlighted by a recent study 

demonstrating that muscle-specific depletion of Atg7, an important component of the 

autophagy-lysosomal system, led to more severe myopathy in conditions of denervation 

(15). This suggests that physiological autophagy may be required for muscle 

homeostasis, whereas its overstimulation in atrophying muscle may contribute to muscle 

proteolysis (18). Intriguingly, our findings revealed that the inhibition of TRAF6 

dramatically reduces mitochondrial disorganization and autophagosome formation 

(Figure 2.5 D), as well as the activation of AMPK (Figure 2.6 C), which is known to 

induce the expression of several autophagy-related genes (e.g., LC3B and Bnip3), and the 

E3 ligases MuRFI and MAFbx through the activation of Fox03 transcription factor in 

skeletal muscle (13, 14, 17). Although mitochondrial fission has been suggested as an 

initial event to activate the autophagy pathway in skeletal muscle (17), it has been 

recently demonstrated that TRAF6 causes the Lys-63-linked ubiquitination of Beclinl 

(the mammalian homologue of yeast Atg6), which is essential for autophagosome 

formation in response to Toll-like receptor 4 (TLR4) signaling (93). Whether TRAF6 

stimulates autophagosome formation through augmenting mitochondrial fission or if it 

directly regulates the expression and activity of the components of autophagy-lysosomal 

pathway is an area of research for future investigation. 

We further investigated the contribution of TRAF6 toward muscle loss in cancer 

cachexia. Earlier studies have underlined the importance of inflammatory cytokines and 

tumor-derived factors as mediators of muscle loss in both animal models and advanced 
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stages of cancer patients (102, 112, 113). Using transgenic mIce expressmg a 

constitutively active mutant of IKK~, Cai et al. (2004) have previously demonstrated that 

the stimulation of the NF-KB pathway is sufficient to cause severe muscle loss in mice. 

Furthermore, their study also showed that muscle-specific overexpression of a super­

repressor mutant of IKBa (inhibitor of NF-KB) significantly rescued muscle loss in 

response to tumor growth in mice (46). The present study provides convincing evidence 

that TRAF6 is an upstream regulator of LLC-induced muscle loss, NF -KB activation, and 

MuRF1 expression (Figure 2.8). Interestingly, although NF-KB was found to regulate 

only the expression of MuRF 1 (46), our results indicate that TRAF6 also regulates the 

expression of autophagy-related genes (e.g., LC3B and Beclinl) in skeletal muscle of 

LLC-bearing animals (Figure 2.8 D). Furthermore, the almost complete inhibition of 

LLC-induced expression of MuRF1, LC3B, and Beclin1 in skeletal muscle of TRAF6mko 

mice compared with control mice is consistent with major amelioration in muscle atrophy 

in TRAF6mko mice (Figure 2.8, A and B). 

The results of the present study suggest that though a significant inhibition in 

muscle atrophy was observed in models of both denervation and cancer cachexia, 

depletion of TRAF6 resulted in more drastic improvement in fiber CSA in skeletal 

muscle of LLC-bearing mice. A better rescuing effect in the cancer cachexia model 

compared with denervation could be attributed to the fact that cancer cachexia involves 

systemic inflammation, and pro inflammatory cytokines are some of the most important 

mediators of muscle wasting in a cancer-bearing host (102, 112, 113). Interestingly, 

several cytokines and tumor-derived factors require TRAF6 for the downstream 

activation of various cell signaling pathways such as NF-KB and MAPK, which were also 
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activated in atrophying skeletal muscle (30, 103, 104). In contrast, denervation-induced 

muscle atrophy does not involve any systemic inflammation, though it was recently 

demonstrated that the TWEAK-Fn14 dyad is one of the important mediators of muscle 

loss under conditions of denervation (1, 53). Although a significant amelioration in 

muscle atrophy was observed, the denervation-induced muscle loss was also not 

completely blunted in TWEAK-KO mice (53). Therefore, it is possible that muscle 

atrophy in response to denervation also involves some other uncharacterized factors that 

function independent of TRAF6. Nevertheless, the present study provides strong 

evidence that TRAF6 is central regulator of major proteolytic pathways in different types 

of atrophy. 

In summary, the broad benefits of TRAF6 blockade in skeletal muscle unveil 

novel and exciting possibilities for therapeutic approaches for the treatment of muscle 

wasting diseases in humans. 
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Figure 2.1: Expression of TRAF6 is increased in atrophying skeletal muscle. 
(A) Western blot analysis of protein levels of TRAF-family member proteins at different 
time points after induction of differentiation in cultured C2C12 myoblasts. (B) Change in 
transcript levels of TRAF6 in response to differentiation of C2C12 myoblasts into 
myotubes. (C) Western blot analyses demonstrating age-dependent change in protein 
levels of TRAF6 in mice. C57BL6 mice were subjected to either the conditions of 
denervation (sciatic nerve transection), tumor growth (LLC), or diabetes (STZ injection), 
and TA muscle was isolated and used for biochemical analyses. (D) Fold change in 
mRNA levels of TRAF6 in TA muscle of challenged mice compared with control mice. 
(E and F) Western blot analyses of protein levels ofTRAF6 in TA muscle (E) and soleus 
muscle (F) of control and challenged mice. Black lines indicate that intervening lanes 
have been spliced out. (G) Control and denervated T A muscle extracts were 
immunoprecipitated with TRAF6 antibody followed by Western blotting using ubiquitin 
(Ub) antibody (top). Western blotting using anti-TRAF6 after stripping the membrane 
(middle) and anti-tubulin (bottom). Error bars indicate SD. *, P < 0.01 (values 
significantly different from controls). CON, control; DEN, denervated; DIAB, diabetic. 
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Figure 2.2: Generation of skeletal muscle-specific TRAF6 knockout mice. (A) 
Strategy for the generation of TRAF6mko mice. TRAF6f1f mice were generated by 
homologous recombination of a 15-kb DNA fragment containing a 5.5-kb-Iong 
homologous (LH) fragment, 10xP site, 2-kb TRAF6 exon, 1.4-kb stop cassette, 10xP site, 
1.5-kb IRES-YFP, and 1.5-kb short homologous (SH) fragment. These mice were crossed 
with MCK-Cre mice to delete the floxed exon. (B) Drawing depicting the breeding 
strategy for generation of TRAF6mko and littermate TRAF6f1f mice. (C) Representative 
photomicrographs of the semiquantitative reverse polymerase PCR gels showing reduced 
expression of TRAF6 in TA muscle of TRAF6mko mice compared with TRAF6f1f or 
C57BL6 mice. The levels of IRES and GAPDH were comparable between TRAF6f1f and 
TRAF6mko mice. (D) Western blot analysis of TRAF6, TRAF3, TRAF4, TAB1, and 
tubulin protein levels showed depletion of TRAF6 only in skeletal muscle of TRAF6mko 

mice. (E) Morphometric analysis of H&E stained T A muscle sections demonstrate that 
(F) There is no significant difference in mean CSA and (G) Number of myofibers were 
comparable in TRAF6f1f and TRAF6mko mice. (H, 1 and J) TRAF6f1f and TRAF6mko were 
found comparable in (H) Serum creatine-kinase acivity (I) Specific force produced by 
soleus muscle and (J) Fiber type composition in soleus muscle. 
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Figure 2.3. Ablation of TRAF6 prevents denervation-induced muscle loss in mice. 3-
mo-old TRAF6fJf and TRAF6mko mice were denervated by transection of sciatic nerve. 
(A) Arrows point to GA muscle 14 dafter denervation. (B~ TA, GA, and soleus muscle 
were isolated tendon to tendon from TRAF6fJf and TRAF6m 

0 mice 14 dafter denervation 
(n = 8 per group), and their wet weight was measured. (C) H&E-stained sections of TA 
muscle of TRAF6fJf and TRAF6mko mice 14 dafter denervation. Bars, 50 Ilm. (D) 
Quantification of mean fiber CSA of T A muscle in TRAF6f/f and TRAF6mko mice 14 d 
after denervation (n = 8 in each group). (E) Representative H&E-stained sections of 
soleus muscle of TRAF6fJf and TRAF6mko mice. Bars, 20 Ilm. (F) Quantification of fiber 
CSA in soleus muscle in TRAF6f/ f and TRAF6mko mice after denervation (n = 8 in each 
group). (G) Denervation-induced loss in absolute muscle force production in isometric 
contraction was measured in soleus muscle of TRAF6 f/f (n = 4) and TRAF6mko (n = 4) 
mice at the indicated frequencies. Error bars represent SD. *, P < 0.05 (values 
significantly different from denervated muscle ofTRAF6fJf mice). 
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Figure 2.4. Depletion of TRAF6 prevents degradation of specific muscle proteins in 
denervated skeletal muscle. (A) Representative irnrnunoblots for MyHC, tropomyosin, 
troponin, nNOS, dystrophin, p-dystroglycan, sarcomeric a-actin, laminin, and tubulin in 
T A muscle 10 dafter denervation. Black lines indicate that intervening lanes have been 
spli~ed out. (B) Fold change in protein levels of MyHC in TA muscle ofTRAF6f1f (n = 4) 
and TRAF6mko (n = 4) mice after denervation. (C) Fold change in mRNA level of MyHC 
in TA muscle of TRAF6fJf (n = 4) and TRAF6mko (n = 4) mice upon denervation. Error 
bars represent SD. *, P < 0.05 (values significantly different from TRAF6fJf mice). Black 
lines indicate that intervening lanes have been spliced out. 
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D. 
Sham Control Denervated 

Figure 2.5. TRAF6 is required for the activation of the ubiquitin-Ftroteasome and 
autophagy systems in denervated skeletal muscle. 3-mo-old TRAF6 f and TRAF6mko 

mice were subjected to denervation for 10 d, and T A muscles were isolated for 
biochemical analyses. (A) Transcript levels of MAFbx and MuRFl (measured b~ QRT­
PCR assays) were significantly lower in denervated TA muscle of TRAF6m 

0 mice 
compared with TRAF6 £1f mice. (B) The expression levels of autophagy-related genes 
LC3B, Beclinl , and Gabarapll were also sirrnificantly reduced in denervated T A muscle 
of TRAF6mko mice compared with TRAF6£f mice. Error bars represent SD. *, P < 0.05 
(values significantly different from those of denervated TA muscle of TRAF6 f/f mice). 
(C) Representative immunoblots presented here demonstrate reduced protein levels of 
MuRFl , LC3B, and Beclinl in denervated TA muscle ofTRAF6mko mice compared with 
TRAF6£1f mice. Black lines indicate that intervening lanes have been spliced out. (D) 
Analyses of longitudinal sections of control and denervated T A muscle of TRAF6£1f and 
TRAF6mko mice using transmission electron microscopy. Black arrows point to 
subsarcolemmal mitochondrial distribution, blue arrows point to intermyofibrillar 
mitochondria, white arrows point to autophagosomes, pink arrows point to autophagic 
vacuoles, and red arrows point to mitochondria being engulfed by autophagosome. Bar, 1 
!lm. 
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D. TRAF6f/f TRAF6mko 
S S D D' ISS D D I 
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~================~ 1___ _ I+- p-Akt (60 kDa) 
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Figure 2.6. Activation of different signaling proteins in denervated muscle of 
TRAF6f1f and TRAF6mko mice. Protein extracts prepared from control or 7-d post­
denervated muscle of TRAF6f1f and TRAF6mko mice were used for in vitro kinase assays 
or Western blotting. (A) Representative gel pictures show kinase activity, and 
phosphorylated and total JNK1I2 protein levels in control and denervated TA muscle of 
TRAF6mko and TRAF6 f/f mice. (B) Kinase activity and phosphorylated and total p38 
MAPK levels in TA muscle of TRAF6mko and TRAF6f1f mice. (C) Gel pictures showing 
levels of phosphorylated and total AMPK protein in TA muscle of TRAF6mko and 
TRAF6f1f mice (top). Kinase activity of AMPK (bottom) was measured using a 
commercially available kit. Error bars represent SD. *, P < 0.05 (values significantly 
different from those of denervated T A muscle of TRAF6f1f mice). Black lines indicate 
that intervening lanes have been spliced out. (D) Kinase activity and phosphorylated and 
total Akt protein levels in TA muscle of TRAF6mko and TRAF6f1f mice. (E) 
Phosphorylated and total mTOR protein levels in TA muscle ofTRAF6mko and TRAF6f1f 

mice. D, denervated; KA, kinase assay; S, sham operated. 
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Figure 2.7. TRAF6 is required for the activation of NF-KB transcription factor in 
denervated skeletal muscle. (A) DNA-binding activity ofNF-KB measured by EMSA in 
T A muscle of TRAF6f1f and TRAF6mko mice 10 dafter denervation. A representative 
EMSA gel from three independent experiments is presented. (B) Quantification of fold 
change in DNA-binding activity of NF-KB in TA muscle of TRAF6f1f (n = 6) and 
TRAF6mko (n = 6) mice. (C) Fold change in NF-KB reporter gene activity (normalized 
using Renilla luciferase) in TA muscle of TRAF6f1f and TRAF6mko mice in response to 
denervation. (D) Western blot analyses of the phosphorylated and total form of p65 
protein in TA muscle of TRAF6f1f and TRAF6mko mice. (E) Western blot analysis of 
Fn14 protein in TA muscle of TRAF6f1f and TRAF6mko mice 4 dafter denervation. (F) 
TRAF6+f+ and TRAF6-f

- MEF were treated with 100 ng/ml TWEAK for the indicated 
time intervals, and the activation of NF -KB was studied by EMSA. A representative 
EMSA gel from two independent experiments is presented. (G) Fold change in NF-KB 
reporter gene activity (normalized using Renilla luciferase) in TRAF6+f+ and TRAF6-f

-

MEFs measured after 24 h of 100 ng/ml TWEAK treatment. Error bars represent SD. D, 
denervated; S, sham-o&erated. *, P < 0.01 (values significantly different from denervated 
TA muscle ofTRAF6 f mice). 

61 



A. 

B. 

~ 3.0 
r;n 
U 2.5 . ,-.... - '" ] ~ 2.0 
~ 

~ ~ 1.5 
~ 5 
:I :1.. 1.0 
5'-' 
~ 0.5 

TRAF6f /f 

TRAF6f/f TRt\.F6mko 

62 

TRA.F6mko 

c. 
~ 
r;n 
U 

2.5 

~ 2.0 
..0:;" 
~o 
~ ~ 1.5 
~~ 
Vl N 

:I 51.0 
5 :1.. 
Vl'-' 

:I 0.5 
~ -o 

r;n 

o TRAF6f/f TRAF6mko 



D. 

E. 
6 

<Il 

~5 
..2:l 
<4 
~3 
E 
"""2 ~ 

~ 1 
::E 

0 

QI 
,.Q 

8 
c.. 
QI TRAF6f/f 

f 'I ------,11 
~CCTTC 

TRAF6mko 

C T T 

+-NF-KB 

CJ Saline; _ Tumor (LLC) 
5 

'" "Qj4 
~ 
~ 
<3 
~7 E-
~ 
~ 1 
U 
,.J 

TRAF6r/r TRAF6mko 
0 

TRAF6r/r TRAF6m),o 

3 
<Il 

"Qj 
~ 

..2:l 2 
< 
~ 
E 

""" 1 
.5 
U 

c:.I 
~ 

0 
TRAF6r/r TRAF6lnko 

Figure 2.8. Depletion of TRAF6 prevents tumor-induced muscle loss in mice. LLC 
cells (2 x 106 cells in 100 ~l saline) were injected in the left flank of TRAF6

fJ f 
and 

TRAF6mko mice. Control mice received 1 00 ~l of saline only. (A) TA muscles were 
isolated from control and tumor-bearing mice after 14 d and analyzed by staining with 
H&E. Representative photomicrographs presented here demonstrate that fiber CSA was 
preserved in TRAF6mko mice (n = 7) compared with TRAF6

fJ f 
mice (n = 6). Bars, 20 ~m. 

