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ABSTRACT 
 

This collection of work comprises a preliminary study of the relationships 

between product complexity, design motivation, and design quality.  Complexity, as it 

relates to the design process, is largely undefined and there exists no generally accepted 

method of measurement.  This study applies an independent data set to a complexity 

measurement technique and develops complexity measurements at the pre and post 

design stages.  Pre design is considered when design ideas are in formation and customer 

needs are being addressed.  Post design is considered when a functional prototype is 

realized, manufacturing and assembly processes have been considered, and the product 

design is considered finalized.  Developing complexity measurements for both stages of 

design are critical to realizing lean design development.  Additionally, this study 

investigates the effects of personal motivation on design quality outcomes.  Taking from 

the field of sociology, a survey tool is utilized to gauge an individuals’ motivation toward 

design as a serious leisure activity.  Serious leisure is considered an activity in which 

participants glean an internal reward, pleasure, or satisfaction from participation.  

Utilizing a proposed design quality survey, this study determines quality metrics based on 

customer needs, manufacturability, serviceability, and product fit and finish, and 

considers quality to be the ultimate measure of a design.   The intersection of complexity, 

personal motivation, and design quality is of particular interest in this study, as it may 

provide insight into engineering team dynamics as it relates to design outcomes.   
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INTRODUCTION 
 

The first paper, “Evaluation of Techniques to Describe Complexity in Pre and 

Post Design Stages,” presents the current state of product complexity and utilizes a 

prominent complexity metric to evaluate an independent data set.  The second paper, “A 

Preliminary Study: The Effects of Personal Motivation on Design Quality,” investigates 

motivation of designers, assessment of design quality, and the intersection of individual 

designer motivation and design quality outcomes.   
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EVALUATION OF TECHNIQUES TO DESCRIBE DEVICE COMPLEXITY IN 
PRE AND POST DESIGN STAGES 

 
Philip J. Mountain 

Department of Mechanical Engineering 
University of Louisville 

Louisville, KY, USA 
 

Matt R. Bohm, Ph.D. 
Department of Mechanical Engineering 

University of Louisville 
Louisville, KY, USA 

Marie K. Riggs 
Department of Mechanical Engineering 

University of Louisville 
Louisville, KY, USA 

ABSTRACT 
 

Electro-Mechanical device complexity exists in everyday items from cell phones 

to automobiles to vacuum cleaners.  Generally, product complexity is one of the least 

quantifiable characteristics in the design cycle with arguably some of the greatest 

implications.  A high level of device complexity carries a negative connotation and is 

usually considered an attribute a designer should attempt to mitigate.  Alternatively, a 

low level of device complexity may induce designers and marketers to question a 

product’s usefulness.  Whether complexity is a necessary aspect of a design or a 

hindrance needing to be minimized or eliminated, depends upon how complexity is 

framed.  Some instances in literature attempt to measure complexity yet there is no 

unified measure that captures the complexity of a product or system during design phases 

or upon product/system realization. Complexity is defined in many ways, at different 

levels of abstraction, and different stages of design therefore, becoming highly contextual 

and subjective at best.  An established and repeatable methodology for calculating 

complexity of existing products in the marketplace is necessary.  Once a measure of 

complexity is agreed upon at the post design stage we can look to earlier phases in design 

to see whether insights are observable.  Identifying complexity early in the design cycle 
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is paramount to strategic resource allocation.  This study considers the Generalized 

Complexity Index (GCI) measure put forth by Jacobs