(B) Quantification of mean fiber CSA in T A and soleus muscle of TRAF6
fJ f and 

TRAF6mko mice after 14 d of tumor inoculation (n = 6 in each group). (C) Analysis of 
DNA-binding activit~ of NF-KB in TA muscle of control and LLC-inoculated TRAF6

fJf 

(n = 4) and TRAF6m 
0 mice (n = 4). A representative EMSA gel is presented. (D) QRT­

PCR analysis of mRNA levels of MuRF1, LC3B, and Beclin1 in TA muscle of 
TRAF6mko and TRAF6

fJ f 
mice in response to LLC growth (n = 6 in each group). Error 

bars represent SD. *, P < 0.01 (values significantly different from TRAF6f1f mice 
inoculated with LLC). 
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CHAPTER THREE 

TRAF6 E3 UBIQUITIN LIGASE INTERCEDES ST ARV ATION-INDUCED 
MUSCLE ATROPHY THROUGH MULTIPLE MECHANISMS 

3.1 INTRODUCTION 

Skeletal muscle atrophy that occurs in response to fasting/nutritional deprivation 

has several common as well as distinct features (3). Like other atrophic programs, the 

loss of muscle mass upon starvation involves the activation of ubiquitin-proteasome 

system (UPS) and autophagy-lysosomal system (ALS) (82, 84). However, a degree of 

distinction in starvation-induced muscle atrophy is introduced by the fact that in case of 

nutrient deprivation, muscle proteins are degraded and mobilized for amino acid 

production which is further used for gluconeogenesis. In addition, other evidences 

suggest the involvement of distinct stimuli in starvation-induced catabolic changes such 

as altered levels of insulin growth factors (IGFs) and glucocorticoids (22, 114, 115). 

Recently, activating transcription factor 4 (ATF4) has been reported to be involved in 

starvation-induced loss of skeletal muscle mass (23). Furthermore, while muscle wasting 

in response to cancer cachexia or disuse conditions (e.g. denervation, unloading, 

immobilization etc) involves the activation of transcription factor nuclear factor-kappa B 

(NF-KB), there has been no evidence regarding the activation or involvement of NF-KB 

in the loss of skeletal muscle in response to starvation (47, 102). 
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TRAF6 is an E3 ubiquitin ligase and through association with the dimeric ubiquitin­

conjugating enzyme Ubc 13/Uev 1 A, it catalyzes lysine 63 (K63)-linked 

polyubiquitination of several target proteins (39, 64, 116). Although it remains enigmatic 

whether the E3 ubiquitin ligase activity of TRAF6 is essential for its signaling function in 

all conditions, recent studies have shown that TRAF6 functions as a central regulator in 

multiple signaling pathways such as NF -KB, mitogen-activated protein kinase (MAPK), 

and phosphatidylinositol 3-kinase (PI3K)/Akt in response to various cytokines and 

microbial products (10, 30, 39, 75, 76, 116). In addition to its association with 

cytoplasmic domains of various cell surface receptors such as toll-like receptors and 

interleukin-l receptor, TRAF6 has also been found to interact with multiple components 

of UPS and/or ALS in some cell types (21, 48, 77, 93). We have also recently reported 

that TRAF6 regulates skeletal muscle mass and activation of ALS and UPS in denervated 

skeletal muscle (117). However, the role and the mechanisms of action of TRAF6 and 

whether E3 ubiquitin ligase activity of TRAF6 is required for muscle atrophy in response 

to fasting remain unknown. 

Several cellular stress conditions, such as starvation and alterations in 

glycosylation status, lead to accumulation of unfolded and/or misfolded proteins in the 

ER lumen and cause ER stress (29, 32). The ER responds by activation of a range of 

signaling pathways that are collectively termed the ER stress response or the unfolded 

protein response (UPR), which is essentially a cyto-protective response, but excessive or 

prolonged UPR can produce deleterious effects including cell death (118). UPR has three 

distinct arms which have their specific transducers. Activation of these arms is mediated 

by PERK (protein kinase RNA (PKR)-like ER kinase), IREI (inositol-requiring protein-
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1), and ATF6 (activating transcription factor 6) (20, 29, 32). Until recently, there was no 

evidence whether ER stress-related proteins are involved in skeletal muscle metabolism 

and whether there is any regulatory mediation of ER chaperones in skeletal muscle 

atrophy. Recently, it has been demonstrated that ATF4, a transcription factor, involved in 

cellular responses to starvation is involved in muscle atrophy through mechanisms 

independent of induction of muscle-specific E3 ubiquitin ligases MAFBx (also known as 

Atrogin-l) and MuRFl (23). It is notable that the expression of ATF4 is increased 

through the activation of PERK arm of the UPR in addition to other activating kinases 

such as general control derepressible 2 (GCN2) kinase and heme-regulated inhibitor 

(HRI) kinase (119). Intriguingly, ER stress responsive transcription factor ATF6 has been 

implicated in muscle adaptation in response to acute exercise (120). However, direct 

evidence regarding the activation of UPR in skeletal muscle in atrophic conditions is still 

lacking. 

In this study, using skeletal-muscle specific TRAF6 knockout mice, we have 

investigated the role and the mechanisms by which TRAF6 regulates starvation-induced 

muscle atrophy. Our results show that muscle-specific depletion of TRAF6 inhibits 

starvation-induced activation of UPS and ALS and muscle atrophy in mice. Intriguingly, 

TRAF6 is essential for the inducible expression of several ER stress response-related 

genes including ATF4 in response to fasting. Our results also suggest that the TWEAK­

Fn14 system is involved in fasting-induced muscle atrophy and inducible expression of 

Fn14 in response to starvation requires TRAF6. Finally, our experiments demonstrate 

that the E3 ubiquitin ligase activity of TRAF6 is essential for induction of atrophic 

program in skeletal muscle in response to starvation. 
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3.2 MATERIALS AND METHODS 

Mice 

Floxed TRAF6 (TRAF6f7f
) and muscle specific knock-out for TRAF6 

(TRAF6mko
) mice have been described previously (117). All of the mice were in the 

C57BLl6 background, and their genotype was determined by PCR from tail DNA. For 

starvation studies, mice were provided water but kept unfed for 6h, 12h, 24h or 48h. All 

experimental protocols with mice were approved in advance by the Institutional Animal 

Care and Use Committee at University of Louisville. 

Cell Culture 

C2C12 cells (a myoblastic cell line) were obtained from American Type Culture 

Collection. These cells were grown in DMEM containing 10% FBS. Myoblasts were 

transfected with different plasmids using Effectene transfection reagent (Qiagen). To 

induce differentiation, the cells were incubated in differentiation medium (2% horse 

serum in DMEM) for 96h as described (117). For starvation studies, the medium of the 

differentiated myotubes was replaced with sterile phosphate buffered saline (PBS) for 3h 

or 6h and the myotubes were examined by morphometric or biochemical assays. 

In vivo Gene Delivery 

The injection of plasmid DNA into TA muscle of mice and electroporation were 

performed according to a protocol as previously described (121). In brief, pcDNA3, 

FLAG-TRAF6 C70A, and pEGFPCl were prepared using an endotoxin-free kit (Qiagen) 

and suspended in sterile saline solution in a 1: 10 ratio. Mice were anesthetized, and a 

small portion of T A muscle of both hind limbs was surgically exposed and injected with 
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30 JlI of 0.5 VIJlI hyaluronidase (EMD Biosciences). After 2h, plasmid DNA (30 Jlg in 25 

JlI saline) was injected in TA muscle, and 1 min after plasmid DNA injection, a pair of 

platinum plate electrodes were placed against the closely shaved skin on both sides, and 

electric pulses were delivered. Three 20 ms square-wave pulses of I-Hz frequency at 

75V/cm were generated using a stimulator (model S88; Grass Technologies) and 

delivered to the muscle. The polarity was then reversed and a further three pulses were 

delivered to the muscle. After electroporation, mice were returned to their cages and fed a 

standard diet. Mice were used 10 days after plasmid electroporation for starvation studies. 

Histology and Morphometric Analysis 

Hind limb muscles (soleus and TA) of mice were removed, frozen in isopentane 

cooled in liquid nitrogen, and sectioned using a microtome cryostat. For the assessment 

of tissue morphology, IO-Jlm-thick transverse sections of muscles were stained with 

H&E, and staining was visualized (without any imaging medium) at room temperature on 

a microscope (Eclipse TE 2000-V) using a Plan lOX, NA 0.25 PHI DL or Plan-Fluor 

ELWD 20X, NA 0.45 PhI DM objective lens, a digital camera (Digital Sight DS-FiI), 

and NIS Elements BR 3.00 software (all from Nikon). The images were stored as JPEG 

files, and image levels were equally adjusted using Photoshop CS2 software (Adobe). 

Fiber CSA was analyzed in H&E-stained soleus or TA muscle sections. For each muscle, 

the distribution of fiber CSA was calculated by analyzing 200-250 myofibers using NIS 

Elements BR 3.00 software (Nikon) as described (53). 
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Immunoprecipitation and Western Blot 

Levels of different proteins in skeletal muscle were determined by performing 

immunoblotting as described (53). In brief, tissues were washed with PBS and 

homogenized in Western blot lysis buffer A (50 mM Tris-CI, pH 8.0, 200 mM NaCl, 50 

mM NaF, 1 mM DTT, 1 mM sodium orthovanadate, 0.3% IGEPAL, and protease 

inhibitors). Approximately 100 Ilg of protein was resolved on each lane on 10-12% SDS­

PAGE, electrotransferred onto nitrocellulose membrane, and probed using anti-TRAF6 

(1: 1 ,000; Millipore), anti-TRAF3 (1: 1 ,000; Santa Cruz Biotechnology, Inc.), anti-TRAF5 

(1:1,000; Santa Cruz Biotechnology, Inc.), anti-Ubiquitin (1:1,000; Santa Cruz 

Biotechnology, Inc.), anti-phospho FOX03a (1:1,000; Cell Signaling Technology), anti­

phospho Akt (1 :200; Cell Signaling Technology), anti-Akt (1: 1 ,000; Cell Signaling 

Technology), anti-phospho-eIF2 (1: 1000; Cell Signaling Technology), anti-eIF2 

(1: 1 ,000; Cell Signaling Technology), anti-ATF3 (1: 1000; Santa Cruz Biotechnology), 

anti-ATF4 (1: 1 000; Santa Cruz Biotechnology), anti-PDI (1: 1 ,000; Santa Cruz 

Biotechnology), anti-CHOP (1: 1 ,000; Santa Cruz Biotechnology), anti-LC3B (l: 1 ,000; 

Cell Signaling Technology), anti-p62 (1:1,000; MBL International), anti-Fn14 (1:1,000; 

Cell Signaling Technology), MF -20 (1: 1 ,000; Development Studies Hybridoma Bank, 

University of Iowa) and detected by chemiluminescence. The bands were quantified 

using ImageQuant TL software (GE Healthcare). To study the autoubiquitination of 

TRAF6, muscle extract (400 Ilg protein) was incubated overnight with 1 Ilg anti-TRAF6 

antibody (MBL) in 600 III of lysis buffer followed by addition of protein A sepharose 

beads and incubation at 4°C for additional 2 h. The beads were washed four times with 

lysis buffer and finally suspended in 2X Laemmli' s sample buffer. Proteins were resolved 
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on 10% SDS-PAGE gel and immunoblotted using Lys 63-specific ubiquitin antibody 

(1:1,000; Millipore). 

Total RNA Extraction and QRT -peR Assay 

RNA isolation and QRT-PCR were performed usmg gene specific pnmers 

following same method as described (53). 

Statistical Analysis 

Results are expressed as mean ± SD. The Student's t test or analysis of variance 

was used to compare quantitative data populations with normal distributions and equal 

variance. A value of P < 0.05 was considered statistically significant unless otherwise 

specified. 
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3.3 RESULTS 

3.3.1 TRAF6 Mediates the Starvation-Induced Fiber Atrophy in Mice 

We have previously reported that the expression ofTRAF6 is increased in skeletal 

muscle in multiple catabolic conditions including denervation and cancer cachexia (117). 

We first investigated how the expression ofTRAF6 is affected in skeletal muscle of mice 

in response to fasting. Wild-type mice were given access to normal water but deprived of 

food for 24h. Transcript levels of TRAF6 in hind limb muscle were measured using 

quantitative real-time PCR (QRT-PCR) assay. As shown in Figure 3.1 A, mRNA levels 

of TRAF6 were significantly increased in tibial anterior (TA), gastrocnemius (GA), and 

soleus muscle of fasted mice compared to controls. We also performed Western blot for a 

few TRAFs. In TA muscle of unstarved mice, level of TRAF6 protein was much lower 

compared to TRAF2, TRAF3, or TRAF5. However, the levels of TRAF6 protein were 

considerably increased within 6h and remained elevated even after 24h of fasting. In 

contrast, fasting did not affect protein levels ofTRAF2, TRAF3, or TRAF5 in TA muscle 

of mice (Figure 3.1 B). To identify the physiological significance of increased expression 

of TRAF6 in fasted muscle, we investigated the effects of deletion of TRAF6 on muscle 

atrophy in response to starvation. Skeletal muscle-specific TRAF6 knockout (henceforth 

TRAF6mko
) and their corresponding littermates (i.e. TRAF6f1f

) as described (117) were 

fasted for 24h or 48h. Hind limb muscles isolated were used to prepare transverse 

cryosections followed by Hematoxylin and Eosin (H&E) staining and quantification of 

fiber cross sectional area (CSA). Fasting for 24h or 48h caused a significant reduction in 

fiber CSA in TA muscle of TRAF6
f1f 

mice (Figure 3.1 C). However, fasting-induced loss 
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in fiber CSA was significantly inhibited in T A muscle of TRAF6mko mice (Figure 3.1 C, 

3.1 D). Furthermore, the proportion of fibers with larger CSA was notably higher in TA 

muscle of TRAF6mko mice compared to littermate TRAF6 f/f evaluated after 24h (Figure 

3.1 E) or 48h (Figure 3.1 F) of fasting. TA muscle of mice contains predominately fast­

type fibers. In contrast, soleus muscle contains almost equal proportion of fast and slow­

type fibers (53). We also performed H&E-staining and quantified fiber CSA in soleus 

muscle of TRAF6
f1f 

and TRAF6mko mice. Similar to TA muscle, fasting-induced loss in 

fiber CSA was significantly inhibited in soleus muscle of TRAF6mko mice compared to 

TRAF6 f1f mice (Figure 3.1 G, 3.1 H). These results demonstrate that TRAF6 mediates 

starvation-induced muscle atrophy in vivo. 

3.3.2 TRAF6 is Required for the Activation of UPS and ALS in Skeletal muscle in 

Response to Starvation 

UPS is responsible for breakdown of majority of proteins in mammalian cells (122, 

123). In distinct catabolic conditions, difference between ubiquitination of total and that 

of specific proteins can affect the development of pathology (124). To understand the 

mechanisms by which TRAF6 causes muscle atrophy and to determine whether TRAF6 

is involved in the activation of UPS, we first investigated how the conjugation of 

ubiquitin to muscle proteins is affected in skeletal muscle of fasted TRAF6
f1f 

and 

TRAF6mko mice. Gastrocnemius (GA) muscle extracts prepared from unstarved or 24h 

starved TRAF6 f/f and TRAF6mko mice were immunoblotted using antibody against 

ubiquitin. As shown in Figure 3.2 A, fasting augmented the conjugation of ubiquitin to 

muscle proteins. However, the fasting-induced increase in protein ubiquitylation was 
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considerably lower in T A muscle of TRAF6mko mice compared with TRAF6f1f mice 

(Figure 3.2 A) indicating that TRAF6 is required for the activation of UPS in skeletal 

muscle upon starvation. While muscle atrophy involves enhanced degradation of several 

contractile proteins, myosin heavy chain-fast type (MyHCf) is one such protein which 

undergoes rapid degradation in many catabolic conditions potentially through UPS (47, 

53). To further validate that TRAF6 is involved in the degradation of muscle proteins, we 

measured protein levels of MyHCf by Western blot. As shown in Figure 3.2 A (middle 

panel), levels of MyHCf were considerably higher in fasted muscle of TRAF6mko mice 

compared to littermate TRAF6f/f
• 

The activation of UPS in multiple atrophic conditions involves the increased 

expression of two muscle-specific E3 ubiquitin ligases MuRFl and MAFBx (9, 27, 82). 

To further validate the role of TRAF6 in the activation of UPS in response to starvation, 

we measured transcript levels of MuRFf and MAFBx in skeletal muscle of TRAF6f/f and 

TRAF6mko mice. Fasting significantly increased the expression of both MAFBx and 

MuRFf in skeletal muscle of mice (Figure 3.2 B). However, the increase in transcript 

levels of both MAFBx and MuRFl in response to fasting was found to be significantly 

reduced in TRAF6mko mice compared to TRAF6f1f mice (Figure 3.2 B). 

It has been previously reported that fasting also induces the activation of ALS in 

skeletal muscle (13, 125). Furthermore, there is evidence that ALS coordinates with UPS 

to stimulate muscle atrophy in diverse conditions including starvation (13, 14, 18). To 

evaluate the role of TRAF6 in activation of autophagy, we measured mRNA levels of 

autophagy-related genes LC3B, Beclinl, and Atg12 which have been previously reported 

to be upregulated in skeletal muscle in response to fasting (14). As shown in 
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Figure 3.2 C, fasting-induced expression of LC3B, Beclinl, and Atg12 was significantly 

inhibited in skeletal muscle of TRAF6mko mice compared with TRAF6f7f mice. 

Conversion of LC3BI to the active form LC3BII is a critical event in autophagy 

and considered as one of the most reliable markers of autophagosome formation (126). 

We performed Western blot to determine whether TRAF6 affects the conversion of 

LC3BI into LC3BII in skeletal muscle upon starvation. As shown in Figure 3.2 D, 

starvation increased the levels of LC3BII form in skeletal muscle of TRAF6f7f mice but 

not TRAF6mko
• We further measured levels of p62/SQSTM1, a multi-domain adaptor 

protein, which interacts with and is activated by TRAF6 (48, 77). p62 binds to LC3 

through a LiR (LC3-interacting region) motif and tethers protein to autophagosomes 

(127). Levels of p62 were noticeably increased in skeletal muscle of TRAF6f7f mice in 

response to starvation. However, the starvation-induced increase in p62 levels was not 

observed in skeletal muscle of TRAF6mko mice (Figure 3.2 D). These results are in 

concert with previous findings suggesting that TRAF6 also acts through p62/LC3 binding 

to activate autophagy (48). 

We next sought to determine whether ablation of TRAF6 intervenes with 

upstream regulators of UPS and ALS such as p62, FOX03a, Akt, and AMPK in skeletal 

muscle. FOX03a is a member offorkhead family of transcription factors and is known to 

induce expression of MAFBx and MuRFI in atrophying skeletal muscle (41). Akt 

phosphorylates FOXO family of transcription factors including FOX03a, which leads to 

their inactivation through retention in cytosol (128). Using a constitutively active form of 

FOX03 with three mutated Akt phosphorylation sites, it has been previously reported 

that FOX03 induces atrophy by accelerating proteolysis through activation of autophagy 
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(13). Our results showed that starvation led to a marked decrease in basal level of 

phosphorylation of both Akt and FOX03a in TA muscle of TRAF6f/f mice (Figure 3.2 

E). In contrast, no noticeable decrease in phosphorylation of Akt was observed in 

TRAF6mko mice upon starvation (Figure 3.2 E). 

AMPK (5' adenosine monophosphate-activated protein kinase) which is activated 

III response to increased AMP:ATP ratio is linked to muscle atrophy in multiple 

conditions including fasting (17). As shown in Figure 3.2 F, fasting induced the 

activation of AMPK in GA muscle of mice. Furthermore, fasting-induced activation of 

AMPK was significant inhibited in T A muscle of TRAF6mko compared to TRAF6f/f mice 

(Figure 3.2 F). Taken together, these results suggest that in the conditions of starvation, 

TRAF6 mediates the activation of both UPS and ALS in skeletal muscle potentially 

through upstream activation of p62, Akt, FOX03a, and AMPK. 

3.3.3 TRAF6 augments the expression of ER stress response related genes in skeletal 

muscle 

ER stress and unfolded protein response (UPR) pathways are employed by cells 

as a corrective measure to avoid an increment in unfolded protein load. In general, it has 

been observed that PERK and IRE! arms of UPR are involved in mediating deleterious 

effects whereas A TF6 arm mediates adaptive responses. We investigated whether 

starvation augments the expression of various genes involved in UPR pathways and 

whether TRAF6 plays a role in their induction in skeletal muscle. Interestingly, a drastic 

increase in mRNA levels of several markers of UPR such as transcription factors ATF4 

and CCAAT/enhancer-binding protein homologous protein (CHOP), ER stress inducible 
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enzyme protein disulfide isomerase (PDI), and ER resident chaperons glucose-regulated 

protein 94 (GRP94), and growth arrest and DNA damage-inducible protein (GADD34) 

was observed in skeletal muscle of TRAF6f!f mice (Figure 3.3 A). More importantly, we 

found that starvation-induced expression of UPR genes was almost completely blunted in 

skeletal muscle of TRAF6mko mice. Western blot analysis also demonstrated that 

starvation augments protein levels of ATF4 and CHOP in skeletal muscle of TRAF6f!f 

mice. In contrast, there was no noticeable increase in protein levels of ATF4 or CHOP in 

GA muscle of fasted TRAF6mko mice (Figure 3.3 B). To further confirm that TRAF6 s 

involved in the induction of ER stress, we subjected cultured TRAF+1+ and TRAF6-1
-

MEF to serum starvation for 24h and measured the levels of various ER stress related 

genes. Interestingly, the starvation-induced increase in transcript levels of ATF4, GRP94, 

GADD34, and CHOP were found to be significantly inhibited in TRAF6-1
- MEF 

compared to TRAF6+1+ MEF (Figure 3.3 C). Overexpression of ATF6 in cells causes ER 

stress response depicted increased expression of various ER chaperons. We also 

investigated whether ATF6-induced expression of GRP78 and GRP94 was completely 

blunted in TRAF6-1
- MEF compared to TRAF6+1+ MEF (Figure 3.3 D). Taken together, 

these data provide the first evidence that TRAF6 is involved in the induction of ER stress 

response. 

Although fasting induced the expression of ER stress response genes in skeletal 

muscle, we could not detect any change in the level of phosphorylation of eIF2a (a 

downstream phosphorylation target and marker for activation of PERK arm of UPR) or 

splicing of XBP-l mRNA (a marker for activation of IREl arm of UPR) in skeletal 

muscle in vivo. A recently published study also reported no changes in the level of 
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phosphorylation of eIF2a in skeletal muscle of rat measured after 1 d, 2d or 3d of fasting 

(16). While there is possibility that the expression of many of these genes (i.e. ATF4, 

CHOP, GADD34, and PDI) is governed through mechanisms independent of ER stress 

response, it is also possibility that eIF2a is activated transiently only at specific time 

point after starvation. To further examine whether fasting induces ER stress response in 

skeletal muscle, we employed cultured myotubes and studied the phosphorylation of 

eIF2a and splicing of XBP-l mRNA. As a model of acute starvation, culture medium of 

C2C12 myotubes was replaced with sterile phosphate buffered saline (PBS) for 3h or 6h 

as described (13, 41). Protein extracts preprared from these myotubes were subjected to 

Western blotting. As shown in Figure 3.3 E, the phosphorylation of eIF2a was 

significantly increased both at 3h and 6h after incubation of myotubes with PBS. 

Similarly, protein levels of ATF3, ATF4, and CHOP and PDI were considerably 

increased in starved myotubes (Figure 3.3 E). Moreover, the levels of MyHCf protein 

were reduced indicating that 6h of starvation was sufficient to cause significant atrophy 

in vitro (Figure 3.3 E). XBP-l mRNA is induced by ATF6 and spliced by IREI in 

response to ER stress to produce a highly active transcription factor causing UPR 

induction (129). Therefore, we studied the splicing of XBP-l mRNA in these cells by 

performing semi-quantitative reverse transcription PCR (RT-PCR) using primers that 

detect both unspliced and spliced mRNA. As shown in Figure 3.3 F, acute starvation of 

C2C12 myotubes by incubation with PBS dramatically increased the levels of spliced 

form ofXBP-l (sXBP-l) indicating that starvation also activates IREI arm ofER stress 

response in myotubes. 
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Although ER stress has been studied in plethora of homeostasis-rectifying 

mechanisms, its involvement in skeletal muscle atrophy has not been explored. To 

understand the potential role of ER stress in the induction of atrophic program, we 

studied the effects of pharmacological inducers of ER stress on the expression of various 

components of UPS and ALS. C2C12 myotubes were treated with ER stressor 

tunicamycin or thapsigargin for 18h followed by measurement of mRNA of various 

genes by QRT-PCR assay. As shown in Figure 3.3 G, the expression of MAFBx and 

MuRFl (important components of UPS) and LC3B and Beclinl (important components 

of ALS) was significantly increased in tunicamycin or thapsigargin treated myotubes 

compared to those treated with vehicle alone. Furthermore, mRNA levels of myosin 

heavy chain II (i.e. MYH4) were found to be significantly reduced in C2C12 myotubes 

upon treatment with tunicamycin or thapsigargin (Figure 3.3 H). The increased 

expression of CHOP, ATF4, and GADD34 in tunicamycin or thapsigargin treated C2C12 

myotubes confirmed that these agents activated UPR (Figure 3.3 I). Collectively, these 

results suggest that ER stress responsive pathways could be involved in the induction of 

muscle atrophy both through accelerating proteolysis and inhibiting expression of 

specific muscle genes such as MYH4. 

3.3.4 TRAF6 is Involved in the Increased Expression of Fn14 in Skeletal Muscle 

upon Starvation 

The TWEAK-Fn14 system has now emerged as one of the important regulators of 

skeletal muscle atrophy especially in disuse conditions (53). However, activation of 

TWEAK-Fn14 system does not occur in all atrophy conditions (53). We first investigated 
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whether fasting affects the expression of TWEAK or its receptor Fn14 in skeletal muscle. 

The expression of Fn14 (but not TWEAK itself) was dramatically induced in skeletal 

muscle in response to fasting. Intriguingly, fasting-induced expression of Fn14 was 

significantly inhibited in skeletal muscle of TRAF6mko mice compared to TRAF6
f1f mice 

(Figure 3.4 A). Western blotting using muscle extracts also validated that the expression 

of Fn14 is increased in skeletal muscle in response to fasting and TRAF6 is required for 

fasting-induced expression of Fn14 in skeletal muscle (Figure 3.4 B). Fasting did not 

affect the expression of IL-I receptor (IL-IR), TNF receptor (TNFR) I or TNFRII in 

skeletal muscle of either TRAF6
f1f or TRAF6mko mice (our unpublished observation). 

These results suggest that the conditions of fasting specifically augment the expression of 

Fn14 receptor through TRAF6-dependent mechanisms. 

While it was interesting to learn that TRAF6 regulates the expression of Fn14 in 

skeletal muscle, it was not clear whether TWEAK-Fn14 system also contributes to 

muscle atrophy upon starvation. To answer this question, we employed TWEAK-KO 

mice which have been previously found to be resistant to muscle atrophy in response to 

denervation (53). Three months old wild-type and TWEAK-KO mice were provided 

normal food or fasted for 24h followed by euthanizing the mice and isolation of hind 

limb muscles for analyses. Transverse sections prepared from TA and soleus muscles 

were subjected to H&E staining and the average fiber cross-sectional area (CSA) was 

quantified using morphometric methods. Interestingly, starvation-induced loss in fiber 

CSA was significantly inhibited in TA (Figure 3.4 C) and soleus (Figure 3.4 D) of 

TWEAK-KO mice compared to wild-type mice. 
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To evaluate the mechanisms, we also studied whether the increased activity of 

TWEAK augments the expression of the components of UPS, ALS, and/or UPR in 

skeletal muscle. The activation of UPS was evaluated by measuring mRNA levels for 

MAFBx and MuRFl by QRT-PCR. As shown in Figure 3.4 E, the starvation-induced 

increase in MuRFl was significantly inhibited in GA muscle of TWEAK-KO mice 

compared to wild-type mice. In contrast, there was no significant difference in mRNA 

levels of MAFBx between wild-type and TWEAK-KO mice upon starvation (Figure 3.4 

E). QRT-PCR analysis also revealed that there was no significant difference in mRNA 

levels of LC3B, Beclinl, and Atg12 in skeletal muscle of wild-type and TWEAK-KO 

mice in response to starvation (Figure 3.4 F). Furthermore, there was also no significant 

difference in the starvation-induced expression of ER stress-related genes ATF4, 

GADD34, CHOP, HERPES, PDI, and GRP94 in fasted muscle of wild-type and 

TWEAK-KO mice (Figure 3.4 G). Taken together, these results indicate that TWEAK­

Fn14 might be contributing to starvation-induced muscle loss through the activation of 

the components of UPS but not ALS or UPR pathway. 

3.3.5 E3 ubiquitin ligase activity of TRAF6 is essential for starvation-induced 

muscle atrophy 

TRAF6 functions both as an adaptor protein and E3 ubiquitin ligase catalyzing 

K63-linked autoubiquitination as well as ubiquitination of target proteins which 

stimulates protein trafficking (39). While E3 ubiquitin ligase activity ofTRAF6 has been 

found to be critical for many of its cellular function, it has also been reported that 

ubiquitin ligase activity of TRAF6 may be dispensable for the activation of several 
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downstream signaling pathways in response to specific stimuli (130). We first studied 

whether starvation increases TRAF6 autoubiquitination in skeletal muscle in vivo. Protein 

extracts prepared from skeletal muscle of unstarved or starved muscle of wild-type mice 

were immunoprecipitated with anti-TRAF6 followed by immunoblotting with anti-K63 

ubiquitin which recognizes only K63-linked ubiquitinated proteins. As shown in Figure 

3.5 A, TRAF6 ubiquitination was significantly increased in fasted skeletal muscle. 

Mutation of cystine to alanine (C70A) residue in TRAF6 zinc-finger domain renders it 

inactive to interact and bind with Ubc13-Uev complex (39). TRAF6C70A mutant has 

previously been used to study the role of TRAF6 E3 ubiquitin ligase activity in various 

cellular responses (30, 39). To understand whether E3 ubiquitin ligase activity ofTRAF6 

is required for fasting-induced muscle atrophy, TA muscle of wild-type mice were 

electroporated with vector alone or with TRAF6C70A cDNA. Efficiency of gene delivery 

was monitored by co-electroporation with a green fluorescence protein (GFP) vector as 

described (131). After 10 days of plasmid electroporation, the mice were given normal 

food or fasted for 24h and T A muscle isolated were used to make sections and 

measurement of fiber CSA. Interestingly, overexpression of TRAF6C70A mutant 

significantly inhibited starvation-induced fiber atrophy in TA muscle of mice (Figure 3.5 

Band 3.5 C). 

To further evaluate the role of ubiquitin ligase activity of TRAF6 in starvation­

induced muscle atrophy, we investigated whether overexpression ofTRAF6C70A mutant 

can affect the activation of atrophic program in cultured myotubes. C2C12 myoblasts 

were stably transfected with vector alone or TRAF6C70A followed by their 

differentiation into myotubes. To induce starvation, the myotubes were incubated in PBS 
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for different length of time. As shown in Figure 3.5 D, overexpression of TRAF6C70A 

inhibited the starvation-induced atrophy in cultured myotubes. Quantitative estimation of 

myotube diameter also revealed that TRAF6C70A mutant inhibits atrophy in cultured 

myotubes (Figure 3.5 E and 3.5 F). Finally, we investigated whether overexpression of 

TRAF6C70A mutant can block the expression of the markers of UPS, ALS, and ER 

stress response in myotubes. Interestingly, fasting-induced increase in mRNA levels of 

MAFBx, MuRFl, LC3B, and CHOP was found to be significantly inhibited in 

TRAF6C70A transfected myotubes compared to those transfected with vector alone 

(Figure 3.5 G). Together, these experiments provide convincing evidence that E3 

ubiquitin ligase activity of TRAF6 is essential for starvation-induced skeletal muscle 

atrophy. 
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3.4 CONCLUSION AND DISCUSSION 

This study identifies TRAF6 as a novel regulator of a complex array of 

intracellular mechanisms that underlie the starvation-induced atrophic response In 

skeletal muscle. This investigation is also first one to recognize potential roles of the 

TWEAK-FnI4 system and UPR pathways in development of skeletal muscle atrophy in 

response to starvation. 

It has been consistently observed that in almost all atrophic conditions, the 

activation of UPS and ALS is a common denominator for the loss of skeletal muscle 

mass. Rapid muscle atrophy might stem from degradation of thick and thin filament 

proteins some of which are targeted by muscle-specific E3 ubiquitin ligases MuRF 1 and 

MAFBx (9, 27, 105, 108). As also noticed in other atrophic conditions (117), one of the 

mechanisms by which TRAF6 mediates starvation-induced muscle atrophy is through the 

activation of UPS because fasting-induced overall protein ubiquitination and the 

expression of both MAFBx and MuRF 1 were significantly reduced in skeletal muscle of 

TRAF6mko mice compared to controllittermates (Figure 3.2 A, 3.2 B). 

The contribution of ALS has gained increasing attention in regulation of skeletal 

muscle mass in both physiological and pathological conditions. It has also been found 

that along with UPS, the activation of ALS also induces myofiber degradation in 

atrophying skeletal muscle (13, 18, 132). Although autophagy is a homeostasis 

maintenance mechanism and physiological autophagy is necessary for removal of protein 

aggregates and defunct cellular compartments (15, 18), hyper activated ALS can 

contribute to muscle proteolysis in various conditions including fasting (18). Consistent 

with published reports (13, 14), our results indicate that fasting causes increased 

83 



expression of several autophagy genes (Figure 3.2 C, 3.2 D), activation of FOX03a 

transcription factor (Figure 3.2 E) and AMPK (Figure 3.2 F). While AMPK is known to 

stimulate expression of LC3B, FOX03a transcription factor is purported to upregulate 

MAFBx and MuRFl and regulates ALS in skeletal muscle (13, 14). All these markers and 

effectors of macro autophagy were found to be significantly inhibited in TRAF6mko mice 

compared to TRAF6f1f mice providing another evidence about the role of TRAF6 and 

autophagy in starvation-induced atrophy. TRAF6 interacts with LC3B through p62 (48) 

and ubiquitinylates (Lys63-linked) Beclin-1 and thus further regulates autophagosome 

formation in response to toll-like receptor 4 (TLR4) signaling (93). Our results also 

indicate similar interaction in starvation-induced muscle atrophy because levels of p62, 

LC3B and Beclin-1 were found to be induced by fasting in TRAF6f1f mice and were 

rescued in TRAF6mko mice (Figure 3.2 C, 3.2 D). Though it has been suggested that 

proteasomal degradation dominates over lysosomal breakdown of proteins during muscle 

atrophy (13, 14), our results indicate that irrespective of their relative contribution, 

TRAF6 recruits both UPS and ALS in starvation-induced muscle atrophy. 

ER is a site for and an important regulator of protein folding, trafficking, 

targeting, and quality control. In the conditions of increased unfolded protein load/stress, 

ER stimulates an elaborate corrective response known as UPR (133) that is mediated by 

three ER membrane-associated proteins, PERK, IRE1, and ATF6. UPR pathways have 

been found to be involved in several pathological and metabolic disorders such as 

impaired glucose metabolism (134, 135), adipocyte stress (136, 137) and inflammatory 

response and metabolic abnormalities (138-140). However, there has been no published 

evidence yet suggesting direct involvement of UPR in skeletal muscle atrophy. In an 
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attempt to study involvement of ER stress in disuse atrophy, it was previously reported 

that while the genes that maintain sarcoplamic reticulum (SR) calcium levels are induced 

in disuse atrophy, there is no such increase in the markers of ER stress or UPR (141). 

However, a recent report suggests that in response to starvation, the expression of ATF4 

is increased which promotes myofiber atrophy (23). Interestingly, it was found that ATF4 

affects the expression of a few genes involved in muscle growth, however, it did not 

affect the expression of MAFBx or MuRFf suggesting that ATF4 can induce muscle 

atrophy through mechanisms independent of activation of UPS (23). Although ATF4 can 

be activated by multiple mechanisms in fasting conditions, it belongs to PERKleIF2a 

branch of UPR and thus there is a possibility that UPR pathways are activated and 

mediate starvation-induced muscle atrophy. 

Recent investigations have highlighted the role ER stress and UPR pathways play 

III energy and glucose metabolism and have shown ER sensitivity towards glucose 

availability. Transcriptional networks activated by ER stress regulate the expression of 

several genes involved in glucose metabolism. GADD34, XBP-1 and A TF6 have been 

found to be involved in glucose output, glycogen synthesis and gluconeogenesis (135, 

142-144) implicating all the three arms of UPR play role in energy and glucose 

metabolism. Muscles being the largest reservoir of proteins are the first ones to be 

mobilized as a source of amino acids for gluconeogenesis. Although UPR activation and 

its role in glucose metabolism in atrophying muscle have not been yet elucidated, there is 

a possibility that fasting activates UPR which in tum induces secondary mechanisms 

regulating muscle atrophy. Our results provide initial evidence that UPR is activated in 

skeletal muscle both in vitro and in vivo (Figure 3.3) and underline a possibility that 
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through transcriptional activation of downstream effectors, UPR pathways could be 

instrumental in regulation of skeletal muscle mass. This inference is also supported by 

our findings that treatment of myotubes with ER stressor tunicamycin or thapsigargin 

augmented the expression of components of UPS and ALS (Figure 3.3 G). Interestingly 

all the markers of UPR were significantly inhibited in TRAF6mko mice (Figure 3.3) 

suggesting that TRAF6 plays a critical role in induction of UPR in starvation-induced 

skeletal muscle atrophy. Previously published reports bolster this observation by 

implicating TRAF2 in activation of UPR and proteolytic degradation and cell death 

(145). TRAF2 is another E3 ubiquitin ligase of TRAF family and shares many common 

features with TRAF6 (116). Therefore, it is possible that functional redundancy exists 

between TRAF2 and TRAF6 in the activation of UPR pathways in response to different 

stimuli. Future research will reveal an interaction and/or mechanisms through which 

TRAF6 regulates ER stress response in fasted muscle. 

TWEAK-FnI4 axis is another recently discovered regulator of skeletal muscle 

atrophy (53, 99). Increased expression of Fn14 receptor appears to be a key determinant 

in TWEAK-mediated skeletal muscle wasting especially in disuse conditions (53). In the 

present study, we observed that the levels of Fn14 are dramatically induced in fasted 

skeletal muscle and that the TWEAK-FnI4 system contributes to the starvation-induced 

muscle atrophy in mice (Figure 3.4). It is noteworthy that although Fn14 is a cell surface 

receptor and TRAF6 is an intracellular protein, signaling through TRAF6 induces the 

expression of Fn14 in fasted muscles. Our previous investigations showed that TRAF6 

does not play a role in the inducible expression of Fn 14 in denervated muscle (117) 

further suggesting that TRAF6 mediates different types of muscle atrophy through 
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activation of distinct mechanisms. The observation that Fn14 is one of the downstream 

targets of TRAF6 in starvation-induced atrophy is also supported by our data that 

inhibition of TWEAK-Fn14 system did not affect the activation of either ALS (Figure 3.4 

F) or UPR (Figure 3.5 G) in skeletal muscle whereas ablation of TRAF6 inhibited both 

these pathways in response to starvation (Figure 3.2). 

In the recent years, significant progress has been made to understanding the 

mechanisms by which TRAF6 propagates downstream signaling. The most accepted 

model suggests that upon activation, the RING finger ubiquitin E3 ligase domain makes 

complexes with E2 conjugating enzyme Ubc13lUevla to mediate conjugation of K63-

linked ubiquitin chains to TRAF6 substrates, including TRAF6 itself. These chains 

recruit several factors including adaptor proteins TAB2/3, which contain atypical zinc 

finger domains with affinity for binding K63-linked ubiquitin chains, resulting in the 

activation oftransforming growth factor-p activated kinase 1 (TAKl) complex. However, 

Walsh et al have previously reported that while the RING finger domain of TRAF6 is 

essential for the activation of TAKl, it was not required for interaction between TRAF6 

and the TAKI complex in vitro (130). Furthermore, this study suggested that TRAF6 

autoubiquitination was dispensable for both its interaction with and activation of the 

TAKI complex and also for RANKL-induced osteoclastogenesis (130). In contrast, our 

experiments demonstrate that TRAF6 undergoes K63-linked autoubiquitination in 

skeletal muscle in response to starvation (Figure 3.5 A). Furthermore, using TRAF6 

mutant lacking ubiquitin ligase activity (i.e. TRAF6C70A) (39), we found that the ligase 

activity of TRAF6 is essential for orchestrating the activation of ALS, UPS, and UPR 

upon acute starvation (Figure 3.5 G). The requirement of E3 ubiquitin ligase for muscle 
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atrophy in response to starvation (Figure 3.5) but not during osteoclastogenesis (130) 

suggests that TRAF6 induces activation of different signaling complexes in a context­

dependent manner. It is also notable that starvation-induced muscle atrophy may not even 

involve the activation ofTAKl-IKK-NF-KB pathway for which the autoubiquitination of 

TRAF6 or its E3 ligase activity has been found dispensable during osteoclastogenesis 

(130). 

In conclusion, the results of present study identify TRAF6 as a novel regulator of 

starvation-induced atrophy. Since molecular pathways regulated by TRAF6 are also 

implicated in many other cell types and physiological responses, a better understanding 

of its regulatory role will be of significant clinical importance for developing new 

therapeutic strategies for treatment of muscle disorders and other diseases. 
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Figure 3.1. Involvement of TRAF6 in fasting-induced muscle atrophy. (A) Transcript 
levels of TRAF6 in tibial anterior (TA), gastrocnemius (GA), and soleus muscle control 
and 24h fasted wild-type mice. Error bars represent SD. N-=3 in each group .• p < 0.01, 
values significantly different from unstarved muscle. (B) Western blot analyses of T A 
muscle extracts for TRAF2, TRAF3, TRAF5, TRAF6 proteins at different time points 
after food deprivation. (C) 12-week-old TRAF6f/f and TRAF6mko mice were starved for 
24h or 48h. Representative photomicrographs of H&E-stained sections of TA muscle of 
TRAF6f1f and TRAF6mko mice 24h and 48h after starvation. (D) mean CSA and (E and 
F) Frequency distribution histograms representing cross-sectional area (CSA) of fibers in 
TA muscle from TRAF6f1f (open bars) and TRAF6mko (shaded bars) at 24h and 48h after 
starvation. 12-week-old TRAF6f1f and TRAF6mko mice were starved for 24h. 
(G) Representative photomicrographs of H&E-stained sections of soleus muscle sections 
of TRAF6f1f and TRAF6mko mice 24h after starvation. (H) A verame fiber cross-sectional 
area (CSA) in soleus muscle of control and 24h starved TRAF6 f and TRAF6mko mice. 
(N = 8 in each group) Error bars represent SD. ·p<0.05, values significantly different 
from fasted TRAF6f1f mice Scale bar: 20~m. 
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Figure 3.2: Role of TRAF6 in fasting-induced activation of ubiquitin-proteasome 
system and autophagy in skeletal muscle. TRAF6f1f and TRAF6mko mice were starved 
for 24h and GA or TA muscle isolated was analyzed. (A) Representative immunoblots 
showing levels of ubiquitinated proteins (top panel), MyHCf (middle panel), and 
unrelated protein tubulin (bottom panel) T A muscle. (B) Transcript levels of MAFBx and 
MuRFl measured by QRT-PCR assay were significantly lower in starved GA muscle of 
TRAF6mko mice compared with TRAF6f1f mice. (C) Fold change in transcript levels of 
autophagy-related genes LC3B, Beclinl, and Atg12 in starved GA muscle of TRAF6mko 

mice compared with TRAF6f1f mice (N=4). (D) Immunoblots presented here demonstrate 
reduced protein levels of p62 and inhibition of conversion of LC3BI protein into LC3BII. 
(E). Levels of phosphorylation of FOX03a and Akt in unstarved and 24h starved TA 
muscle of TRAF6f1f and TRAF6mko mice. (F) Enzymatic activity of AMPK in T A muscle 
extracts of TRAF6f1f and TRAF6mko mice. Error bars represent SD. *p<O.05, values 
significantly different from starved T A muscle of TRAF6f/ f mice. 
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Figure 3.3: Role of TRAF6 in the induction of ER stress responsive genes in skeletal 
muscle upon fasting. Three months old TRAF6f/f and TRAF6mko mice were fasted for 
24h and GA muscle isolated was used for biochemical analysis. (A) Transcript levels of 
ATF4, CHOP, GRP94, GADD34, and PDI were found to be significantly lower in fasted 
GA muscle of TRAF6mko mice compared with TRAF6f1f mice. N=4 in each group. Error 
bars represent SD. *p<O.05, values significantly different from starved muscle of 
TRAF6f1f mice. (B) Representative immunoblots presented here demonstrate reduced 
protein levels of ATF4 and CHOP in TA muscle of starved TRAF6mko mice compared 
with TRAF6f/f mice. C2C12 myoblasts were differentiated into myotubes and starved for 
3 and 6 hrs in PBS. (C) Cultured TRAF6+1+ and TRAF6-1

- MEFs were incubated in serum­
free medium for 24h followed measurement of mRNA levels of ER stress responsive 
genes ATF4, GADD34, GRP94, and CHOP by QRT-PCR. (D) Cultured TRAF6+1+ and 
TRAF6-1

- MEF were transduced with A TF6 adenovirus (Ad.ATF6) or control 
(Ad.Control) for 24h followed by measurement of mRNA levels of ER Chaperons 
GRP78 and GRP94. Error bars represent SD. ·p<O.Ol , values significantly different from 
serum-starved TRAF6+1+ MEF. #p<O.05, values significantly different from unstarved 
TRAF6+1+ MEF. ·p<O.05 , values significantly different from Ad.ATF6-transduced 
TRAF6+1+ MEF. (E) Representative immunoblots from two independent experiments 
performed in triplicates, presented here show increased phosphorylation of eIF2a protein 
and elevated levels ER stress responsive proteins ATF3 , ATF4, PDI and CHOP in 3h or 
6h starved myotubes. Levels of MyHCf were reduced upon incubation of myotubes in 
PBS. (F) Splicing ofXBP-1 increased upon fasting or ER stressor tunicamycin in C2C12 
myotubes measured by reverse transcription-PCR assays using primers that detected both 
unspliced and spliced form ofXBP-l. uXBP-I , unspliced XBP-1 ; sXBP-I , spliced XBP-
1. Effect of ER stressor on expression of UPS and ALS genes in C2C12 myotubes. 
C2C12 myoblasts were differentiated into myotubes and ER stress was induced by 
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treatment with tunicamycin or thapsigargin for 18h. (G) QRT -PCR analyses showed that 
treatment with tunicamycin or thapsigargin significantly increased transcript levels of 
MAFBx, MuRFl, LC3B, and Beclinl in myotubes. (H). Treatment with tunicamycin or 
thapsigargin significantly reduced mRNA levels of MHC4 in C2C12 myotubes. (I) 
Transcript levels of ER stress-related genes CHOP, GADD34 and ATF4 was increased 

* upon treatment with tunicamycin or thapsigargin. Error bars represent SD. p<O.05, 
values significantly different from myotubes treated with vehicle alone. 
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Figure 3.4: Activation of TWEAK-Fn14 system by TRAF6 in skeletal muscle of 
mice. TRAF6f!f and TRAF6mko mice were fasted for 24h and GA muscles isolated were 
analyzed for expression ofFn14. (A) Transcript levels ofFn14 were significantly reduced 
in starved GA muscle of TRAF6mko mice compared with TRAF6f/f mice. 
(B) Representative immunoblot presented here demonstrates reduced protein levels of 
Fn14 but not an unrelated protein tubulin in starved TA muscle of TRAF6mko mice 
compared to TRAF6f!f mice. Three months old wild-type (WT) TWEAK-KO mice were 
starved for 24h. Quantification of mean fiber CSA in H&E-stained sections of (C) TA 
muscle, and (D) soleus muscle ofWT and TWEAK-KO mice (N = 8 in each group). (E) 

Transcript levels of MuRFI but not MAFBx was found to be significantly reduced fasted 
muscle of TWEAK-KO mice compared to WT mice. Error bars represent SD. #p<O.OI, 
values significantly different from GA muscle of unstarved TRAF6f!f mice. ·p<O.05, 

values significantly different from GA muscle of starved TRAF6f/f mice. Expression of 
autophagy-related genes is starved muscle is independent of TWEAK-Fn14 system. 
(F) Three months old WT and TWEAK-KO mice were starved for 24 hrs and TA muscle 
was isolated for biochemical analyses. Starvation-induced increase in transcript levels of 
LC3B, Beclinl and Atg12 did not show any significant difference between WT and 
TWEAK-KO mice. Ablation of TWEAK does not influence ER-stress genes in 
starved skeletal muscle of mice. (G) QRT-PCR analyses demonstrate that there was no 
significant difference in transcript levels of ATF4, GADD34, CHOP, HERPS, PDI and 
GRP94 in TA muscle of WT and TWEAK-KO mice in response to starvation. N=4 in 
each group. Error bars represent SD. 
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Figure 3.5: TRAF6 E3 ubiquitin ligase activity is required for starvation-induced 
muscle atrophy. Three months old mice were fasted for 24 hours. (A) TA muscle 
extracts prepared from unstarved and starved mice were immunoprecipitated with 
TRAF6 antibody followed by Western blotting using an antibody that recognizes only 
K63-linked ubiquitinated substrates (top panel). Western blotting using anti-TRAF6 in 
total muscle extracts (middle) and anti-a-tubulin (bottom). U, unstarved; S, Starved. (B) 
TA muscles of C57BL6 mice were electroporated with plasmids expressing EGFP and 
FLAG-TRAF6C70A mutant. Ten days later, mice were fasted for 24h and myofibers 
expressing EGFP in combination with pCDNA3 or FLAG-TRAF6C70A were analyzed 
by fluorescence microscopy. (C) Quantification of fiber cross-sectional area (CSA) of 
transfected TA muscle ofTRAF6f1f and TRAF6mko mice. (D) C2C12 myotubes 

transfected with vector alone (i.e. pcDNA3) or TRAF6C70A plasmid were incubated in 
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PBS. Representative phase contrasts pictures taken at different time point after addition 
of PBS are shown here. Myotube diameter in vector or TRAF6C70A-expressing 
myotubes was measured after (E) 3h and (F) 6h of addition of PBS. *p<O.OI, values 
significantly different from 3h starved myotubes transfected with pcDNA3 alone. 
#p<O.05, values significantly different from 6h starved myotubes transfected with 
pcDNA3 alone. (G) Cultured C2Cl2 myoblasts were transfected with vector alone or 
TRAF6C70A mutant, differentiated into myotubes, and starved for 6h in PBS. 

Starvation-induced increase in mRNA levels ofMAFBx, MuRFI, LC3B and CHOP was 
significantly inhibited in TRAF6C70A-transfected cultures compared to those with 
vector alone. Error bars represent SD. *p<O.05, values significantly different from starved 
myotubes transfected with vector alone. Scale bar: 20).lm. 
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CHAPTER FOUR 

SPECIFIC INHIBITION OF TRAF6 IMPROVES SKELETAL MUSCLE 
REGENERATION 
PHENOTYPE 

4.1 INTRODUCTION 

THROUGH PROMOTING M2c MACROPHAGE 

Skeletal muscle in vertebrates is a terminally differentiated but highly 

regenerative tissue (146). Postnatal growth or regeneration of myofibers following injury 

is facilitated by a population of undifferentiated muscle precursor cells, commonly 

referred to as satellite cells. Satellite cells reside between the plasma membrane and basal 

lamina in a relatively quiescent, non-proliferative state (146-148). In response to injury, 

satellite cells are activated from quiescence, re-enter the cell cycle, and proliferate to 

generate a pool of myoblasts, which then fuse with each other or with damaged 

myofibers resulting in muscle repair and growth (146). Satellite cell activities are 

dynamically regulated by signals released from both the damaged muscle as well as other 

cell types either resident in the muscle or recruited to assist in clearing the damaged 

myofibers (149-151). However, the signaling mechanisms originating in damaged or 

regenerating myofibers and their role in regulation of specific regenerative responses is 

less explored. 

Innate immune response which starts within hours of muscle injury is critical for 

efficient muscle regeneration (152). Among the immune cells infiltrated in injured 
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myofibers, neutrophils are mostly phagocytic which assist in removal of cellular debris 

and matrix remodeling (152). In contrast, macrophages play more complex roles in 

muscle injury and regeneration. Although it remains unclear what confers the distinction 

between various effects of macrophages on injured muscles, diversity in macrophage 

phenotype provides an explanation for their differential roles. It has been suggested that 

initial inflammatory response in an injured muscle is driven by Thl cytokines (153). Thl 

cytokines such as tumor necrosis factor (TNF)-a and interferon-y (lFN- y) stimulate the 

activation of phagocytic macrophage phenotype (Ml) that invade the injured tissue first 

and stay at elevated concentration from 24h to 48h post-injury after which their level 

starts declining (152, 154). Although Ml macrophages contribute to muscle repair by 

removing cellular debris, they can also promote muscle injury by producing nitric oxide 

through induction of inducible nitric oxide synthase (155). In an injured muscle 

microenvironment, the shift from phagocytic to regenerative phase coincides with 

macrophage phenotype transition from Ml to M2. M2 macrophages have three 

functionally specialized subtypes (54); M2a macrophages, activated by Th2 cytokines IL-

4 and IL-13 can accelerate muscle repair. M2b macrophages which are activated by 

immune complexes and M2c macrophages, activated by IL-I0 or transforming growth 

factor-~ (TGF-~), promote muscle regeneration by deactivating Ml phenotype (54, 152). 

In the recent years, significant progress has been made to understanding the role 

of various signaling pathways such as nuclear factor-kappa B (NF-KB), p38 mitogen­

activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/ Akt. While p38 

MAPK and Akt are the positive regulators of myogenic differentiation (49, 156, 157), the 

activation of classical NF -K13 pathway inhibits the process of myogenesis (64, 158). 

III 



However, except in the case of NF-KB where its targeted deletion in adult myofibers 

improved regeneration (86), majority of other studies were performed employing 

myoblast/satellite cell specific-knockout mice or whole-body knockout mouse models 

where no distinction was observed in the signaling originated in muscle progenitor cells 

or the injured myofibers (157, 159). Furthermore, little is known about the proximal and 

intermediate molecular events involved in the activation of various pathways in 

injured/regenerating myofibers. 

Tumor necrosis factor receptor-associated factors (TRAFs) are a family of seven 

(i.e. TRAF 1-7) conserved adaptor proteins which act as signaling intermediates for 

TNFR superfamily members and many other receptor-mediated events leading to 

downstream activation of NF-KB, PI3K1Akt, and MAPK (160). Distinct from other 

TRAFs, TRAF6 is unique since it mediates toll-like receptor (TLR)/interleukin-l 

receptor (lL-IR) superfamily signaling (6). TRAF6 was also observed to be highly 

regulated during myogenesis in a recent study in our lab. Proliferating myoblasts express 

high levels of TRAF6 which are dramatically reduced upon their differentiation into 

myotubes. On the other hand, the expression of TRAF6 is dramatically increased in 

specific catabolic conditions leading to loss of muscle mass. This paradox leads to an 

assumption that while TRAF6 may be required for myoblast proliferation and 

differentiation, its function is redundant in matured myotubes and could be catabolic in 

stress conditions. This assumption gains more validity especially due to involvement of 

TRAF6 in various cellular mechanisms in a regeneration program (54, 80, 154, 155). An 

injury-induced regeneration program involves innate immune response as well as 

interplay of several signaling cascades. However, the molecular mechanisms regulated by 
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TRAF6 in phagocytic and regenerative phase of an injured muscle IS completely 

unknown. 

In this study, we have investigated the role and the mechanisms by which TRAF6 

regulates regeneration of adult skeletal muscle. To distinguish the role of TRAF6-

mediated signaling in adult myofibers and satellite cells, we have used mice in which 

TRAF6 was depleted either in differentiated myofibers or in satellite cells early during 

embryonic development. Our results indicate that depletion of TRAF6 dramatically 

improves skeletal muscle regeneration in response to injury. Furthermore, our results also 

indicate that specific inhibition of TRAF6 leads to increased proportion of satellite cells 

and M2c macrophages in regenerative phase. 
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4.2 MATERIALS AND METHODS 

Mice 

Generation of transgenic Floxed TRAF6 (TRAF6f1f
) and muscle specific knock­

out for TRAF6 (TRAF6mko
) mice have been described previously (117). Developmental 

muscle knock-out of TRAF6 (TRAF6dmko
) mice were generated by breeding Myf5-Cre 

(strain B6.129S4_Myj5tm3
(cre)SorIJ) with TRAF6f1f

• These mice were bred for several 

generations to obtain Myf5-Cre-TRAF6f1f mice which were designated as TRAF6dmko
. All 

mice were in the C57BLl6 background and their genotype was determined by PCR from 

tail DNA. At the age of 8 weeks, 100 I.ti of 10 J..lM cardiotoxin (CalBiochem) dissolved in 

phosphate-buffered saline (PBS) was injected into the tibial anterior (TA) muscle to 

induce necrotic injury. At various time points, TA muscle was collected from euthanized 

mice for biochemical and histological studies. All experimental protocols with mice were 

approved in advance by the Institutional Animal Care and Use Committee at University 

of Louisville. 

Cell culture 

Primary myoblasts isolated from hind limb skeletal muscles of mice were grown 

in myoblast growth medium (Ham's FlO medium containing 10% FBS supplemented 

with 5 ng/ml basic-FGF) for selection of pure population. Upon selection, these cells 

were cultured in 1: 1 ratio in MGM + GM (DMEM+ 10% FBS) till confluence. To induce 

differentiation, the cells were incubated in differentiation medium (2% horse serum in 

DMEM) for 96h as described (117). After 96h of differentiation, myotubes were stained 

for myosin heavy chain (using MF20 antibody) and DAPI as described earlier (98, 161). 
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Proliferating primary myoblasts were stained for MyoD and DAP!. Stained myoblasts 

and myotubes were examined by morphometric analyses. 

Cell Proliferation Assay 

Cell proliferation efficiency was determined usmg CyQUANT NF Cell 

Proliferation Assay Kit (Molecular Probes Inc., OR, USA) following the manufacturer's 

instructions. Briefly, primary myoblasts were seeded in a 96-well plate and grown for 96 

hours. Proliferation of the myoblasts was determined by the CyQUANT NF cell 

proliferation assay by incubating adhered cells in dye binding solution (dye reagent in 

HBSS buffer) at 37°C for 1 h, then quantifying the fluorescence intensity (Ex 485 nmIEm 

530 nm) on Spectramax M5 plate reader (Molecular Devices, CA, USA). The data were 

normalized relative to the proliferation of myoblasts from control animals. 

CKAssay 

The serum level of creatine kinase (CK) was determined using a commercially 

available kit (Stanbio Laboratory, TX, USA) as described (101). CK activity was 

expressed as )..l-mollmg/min. 

Electrophoretic Mobility Shift Assay (EMSA) 

NF-KB activation was analyzed by EMSA. Detailed protocol for preparation of 

nuclear and cytoplasmic extracts from skeletal muscle tissues and cultured myotubes and 

performing EMSA has been described in detail in our previous publications (98, 100, 

101). In brief, 20 )..lg of nuclear extracts prepared from control or CTX-injected TA 
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muscle were incubated with 16 fmol of 32p end-labeledNF-KB consensus oligonucleotide 

(Promega) at 37°C for 30 min, and the DNA-protein complex was resolved on a 7.5% 

native polyacrylamide gel. The radioactive bands from the dried gel were visualized and 

quantified by PhosphorImager (GE Health Care) using ImageQuant TL software. 

Fluorescence Activated Cell Sorting 

Activated satellite cells were analyzed by F ACS as described (162). Satellite cells 

or macrophages were isolated from T A muscle of TRAF6f!f, TRAF6mko or TRAF6dmko 

mice T A muscles following cell preparation protocol as previously described. 

Approximately 2x106 cells were incubated in DMEM (supplemented with 2% FBS and 

25 mM 4-(2-hydroxyethyl)-I-piperazineethanesulfonic acid)) and immunostained with 

antibodies against CD140a, CD45, CD31, Ter-1l9, CDllc and CD206 (FITC or PE­

conjugated, eBiosciences) and a7~1-integrin (MBL International) conjugated tandem-PE 

respectively. F ACS analyses were performed on a C6 Accuri cytometer equipped with 

three lasers. Activated satellite cells were sorted (purity>90%) using antibody against 

a7~I-integrin for selection and cultured for further studies. 

Indirect Immunofluorescence and Histomorphometric Analyses 

All experiments involving the studies on TRAF6f/f
, TRAF6mko and TRAF6dmko 

mice were conducted on at least six mice per group. Cardiotoxin (CTX) or PBS alone 

injected TA muscle were removed, frozen in isopentane cooled in liquid nitrogen and 

sectioned in a microtome cryostat. For the assessment of tissue morphology or 

visualization of fibrosis, 10-r-tm-thick transverse sections of muscles were stained 
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respectively with the Hematoxylin and Eosin (H&E) and examined under Nikon Eclipse 

TE 2000-U microscope (Nikon). Fiber cross-sectional area was measured in H&E-stained 

TA muscle sections using Nikon NIS Elements BR 3.00 software (Nikon). For each 

muscle, mean fiber cross-sectional area (CSA) was calculated by analyzing 200 to 250 

myofibers as described (53, 99). The extent of fibrosis in transverse cryosections of TA 

muscle determined using Mason's Trichrome staining kit following a protocol suggested 

by the manufacturer (Richard-Allan Scientific). For the detection of macrophages in TA 

cryosections, anti-F4/80 (dilution 1: 1 00; clone CI:A3-1, AbD Serotec) was used in 

conjunction with the VECSTAIN ABC staining kit (Vector) with 3,3'-diaminobenzidine 

substrate according to the manufacturer's protocol. For immunohistochemical study, the 

sections were blocked in 1 % bovine serum albumin in PBS for Ih, and incubated with 

anti-TRAF6 (1:200, Millipore), anti-CD68 (1:200, AbD Serotec), anti-E-MyHC (1:50 

dilution, Developmental Studies Hybridoma Bank, University of Iowa, Iowa City, IA), 

anti-MF20 (1 :250, DSHB, Iowa) and anti-MyoD (1 :250, santa cruz) in blocking solution 

at 4°C overnight under humidified conditions. The sections were washed briefly with 

PBS before incubation with Alexa Fluor® 488 or 594-conjugated secondary antibody 

(1 :3000, Invitrogen) for Ih at room temperature and then washed 3 times for 30 minutes 

with PBS. The slides were mounted using fluorescence medium (Vector Laboratories) 

and visualized at room temperature on Nikon Eclipse TE 2000-U microscope (Nikon), 

images were captured on a digital camera (Nikon Digital Sight DS-Fil), and images were 

analyzed using Nikon NIS Elements BR 3.00 software (Nikon). Image levels were 

equally adjusted using Abode Photoshop CS2 software (Adobe). 
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Primary Myoblast Isolation 

Satellite cells were isolated from hind limb muscles of 8-week old mice using a 

method as described (163, 164). Briefly, mice were sacrificed and TA, gastrocnemius, 

and extensor digitorum longus muscles were isolated. Excess connective tissue and fat 

were cleaned in sterile PBS followed by mincing of skeletal muscle in Dulbecco's 

Modified Eagle's Medium (DMEM) and enzymatic dissociation with collagenase and 

0.1 % Pronase. The digested slurry was spun, pelleted and triturated several times and 

then passed through 70 ~M cell strainer (BD Falcon). The filtrate was spun at 1000 x g 

and resuspended in growth medium containing basic fibroblast growth factor (5 ng/ml). 

Cells were first re-fed after 3 days of initial plating. During first few passages cells were 

also enriched by pre-plating. 

RNA Isolation and Quantitative Real-time PCR (QRT -PCR) 

RNA isolation and QRT-PCR were performed using a method as previously 

described (53, 165). 

Western Blot 

Quantitative estimation of specific protein was done by Western blot using a 

method as previously described (44, 99, 101). TA muscle were washed with PBS and 

homogenized in lysis buffer A [50 mM Tris-CI (pH 8.0), 200 mM NaCI, 50 mM NaF, 1 

mM dithiotheritol (DTT), 1 mM sodium orthovanadate, 0.3% IGEPAL, and protease 

inhibitors]. Approximately, 100 ~g protein was resolved on each lane on 8-10 % SDS­

PAGE, electrotransferred onto nitrocellulose membrane and probed using anti-MF20 or 
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anti-E-MyHC (1:100, Developmental Studies Hybridoma Bank), anti-TRAF6(1:1000, 

Millipore), anti-phospho-Akt (1:1000, Cell Signaling, Inc), anti-total Akt (1:1000, Cell 

Signaling, Inc), anti -phospho p38 (1: 1000, Cell Signaling, Inc), anti -total p38 (1: 1000, 

Cell Signaling, Inc.), anti-p65 (1: 1000, Santa Cruz) and anti-a-tubulin (1 :2000, Cell 

Signaling, Inc.) and detected by chemiluminescence. 

Statistical Analyses 

Results are expressed as mean ± standard deviation (SD). Statistical analyses used 

Student's (-test to compare quantitative data populations with normal distribution and 

equal variance. A value of P < 0.05 was considered statistically significant unless 

otherwise specified. 

119 



4.3 RESULTS 

4.3.1 Expression ofTRAF6 is increased in regenerating skeletal muscle after injury 

An acute injury to skeletal muscle is followed by a well-orchestrated series of 

events which facilitates rapid repair and regeneration of injured muscle. We first 

investigated how the expression of TRAF6 is affected in skeletal muscle in response to 

injury. Six-week old wild type mice were given intramuscular injection of cardiotoxin 

(CTX) or saline alone in the tibial anterior (TA) muscle. After 5d of CTX injection, the 

TA muscle was isolated and used to study TRAF6 expression. QRT-PCR analysis using 

Myh4 gene as an internal control, we found that the mRNA levels of TRAF6 are 

significantly increased in CTX-injected myofibers compared to those injected with saline 

alone (Figure 4.1 A). Furthermore, Western blot analysis of muscle extracts showed that 

protein levels of TRAF6 were dramatically increased in CTX-injected TA muscle 

compared to contralateral T A muscle injected with saline alone (Figure 4.1 B). To 

confirm that the expression of TRAF6 was indeed induced in injured myofibers, we also 

studied TRAF6 expression by immunohistochemical analysis. A dramatic increase in 

TRAF6 expression was observed in injured muscle when compared to uninjured control 

(Figure 4.1 C). Through immunostaining for CD68, a cell surface marker for 

macrophages (49), we also sought to examine the presence of myeloid cells and whether 

they express TRAF6 in injured muscle. Appearance of CD68+ cells indicates augmented 

infiltration of macrophages in injured muscle environment (Figure 4.1 C). In CTX­

injured muscle, we also observed co-localization of both TRAF6 and CD68 indicating 

that increased expression of TRAF6 accompanies macrophage infiltration. It also 

suggests a possible contribution of infiltrating macrophages in enhancing the levels of 

TRAF6. However, there is no evidence that activated macrophages express TRAF6 at 
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higher levels. Therefore, it is more likely that increased TRAF6 expression is contributed 

mainly by cells of myogenic origin. Together, these data suggest that CTX-injury induces 

the expression of TRAF6 in skeletal muscles. 

4.3.2 Ablation of TRAF6 accelerates adult skeletal muscle regeneration in response to CTX­

mediated injury 

CTX-mediated injury of muscle is followed by an immediate inflammatory 

response, satellite cell proliferation and myogenic differentiation within 3 days and new 

myotube formation within 5-7 days (166). A normal regeneration program is marked by 

newly formed myofibers with small diameter and central nuclei. To investigate the role of 

TRAF6-mediated signaling in injured muscle regeneration, we crossed flo xed TRAF6 

(TRAF6f1f
) with MCK-Cre mice to generate skeletal muscle specific TRAF6-knockout 

mice (henceforth TRAF6mko
) as described (117). The T A muscle of 8-week old 

TRAF6mko and its littermate control mice (TRAF6f/f
) were given intramuscular injection 

of saline alone or CTX in saline followed by isolation of muscle at different time points 

and processing them for Hematoxylin and Eosin (H&E) staining. Intramuscular injection 

of CTX caused equal necrosis in T A muscle of both TRAF6f/f and TRAF6mko mice 

examined 2 days after CTX injection (data not shown). Interestingly, at 5 days post CTX 

injection, regeneration of TA muscle was found to be significantly improved in 

TRAF6mko compared to TRAF6f1f (Figure 4.2 A). In TRAF6mko
, TA muscle regeneration 

was uniform with majority of newly formed myofibers having central nuclei while in 

TRAF6f1f regenerating central nucleated fibers were less in number with an increased 

density of interstitial nuclei which indicate a slower nuclear accretion of new myofibers 
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and a higher concentration of infiltrated non-myogenic cells (Figure 4.2 A). Improved 

regeneration in TA muscle of TRAF6mko compared to TRAF6f/f mice was also evident at 

10 and 21 days post CTX injection (Figure 4.2 A). Quantification of fiber cross-sectional 

area (CSA) of regenerated myofibers in H&E-stained sections showed ~36% 

improvement in TRAF6mko mice compared to TRAF6f/f mice (Figure 4.2 B and 4.2 C). 

Moreover, the number of myofibers having more than one nucleus was significantly 

higher in regenerating T A muscle of TRAF6mko mice compared with TRAF6
f1f measured 

5 days post CTX injection (Figure 4.2 D). Collectively, these results indicate that TRAF6 

depletion in differentiated myofibers accelerates regeneration program in response to 

CTX injury. 

4.3.3 TRAF6 depletion leads to early restoration of muscle architecture 

An injured muscle goes through repair and regeneration after an acute injury. A 

shift from degenerative to regenerative stage is followed by transition of myogenic cells 

through expression of specific transcription factors and related genes. This pattern also 

mimics the embryonic development of muscles. It is shown that CTX-injury in mouse 

muscle stimulates expression of MyoD in satellite cells by 2nd day of injury and 

afterwards a decline in MyoD expression and an increase in myogenin expression occurs 

by 3 days post-injury followed by a consequential and persistent elevation of embryonic 

form of myosin heavy chain (eMyHC) (167, 168). Furthermore, as a regenerating muscle 

progresses towards normal architecture, embryonic isoform of MyHC is replaced by adult 

isoform (14). To investigate whether depletion of TRAF6 causes any change in the 

temporal expression pattern of these markers, we examined T A muscle of TRAF6f1f and 

TRAF6mko mice 5 days after CTX injection. Immunohistochemical staining revealed 
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more uniform and abundant expression of eMyHC in regenerating muscle at 5 days after 

CTX injection in TA muscle of TRAF6mko compared to TRAF6
f1f mice (Figure 4.3 A). 

Western blot analyses showed that protein levels of eMyHC were considerably higher in 

TA muscle of TRAF6mko compared to TRAF6f/f mice 5 days post CTX injection. 

Furthermore, we also determined the change in expression of adult isoform of MyHC and 

observed a noticeable improvement in its levels in TRAF6mko (Figure 4.3 B). QRT-PCR 

analyses also showed a significant increase in mRNA levels of eMyHC (i.e. Myh3) as 

well as myogenic regulatory factors MyoD and myogenin in CTX-injected TA muscle of 

TRAF6mko mice compared to TRAF6
f1f 

mice (Figure 4.3 C). Collectively, these results 

suggest that depletion of TRAF6 in adult myofibers accelerates the regenerative program 

in response to injury. 

4.3.4 Depletion of TRAF6 promotes satellite cell activation in adult skeletal muscle 

in response to injury 

Muscle injury is followed by the activation of satellite cells which is prerequisite 

for induction of efficient regeneration program in injured muscle (169). We next sought 

to determine whether signaling through TRAF6 plays a role in the activation of satellite 

cells in injured myofibers. A unique combination of cell surface markers (CD45-, CD31-, 

Ter119-, a7-~1 integrin+) identify activated satellite cells in adult mouse skeletal muscle 

and allow their direct quantification by fluorescence-activated cell sorting (F ACS) 

technique (170). We next quantified satellite cells in saline or CTX-injected TA muscle 

of TRAF6
f1f and TRAF6mko mice. There was no significant difference in the number of 

satellite cells in uninjured T A muscle of TRAF6
f/f and TRAF6mko mice. Consistent with 
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published reports, intramuscular injection of CTX significantly increased the number of 

satellite cells in T A muscle of both TRAF6
f1f and TRAF6mko mice. Interestingly, the 

number of a7~ 1 Integrin + satellite cells was significantly higher in TRAF6mko mice 

compared to TRAF6
f1f mice (Figure 4.4 A and 4.4 B). Activated satellite cells increased 

from approximately 5% in uninjured muscles to roughly 8% in injured T A of TRAF6
f1f

• 

This increase was further greater in TRAF6mko
, upto 13-14% of total cells (Figure 4.4 B). 

The increased percentage of a7~ 1 Integrin + cell population in TRAF6mko suggests an 

important role of TRAF6-mediated signaling in regulating satellite cell activation. 

We next sought to determine whether depletion of TRAF6 exerts same effect on 

quiescent satellite cell population in injured muscle. Pax7 is a marker of quiescent 

satellite cells and depletes upon activation of these cells. By performing QRT-PCR, we 

measured transcript levels of Pax7 in TA muscle of TRAF6
f1f 

and TRAF6mko mice. There 

was no significant difference in the mRNA levels of Pax7 in uninjured muscle of 

TRAF6
f1f 

and TRAF6mko mice. However, the transcript levels of Pax7 were significantly 

increased in CTX-injected TA muscle of TRAF6mko (-4.5 fold) compared to TRAF6
f1f 

(-2 fold) (Figure 4.4 C). Comparable basal level of expression of Pax7 in uninjured TA 

muscle of mice suggests that TRAF6 depletion does not influence primary myogenesis 

(Figure 4.4 C). In contrast, the higher expression of Pax7 in injured T A muscle of 

TRAF6mko can be attributed to increased proliferation of activated satellite cells from 

which a subpopulation reenters into quiescence. Collectively, these results suggest that in 

injury-induced regeneration program where secondary myogenesis is critical for muscle 

repair and regeneration, TRAF6 negatively regulates satellite cell activation. 
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4.3.5 TRAF6-mediated signaling negatively regulates the activation of anti­

inflammatory M2c macrophage in injured myofibers 

Infiltration of macrophages upon myofiber injury is required not only for the 

removal of damaged tissue but also for normal progression of regenerative phase. 

Macrophage phenotype transition also marks the shift from phagocytic to regenerative 

stage of muscle repair. While phagocytic Ml macrophages are involved in removal of 

cellular debris, they have no role after the onset of regenerative stage (49). In fact, 

persistent presence of Ml macrophages can aggravate muscle damage (171). M2 

macrophages have functionally distinct subtypes. M2a macrophages are involved with 

tissue repair and fibrosis while anti-inflammatory M2c macrophages deactivate Ml 

population and promote myogenic proliferation (172). 

To determine whether improved regeneration in TRAF6-depleted muscle IS a 

consequence of a bias in macrophage activation, we quantified Ml and M2c macrophage 

populations in CTX-injured TA muscle. Three days post CTX-injection, a time point at 

which transition in macrophage phenotype occurs, we examined percentages of Ml and 

M2c macrophages by analyzing an F4/80+ population of macrophages for phenotype 

composition by F ACS method. As shown in Figure 4.5 A and 4.5 B, Ml macrophages 

(CDllc+) were significantly higher in CTX-injected TA muscle of TRAF6fJf (~10%) 

compared to TRAF6mko (~7.7%). In contrast, concentration of CD206+ M2c 

macrophages was significantly elevated in TA muscle ofTRAF6mko (~4.6%) compared to 

TRAF6fJf (~2 %) mice measured 3 days after CTX injection. There was no significant 

difference in the composition of total activated macrophages in peritoneal cavity or 

uninjured TA muscle of TRAF6fJf and TRAF6mko mice (data not shown). Since M2 
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macrophages are known to have anti-inflammatory and pro-myogenic effects on skeletal 

muscle, their increased activation could be a potential reason for enhanced muscle 

regeneration in TRAF6mko mice upon injury. 

It has been consistently observed that inflammatory cytokines such as TNF-a and 

IL-IP promote Ml phenotype whereas IL-4 and IL-I0 are known to induce M2c 

phenotype of macrophages. We investigated whether signaling through TRAF6 affects 

the expression of these cytokines in regenerating myofibers. Interestingly, we found that 

the expression levels of TNF -a and IL-l p and chemokines CCL2 and CCL5 which 

recruit Ml macrophages were significantly reduced in CTX-injected TA muscle of 

TRAF6mko mice compared to TRAF6f1f mice (Figure 4.5 C). In contrast, there was no 

significant difference in the mRNA levels of IL-4 and IL-I0 in T A muscle of TRAF6mko 

and TRAF6f/f mice (Figure 4.5 C). These data suggest that ablation of TRAF6 inhibits the 

expression of cytokines (i.e. TNF-a and IL-IP) involved in manifestation of Ml 

phenotype. Their reduced levels may favor transition of Ml to M2c phenotype leading to 

increased regeneration of skeletal muscle in TRAF6mko mice. 

4.3.6 TRAF6 is required for the activation of NF -KB in injured skeletal muscle 

NF-KB is a nuclear transcription factor involved in inducible expression of a 

plethora of genes including TNF-a and IL-Ip. Although the exact mechanisms remain 

unknown, the activation ofNF-KB has been found to inhibit skeletal muscle regeneration 

in response to CTX-mediated injury. Since TRAF6 is a central regulator in the activation 

of a number of cell signaling pathways including NF-KB, we next studied that how 

ablation of TRAF6 affects the activation of NF-KB. In addition, we also evaluated the 
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activation of Akt and p38MAPK, which are the positive regulators of skeletal muscle 

regeneration. The DNA binding activity of NF-K13 was studied by performing 

electrophoretic mobility shift assay (EMSA) whereas Akt and p38 MAPK activity was 

studied by performing Western blots using antibodies that recognize phosphorylated 

forms of p38MAPK or Akt kinase. Consistent with published reports, DNA-binding 

activity of NF-KB was significantly increased in CTX-injected TA muscle compared to 

those injected with saline alone. Interestingly, the activation of NF-KB was significantly 

reduced in TA muscle of TRAF6mko mice compared to TRAF6f/f mice injected with CTX 

(Figure 4.6 A). While the phosphorylation of both p38MAPK and Akt kinase was 

increased in CTX-injected myofibers, we found no significant difference in the level of 

phosphorylation of Akt or p38 MAPK in regenerating TA muscle of TRAF6f1f and 

TRAF6mko mice (Figure 4.6 B). Phosphorylation of p65 subunit of NF-KB was also 

increased in response to CTX-injury in TA muscle, but this increase was more 

pronounced in TRAF6f1f mice when compared to TRAF6mko mice (Figure 4.6 B). Taken 

together, these results suggest that TRAF6 specifically affects the activation ofNF-KB in 

injured/regenerating skeletal muscle of mice. 

4.3.7 Depletion of TRAF6 early during embryonic development delays muscle growth. 

TRAF6 is an important signaling molecule involved in the proliferation and 

differentiation of various cell types. A recent report has suggested that siRNA-mediated 

knockdown of TRAF6 reduces the proliferation and differentiation of C2C 12 myoblasts 

(173). To further evaluate the role of TRAF6 in skeletal muscle formation, we next 

studied the consequence of deletion of TRAF6 in muscle progenitor cells. Published 
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reports suggest that Myf5-Cre allele faithfully recapitulates the expression pattern of 

endogenous Myf5 and is unifonnly expressed in all proliferating myoblasts (162, 174, 

175). We crossed TRAF6f/f mice with Myf5-Cre mice to generate TRAF6 developmental 

muscle knockout (henceforth TRAF6dmko
) and littennate control (i.e. TRAF6f1f

) mice. We 

first investigated whether there is any developmental phenotype in skeletal muscle of 

TRAF6dmko mice. While no gross abnonnality was observed, average fiber CSA in soleus 

and T A muscle was found to be significantly reduced in TRAF6dmko mice compared to 

littennate TRAF6f1f mice (Figure 4.7 A, 4.7 B). Surprisingly, there was no significant 

difference in average CSA of soleus and TA muscles of 10-week old TRAF6f1f and 

TRAF6dko mice (Figure 4.7 A, 4.7 C). These data suggest that deletion of TRAF6 in 

myoblasts may transiently attenuate skeletal muscle development potentially by affecting 

the proliferation and/or differentiation of myoblasts. 

To address the role of TRAF6 in myogenesis, we prepared primary myoblasts 

from TRAF6f1f and TRAF6dmko mice and studied their proliferation and differentiation. 

Primary myoblasts from TRAF6dmko mice showed significantly reduced proliferation 

compared to TRAF6f1f mice. Immunohistochemical staining revealed smaller number of 

proliferating myoblasts (identified as cells coimmunostained with antibodies for MyoD 

and DAPI) in primary myoblast culture from TRAF6dmko when compared to TRAF6f1f 

mice (Figure 4.7 D, E). We also analyzed proliferation efficiency of primary myoblasts 

and observed a significant reduction in myoblast proliferation efficiency of TRAF6dmko 

mice compared to TRAF6f1f mice (Figure 4.7 F). Primary myoblasts were cultured at 

equal seeding density and were induced to differentiate into myotubes by incubation in 

differentiation medium (DM) for 96h. Myotube fonnation was significantly reduced in 
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primary cultures from TRAF6dmko mIce compared to TRAF6f1f assayed by both by 

morphometric (i.e. myotube diameter) and biochemical (creatine kinase activity) methods 

(Figure 4.7 G-I). Collectively, these data indicate that TRAF6 is required for proliferation 

and differentiation of cultured myotubes. 

4.3.8 TRAF6 signaling in differentiated myofibers plays a dominant role over 

myoblasts during adult skeletal muscle regeneration 

We next investigated whether muscle regeneration in response to CTX-mediated 

injury was affected in TRAF6dmko mice. Adult (8-week old) TRAF6f1f and TRAF6dmko 

mice were given intramuscular injection of CTX in T A muscle. After 5d or lOd of CTX 

injection, the TA muscle was isolated and subjected to morphometric analyses. 

Intriguingly, we found that skeletal muscle regeneration was dramatically improved in 

TA muscle of TRAF6dmko mice compared to TRAF6f1f mice (Figure 4.8 A). Similar to 

TRAF6mko mice, CTX-injected TA muscle of TRAF6dmko showed a significant increase 

in fiber CSA and number of regenerating myofibers containing more than one nuclei 

(Figure 4.8 B-D). Percentage of satellite cells was significantly increased in CTX­

injected TA muscle ofTRAF6dmko (~14) compared to TRAF6f/f (~8) mice (Figure 4.8 E 

and 4.8 F). Furthermore, quantification of Ml and M2c macrophages revealed reduction 

in Ml macrophages with simultaneous increase in proportion of M2c macrophages in 

CTX-injected TA muscle ofTRAF6dmko mice compared to TRAF6f/f mice (Figure 4.8 G 

and 4.8 H). 
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4.5 CONCLUSION AND DISCUSSION 

This study describes a novel role for TRAF6 in orchestrating a new balance 

between inflammatory and myogenic responses in toxin-induced injury of skeletal 

muscle. Using conditional knock-out mouse model for TRAF6, we have provided first 

evidence that in injured skeletal muscles, TRAF6 modulates inflammatory response and 

negatively regulates secondary myogenesis. TRAF6 is a common signaling adaptor 

molecule in IL-IR1TLR and TNFR superfamily receptors (39, 80, 103). Signaling 

cascades mediated by these pathways and their role in innate immune response are well 

documented and are also implicated in skeletal muscle development and metabolism 

(176, 177). An acute injury to muscle develops a microenvironment which is regulated by 

a highly complex interplay between immune and myogenic responses. In an injured 

muscle microenvironment, there is a significant interaction between myeloid and 

myogenic cells and these two populations communicate using common signaling cues. 

Although the common extracellular denominators and downstream effectors in skeletal 

muscle injury are well explored, the proximal intracellular regulators of these signaling 

events in muscles are unknown and their effect on skeletal muscle regeneration is yet to 

be identified. 

Our data reveal an important role of TRAF6 in myeloid-myogenic interaction and 

in secondary myogenesis. In injured muscle, an initial invasion of myeloid cells leads to 

removal of necrotic debris by neutrophils and Ml macrophages. Initial activation of pro­

inflammatory macrophages is by Thl cytokine and is uninfluenced by muscle cells, but 

as the regeneration progresses, cytokines produced by muscle cells may also contribute in 

prolonged activation and presence of Ml macrophages. TNFa is a major activator of Ml 

macrophages. In our TRAF6mko mouse model, a repressed expression of TNFa at day 5 
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after injury (when regeneration peaks) indicates a reduction in its release from muscle 

cells. This will eventually lead to reduced activation of M1 macrophages and also 

implicate that TRAF6 may be involved in production of inflammatory cytokines in 

muscles and therefore can also determine the duration and extent of inflammatory phase 

in injured muscles. 

Quiescent satellite cells are known to be activated after injury by HGF 

(hepatocyte growth factor), IGF-1 (insulin-like growth factor-I) and FGF (fibroblast 

growth factor) (155, 157, 178). Post-activation, their proliferation and maturation is 

regulated by several positive and negative mediators. Activated by pro-inflammatory 

cytokines, NF-KB is a known inhibitor of my ogene sis and myogenic differentiation (179, 

180). Induction of NF-KB is regulated by different signaling contexts and TRAF6 is 

reported to mediate this activation through different downstream complexes (10, 18). In 

response to injury, pro-inflammatory cytokines released by macrophages or muscle cells 

induce NF -KB expression. Consistent with previously published reports, our data indicate 

an increase in NF-KB levels and its DNA binding activity; interestingly, its DNA binding 

activity was blunted significantly in absence of TRAF6 in regenerating skeletal muscle. It 

is not completely understood whether TNFa-mediated activation of NF-KB is 

independent of TRAF6. Indeed, we observed a repressed activation but not a complete 

inhibition ofNF-KB in CTX-injected TA muscle ofTRAF6mko mice. TRAF6 ablation; on 

the other hand, causes a significant induction in expression of p38MAPK which is a 

positive regulator of myogenesis. While this data is in contrast to the previous reports of 

TRAF6 dependent p38MAPK activation (181), it highlights TRAF6-mediated differential 

activation of downstream pathways (48). This context-dependent role of TRAF6 supports 
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our observation that in injury-induced secondary regeneration of skeletal muscle, TRAF6 

acts as a negative regulator. 

Role of TRAF6 in innate immune response is extensively studied, but there is a 

dearth of information on its mediation in activation of different phenotypes of 

macrophages. In skeletal muscle regeneration, the macrophage phenotype shift plays a 

pivotal role since pro-inflammatory (Ml) and anti-inflammatory (M2c) macrophages 

exert antagonistic effects on secondary myogenesis (155). Deactivation of Ml phenotype 

and activation of M2c phenotype creates an anti-inflammatory and pro-myogenic 

environment for rapid regeneration. Consistently, our data show that TRAF6 depletion 

repressed activator cytokine (TNFu) of Ml macrophages and reduced their population in 

regenerating muscles. For the first time in this study, we also report an increase in M2c 

population in TRAF6-ablated injured/regenerating muscle, but in absence of a published 

evidence, it remains a subject for further exploration that how TRAF6 is involved in 

regulatory mechanisms that activate M2c phenotype of macrophages. 

A cumulative effect of changes in molecular and cellular events imparted by 

TRAF6 deletion are observed in terms of significantly improved regeneration in TRAF6 

conditional knock-out mice. TRAF6 depletion induced repression of pro-inflammatory 

factors, increased up-regulation of markers of myogenic differentiation and rapid 

regeneration marked by expedited restoration of muscle architecture. Ablation of TRAF6 

also led to reduced deposition of transient ECM and thus rescued injury-induced transient 

fibrosis. Moreover, our results led to a very interesting observation that in developmental 

muscle knock-out for TRAF6 (TRAF6dmko
) mice, while absence ofTRAF6 attenuates the 

proliferation and muscle formation efficiency, it also improves regeneration and repair by 
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a significant margin. This indicates that TRAF6 may be involved in indirect orchestration 

of microenvironment in regenerating muscles. TRAF6 possibly regulates some muscle­

intrinsic factors which in turn influence inflammatory response in injured and 

regenerating muscles. Further studies will indeed be able to unearth the more subtle 

regulatory interactions of TRAF6 with components of myogenic and myeloid pools in 

regenerating skeletal muscle. Collectively, these indicate TRAF6 deletion induced a more 

efficient regeneration program. 

In summary, TRAF6 mediated regulation of secondary myogenesis and 

regeneration unveiled by this study provides an unanticipated link between inflammatory 

and myogenic responses in an injured tissue microenvironment. Considering the 

importance and limited availability of therapeutic interventions that can influence the 

balance between inflammation and myogenesis in pathological conditions such as DMD 

(Duechene Muscular Dystrophy) (155), we believe that interventions targeting TRAF6-

mediated signaling will enhance the ability to improve pathological conditions in 

inflammatory muscle disorders. 
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Figure 4.1: Necrotic muscle injury induces TRAF6 expression. (A) Transcript levels 
of TRAF6 in Tibialis anterior (TA) muscle of control and Ctx injected wild type mice. 
Error bars represent SD. N=3 in each group. 'p < 0.01, values significantly different from 
sham-injured muscle. (B) Western blot analyses of TA muscle extracts for TRAF6 
protein at day 5 after Ctx injury. (C) Representative photomicrographs of immunostained 
sections of control and Ctx-injured TA muscles at day 5 after injury (N=8). Sections 
immunostained with anti-TRAF6 and anti-CD68. 
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Figure 4.2: TRAF6 depletion accelerates post-injury regeneration in muscle. 
TRAF6f1f and TRAF6mko mice were injected either with saline or cardiotoxin in TA 
muscle and regenerating muscle were isolated and analyzed at different time points. (A) 
Representative micrographs of H&E stained transverse sections of sham or Ctx-injured 
Tibialis anterior muscle at different time points. Scale bar: 20Jlm (B) Frequency 
distribution histograms representing cross-sectional area (CSA) of fibers in TA muscle 
from ctx-injured TRAF6fl (open bars) and TRAF6mko (shaded bars) atday 5 after injury 
(C) Mean CSA of myofibers in TA muscle from ctx-injured TRAF6f1f (open bar) and 
TRAF6mko (shaded bar) at day 5 after injury. (D) Quantification of centrally nucleated 
fibers (CNF) at day 5 after ctx-injury in TA muscle from TRAF6f/f (open bar) and 
TRAF6mko (shaded bar). Error bars represent SD. N=4 in each group .• p < 0.01, values 
significantly different from Ctx-injured TA muscle ofTRAF6f/f

. 
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Figure 4.3: Early restoration of myoarchitecture in TRAF6-depleted skeletal 
muscle. Three month old TRAF6f!f and TRAF6mko mice were injected with saline or Ctx 
in TA muscle and analyzed at day 5 after injury. (A) Transverse sections of Ctx-injured 
T A muscle from TRAF6f!f and TRAF6mko mice immunostained against embryonic 
isoform of myosin heavy chain (eMyHC). Scale bar: 20llm. (B) Western blot analysis of 
expression levels of eMyHC or MyHc protein in sham or Ctx-injured TA muscle from 
TRAF6f!f and TRAF6mko mice. (C) Transcript levels of MHC3, MyoD and myogenin in 
sham or Ctx-injured T A muscle from TRAF6f/f and TRAF6mko mice Error bars represent 
SD. N=4 in each frouP .• p < 0.01, values significantly different from Ctx-injured TA 
muscle of TRAF6f! . 

139 



A. Sham CTX-Injected 
,,' TRAF6fK ,,' TRAF6" 

,.' ,,' 
" 

~ 
';,i

f '" ~ .~ ,( .. ,0' 
i: i: 
I-< I-< 
,,; Ii:' .. .. e ,,' e ,,' 
,.; ...; 

'" 
.., 

e to' e 101 , 

l~ 10' , 
.... , 

' , ' .. . .. 

I'C", ,,' ,,' ,.' ,.' ,.' I 0 ~ 

" 
,. II~ ! 10: ,,' ,,' ,,' '0' ,.' 

A7bl.Jnttgrin .7b.1 . lnttgrin 

lOt TRAF6",b 10' TRAF6"'" 

,,' .' 
to' 

'.' 

'" :, -' '" ~ - ~ ,0' -lO' t: 
C I-< ... 11';' ... : ..,. .. Q to' 
Q ,,' \.) 
V ... . ..... .. .. '" :-", :" 
'" e " ~ :I: \ ' e 10!- , " ,,' 

fO: 
,ri- . .. . :/.: 

,~ .' ": ' ~. ~ 
. . :~ : '- , 

':," 

,,' .. ,,' 
IO( 10: ,,' 10' ,,' to· ,,' 

I"~ 10: ,,' ,,' ,,' ,,' 
" a7bl-Iotegrlo 

a7b1 .lotcgriJi 

140 



B. C. 

16 
6 

DShal11; DSham; * 

"-l14 • Cardiotoxin '" 5 • Cardiotoxin * ~ - ;;. -- ~ 
Q,I 

~ 12 en 
U ~ c: 4 

~ 

~ 10 Z; .c: 
N u 

~ - "'0 3 .- S E - -- c 
~ r-- ~ .... 

6 
~ --2 ~ ~ 

V.l ~ 

~ c 4 
1 

2 

0 0 
TRL\F6f/f TRAF61nkO TRt\F6f t f TRt\F6mko 

Figure 4.4: TRAF6 ablation promotes satellite cell activation during myogenesis in 
regenerating muscle. Three month old TRAF6f/f

, TRAF6mko and TRAF6dmko mice were 

injected with saline or Ctx in T A muscle and analyzed at day 5 after injury. (A) F ACS 

analysis of saline or Ctx-injured TA muscle for a7~I-Integrin-positive activated satellite 

cells in TRAF6f/f and TRAF6mko mice. (B) Quantification of activated satellite cells in 
sham or Ctx-injured TA muscles from TRAF6f1f and TRAF6mko mice. (C) Transcript 

levels of Pax7 in sham or Ctx-injured TA muscle from TRAF6f1f and TRAF6mko mice. 
Negative selection antibodies (CD45, CD31 and Ter119) gated in red, positive selection 
antibody (a7~I-Integrin) gated in green. Error bars represent SD. N=4 in each group .• p < 
0.01 , values significantly different from Ctx-injured TA muscle ofTRAF6f1f
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Figure 4.5: TRAF6 ablation promotes satellite cell activation during secondary 
myogenesis. Three month old TRAF6f!f, TRAF6mko and TRAF6dmko mice were injected 
with saline or Ctx in TA muscle and analyzed at day 5 after injury. (A) FACS analysis for 
Ml (CDllc+ ) and M2 (CD206+) macrophage phenotypes in Ctx-injured muscles of 
TRAF6

f1f
, TRAF6mko and TRAF6dmko mice. (B) Quantification of macrophage phenotype 

composition in regenerating T A muscle from TRAF6
f1f

, TRAF6mko and TRAF6dmko mice. 
(C) Transcript levels of pro inflammatory TNFa and IL-l~, IL4 and ILlO and CCL2 and 
CCl5 in regenerating from TRAF6

f1f 
and TRAF6dmko mice. Ml macrophages (CDllc+) 

are gated in red while M2 macrophages (CD206+) are gated in green. Error bars represent 
SD. N=6 in each group. */# p < 0.01, values significantly different from Ctx-injured TA 
muscle of TRAF6

f1f
• 
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Figure 4.6: Effect of TRAF6 on signaling molecules in regenerating muscles. Three 
month old TRAF6f1f

, and TRAF6mko mice were injected with saline or Ctx in T A muscle 
and analyzed at day 5 after injury. (A) Activation ofNF-KB was analyzed in response to 
Ctx-injury in TRAF6mko mice compared with TRAF6f1f mice. (B) Representative western 
blots of phospho-p38, total p38, phospho-Akt, total Akt, phospho-p65 (reIA) and u­
tubulin in sham or Ctx-injured TA muscles of TRAF6mko mice compared with that of 
TRAF6 flf mice. 
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Figure 4.7: Depletion of TRAF6 early durin!t embryonic development delays muscle 
growth. Three weeks or 10 weeks old TRAF6 f and TRAF6dmko mice were analyzed by 
morphometric methods. (A) Representative photomicrographs of H&E stained soleus 
muscle at 3wk and 10wk and (B) mean myofiber CSA demonstrate a delayed muscle 
formation in 3 week old TRAF6dmko mice compared to TRAF6f1f mice. (C) A vera~e 
myofiber CSA from TA and soleus muscle from 10-week old TRAF6f/f and TRAF6dm 

' 0 

mice exhibit no significant difference . . (D) Cell proliferation efficiency was analyzed in 
myoblasts. TRAF6dmko mice demonstrated significantly attenuated cell proliferation 
efficiency. (E) and (F~ Reduced cell proliferation in primary myoblasts from TRAF6dmko 

compared to TRAF6 f as demonstrated by cell density/unit area and cell proliferation 
efficiency. (G) Reduced myotube formation in TRAF6dmko mice (H) and (I) Attenuated 
muscle formation in TRAF6dmko mice as compared to TRAF6f1f mice demonstrated by 
smaller myofiber diameter and reduced creatine kinase activity. Scale bars: 20J..lm. Error 
bars represent SD. N=8 in each group. *1# p < 0.01, values significantly different from TA 
or soleus muscle ofTRAF6f/f
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Figure 4.8: Depletion of TRAF6 early during embryonic development improves 
regeneration. Three month old TRAF6fJf and TRAF6dmko mice were injected either with 
saline or cardiotoxin in T A muscle and regenerating muscle were isolated and analyzed at 
different time points. (A) Representative micrographs of H&E stained transverse sections 
of sham or Ctx-injured Tibialis anterior muscle at different time points demonstrate a 
significantly improved regeneration in TRAF6dmko mice compared to TRAF6f/f control. 
Scale bar: 20llm (B) and (C) Quantification of distribution of fibers by CSA and mean 
CSA of Ctx-injured TA muscle from TRAF6fJf and TRAF6dmko mice. (D) Number of 
centrally nucleated fibers were significantly higher in TRAF6dmko showing an accelerated 
regeneration. Developmental knock-out of TRAF6 improves regeneration. TRAF6f/f 

and TRAF6dmko mice were injected either with saline or cardiotoxin in TA muscle and 
regenerating muscle were isolated and analyzed at different time points. (E) F ACS 
analysis of saline or Ctx-injured TA muscle for a7~ l-Integrin-positive activated satellite 
cells in TRAF6f1f and TRAF6dmko mice. (F) Quantification of activated satellite cells in 
sham or Ctx-injured TA muscles from TRAF6

f1 f 
and TRAF6dmko mice. (G) FACS 

analysis for Ml (CDllc+) and M2 (CD206+) macrophage phenotypes in Ctx-injured 

muscles of TRAF6fJf and TRAF6dmko mice. (D) Quantification of macrophage phenotype 
composition in regenerating T A muscle from TRAF6fJf and TRAF6dmko mice. Scale bars: 
20llm. Error bars represent SD. N=8 in each group. *1# p < 0.01 , values significantly 
different from Ctx-injured TA muscle of TRAF6 f/f. 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

This chapter summarizes the work presented in this dissertation and discusses its 

implications in understanding skeletal muscle remodeling. It also highlights the 

contribution of this research for scholars in the field of skeletal muscle biology. The 

discussion concludes by acknowledging some of the research limitations and suggesting 

areas for future work. 

5.1 Review of Dissertation and Skeletal Muscle Remodeling 

Skeletal muscle remodeling is an extremely complex response to a number of 

catabolic cues (3, 117, 147, 150, 182-184). These signaling cues stimulate activation of 

several intracellular pathways which eventually lead to transient or persistent remodeling 

of skeletal muscle. Although our knowledge about intracellular mechanisms in skeletal 

muscle atrophy or regeneration has increased multifold in recent years, it largely remains 

unknown that how proximal signaling events stimulate the activation of crucial 

downstream cascades. This study has explored the role of an important upstream 

signaling molecule TRAF6 and has identified it as a novel regulator of skeletal muscle 

remodeling especially in cases of atrophy and injury-induced regeneration in skeletal 

muscle. 

As I showed in Chapter 2, receptor-mediated activation of TRAF6 increases in 

response to catabolic signals. In turn, activated TRAF6 regulates skeletal muscle mass by 
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activation and recruitment of proteasomal and lysosomal degradation pathways in 

response to denervation (loss of trophic support to muscle). TRAF6-mediated activation 

of UPS, ALS, NF -KB, catabolic kinases and muscle specific E3 ubiquitin-ligases 

cumulatively lead to degradation of muscle proteins and result in altered muscle 

architecture and reduced contractile ability in skeletal muscle. In a murine model of 

muscle specific TRAF6 knock-out (TRAF6mko
) used in this study, it has been shown that 

depletion of TRAF6 repressed the activation of several of the major catabolic signaling 

mechanisms and their components in denervation-induced atrophy. This study also shows 

that ablation of TRAF6 significantly rescues the normal mitochondrial organization and 

distribution and prevents the formation of autophagosome in denervated skeletal muscle 

of mice. In addition to disuse (denervation-induced) atrophy, this study also investigated 

the role of TRAF6 in cancer cachexia-induced muscle loss. Similar to its effects in 

response to denervation, loss of TRAF6 significantly ameliorated muscle atrophy in 

cachectic conditions. Through inhibition of NF-KB, muscle specific E3 ligases and 

autophagy-related genes, TRAF6 ablation significantly rescued loss of muscle mass in 

response to cancer cachexia. 

The chapter 3 of this study discusses the role of TRAF6 in starvation-induced 

atrophy and identifies TRAF6 as a crucial regulator of atrophic response. In this study, I 

showed that TRAF6 is not only involved in canonical catabolic pathways common to all 

atrophies, but also exhibits distinct regulatory interventions in different models of 

atrophy. In starvation-induced atrophy, TRAF6 activates muscle specific E3 ligases, UPS 

and ALS, all of which are significantly inhibited in TRAF6 ablated skeletal muscle. The 

most salient finding of this study is identification of regulatory role of TRAF6 in 
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activation of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress 

mechanisms and the role of later two in skeletal muscle atrophy. All the three arms of 

UPR (GADD34, XBP-l and A TF6) are implicated in glucose and energy metabolism 

(135, 142-144). Therefore, it is highly likely that UPR might play an important role in 

starvation induced adaptations in homeostasis including those in skeletal muscle. This 

study provides the first evidence that UPR and ER-stress are activated in skeletal muscle 

in response to food deprivation. Further, data from this study show that depletion of 

TRAF6 significantly inhibits upregulation of all markers of UPR in response to starvation 

in skeletal muscle. Together, this leads to a conclusion that UPR and ER-stress may play 

an important role in starvation-induced muscle atrophy and further that TRAF6 is of 

critical importance in activation ofUPR in the conditions of food-deprivation. 

In the same study, I showed that Fn14 (a TWEAK receptor) is highly induced in 

its expression in response to starvation, which is inhibited by TRAF6 depletion. 

However, our data from this study also show that inhibition of TWEAK-FnI4 system did 

not affect any of the major proteolytic systems and therefore, did not ameliorate 

starvation-induced atrophy. 

In Chapter four, I have investigated the role of TRAF6 in skeletal muscle 

remodeling. TRAF6 is extensively studied in context of immune system. In an injured­

muscle microenvironment, cells of immune system have a significant intervention in 

processes of necrotic tissue removal and restoration of muscle architecture. Our previous 

data has already established a major regulatory role of TRAF6 in intracellular catabolic 

mechanisms in skeletal muscle. Therefore, TRAF6 may also influence skeletal muscle 

injury and consequential regeneration. The data from this study show that TRAF6 
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expreSSIOn is induced in response to injury. Data also show that TRAF6 regulates 

expreSSIOn of several pro- and anti-inflammatory cytokines and some important 

chemokines. Similarly, TRAF6 induces expression ofNF-KB in injured muscle. Through 

augmentation of inflammatory cytokines, chemokines and NF-KB, TRAF6 prolongs the 

inflammatory phase in a regenerating muscle. Our data reveal that TRAF6 ablation 

significantly inhibits the expression of pro-inflammatory cytokines, chemokines and 

transcription factors in regenerating muscle and thus promotes regeneration. Depletion of 

TRAF6 also reduces fibrosis in skeletal muscle. But the most important findings of this 

study are that TRAF6 mediates activation and proliferation of satellite cells and a shift in 

macrophage phenotype from MI (pro inflammatory) to M2c (pro-myogenic). Using two 

genetic mouse models of TRAF6 knock-out, one in developing myoblasts and the other 

in differentiated myotube, I showed that depletion of TRAF6 promotes activation and 

proliferation of muscle precursor cells (MPCs) which assists in accelerated regeneration. 

Further, this study also reveals that ablation of TRAF6 causes a shift in macrophage 

phenotype activation and thus contributing to an improved regeneration of skeletal 

muscle. 

5.2 Contributions of this Dissertation 

This dissertation has made significant contributions to scholarship in skeletal 

muscle metabolism. It has systematically identified, dissected and characterized the role 

of TRAF6 which is an important upstream signaling molecule in receptor-mediated 

activation of intracellular molecular mechanisms. 
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Through a methodological and thorough review of literature on skeletal muscle 

catabolic conditions and response mechanism induced thereby, this dissertation has 

provided new insights into convergent role of upstream signaling molecules in skeletal 

muscle remodeling. 

In addition, through a comprehensive investigation of interactions and regulatory 

roles of TRAF6 in intracellular mechanisms in skeletal muscle, this research work has 

revealed a novel signaling axis which modulates skeletal muscle homeostasis in stress 

conditions. 

I anticipate this research will contribute to further research by assisting in 

development of new therapeutic strategies and interventions for the treatment of various 

catabolic conditions and disease states of skeletal muscle. Findings of this work may be 

of particular importance in elucidating the fine balance and interplay of factors critical for 

skeletal muscle remodeling. 

Finally, this dissertation has provided useful insights and built a foundation for 

future research in regulation of proximal signaling events in skeletal muscle atrophy and 

regeneration. 

5.3 Limitations and Future Work 

As mentioned in sections 2.4, 3.4 and 4.4, further research is needed to identify 

exactly how expression of TRAF6 is regulated in response to different catabolic signals. 

It also remains to be explored whether there are other mediators involved in execution of 

downstream effects of TRAF6. Also, more precise mechanism is yet to be known through 

which TRAF6 augments lysosomal degradation of muscle proteins and mitochondria. 
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This research provides preliminary evidence that UPR and ER stress might be 

involved in starvation-induced skeletal muscle atrophy and that TRAF6 mediates 

activation of UPRIER stress. This needs to be explored further how TRAF6 interacts with 

components of ER stress and/or UPR and what are the mechanisms through which this 

regulation occurs. 

Further research is also needed to delineate the mechanisms which TRAF6 

employs to influence the myeloid-myogenic interaction in injured or regenerating muscle. 

Although this work shows that TRAF6 may cause a bias in selection between 

macrophage phenotypes, it is yet to be understood whether this effect is exclusively 

through muscle intrinsic factors or yet to be characterized mediators are involved. 

Finally, the rescue effects shown by TRAF6 deletion are not complete which 

leads to an assumption that there may be some overlap between functions of TRAF6 and 

other signaling molecules. Also, there is a possibility that there are other factors which 

exert similar effects as of TRAF6 but are controlled independently. 

These are fascinating questions of great importance and answers to these will 

bring significant advancement in understanding of finely tuned functions of TRAF6 and 

will also improve the utility of the information provided by this dissertation in use of 

TRAF6 as a therapeutic target in muscle anomalies. 
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APPENDICES 

APPENDIX-l 

Gene name Forward primer (5'-3') Reverse primer (5'-3') 
TRAF6 exon 7 GGGAGCTGACTGCCAAAATG GCGCTGAGCTGTCGGTAACT 
TRAF6 GCAGTGAAAGATGACAGCGTGA TCCCGTAAAGCCATCAAGCA 
IRES CTAACGTTACTGGCCGAAGC AGGAACTGCTTCCTTCACGA 
MHC4 CGGCAATGAGTACGTCACCAAA TCAAAGCCAGCGATGTCCAA 
Atrogin-l GTCGCAGCCAAGAAGAGAAAGA TGCTATCAGCTCCAACAGCCTT 
MuRFl TAACTGCATCTCCATGCTGGTG TGGCGTAGAGGGTGTCAAACTT 
TNF-a GCATGATCCGCGACGTGGAA AGATCCATGCCGTTGGCCAG 
Mac-l AGGGTTGTCCAGCCGATGATAT CCCAGCTTCTTGACGTTGTTGA 
CD68 TTACTCTCCTGCCATCCTTCACGA CCATTTGTGGTGGGAGAAACTGTG 
IL-l~ CTCCATGAGCTTTGTACAAGG TGCTGATGTACCAGTTGGGG 
Tropomyosin A ACATTGCTGAAGATGCTGACCG TTCAAGCTCGGCACATTTGC 
Pax-7 CAGTGTGCCATCTACCCATGCTTA GGTGCTTGGTTCAAATTGAGCC 
LC3B CTGGTGAATGGGCACAGCATG CGTCCGCTGGTAACATCCCTT 
Beclinl TGAAATCAATGCTGCCTGGG CCAGAACAGTATAACGGCAACTCC 
GabaraplJ CGGTCATCGTGGAGAAGGCT CCAGAACAGTATAACGGCAACTCC 
~-actin CAGGCATTGCTGACAGGATG TGCTGATCCACATCTGCTGG 
GAPDH ATGACAATGAATACGGCTACAGCAA GCAGCGAACTTTATTGATGGTATT 
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APPENDIX-2 

LIST OF ABBREVIATIONS 

ALS ................•..•••.•.•..•. autophagy-lysosome system 

AMPK .•.......•...•..•.......... AMP activated protein kinase 

A TF •.....•........................ activating transcription factor 

CCL. ..........•...•••••..•.•.••.• chemokine ligand 

cDNA •...•.•......•.....•........ complimentary deoxyribonucleic acid 

CMA ....•.•....................... chaperon-mediated autophagy 

Cre ..••...••..••.••......•.....•... cyclase recombinase 

CSA .............................. cross sectional area 

CTX .............................. cardiotoxin 

DMEM .•..••..••...•..•..••.•.... Dulbecco's modified eagle medium 

dmko •...•...••.••.•••..•..•..•..•. developmental muscle specific knock-out 

DNA .............................. deoxyribonucleic acid 

EMS A .•......................... electrophoretic mobility shift assay 

eMyHC .....•..••.••...•..•.•.••.• embryonic isoform of myosin heavy chain 

ER ................................ endoplasmic stress 

ERK ......•.....................•. extracellular signal-regulated kinase 

FoxO .........•......•..•......... forkhead box transcription factor 
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GA ................................ gastrocnemius 

H&E .............................. hematoxylin and eosin 

IL ................................. interleukin 

IRE ............................... inositol-requiring element 

JNK .................•............ c-Jun N-terminal kinase 

LC3 .............................. microtubule-associated proteins IAlIB light chain 3 

MAFbx ........................... muscle atrophy F-box 

MAPK .................•......... mitogen associated protein kinase 

MCK ............................. muscle creatine kinase 

mko .............................. muscle specific knock out 

MMP ............................. matrix metalloproteinase 

mRNA ......................•.... messenger ribonucleic acid 

MuRF -I ..............•.....•..... muscle RING-finger protein 

MyHC(f) ........................ myosin heavy chain (fast type) 

NF-KB ........................... nuclear factor kappa-B 

PCR .............................. polymerase chain reaction 

PI3K .............................. phosphoinositide 3-kinase 

QRT-PCR ........................ quantitative real time-polymerase chain reaction 

RING ............................ really interesting new gene 

RNA .............................. ribonucleic acid 

SD ..................•............. standard deviation 

TA ...............•................ tibialis anterior 

TGF .....................•........ transforming growth factor 
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TLR ................•............. toll-like receptors 

TNF .............................. tumor necrosis factor 

TNFR ............................ tumor necrosis factor -receptor 

TRAF ............................ tumor necrosis factor -receptor associated factor 6 

TWEAK ......................... tumor necrosis factor-related weak inducer of apoptosis 

Ub ................................ ubiquitin 

UPR .............................. unfolded protein response 

UPS .............................. ubiquitin-proteasome system 

XBPI ............................ X-box binding protein-l 
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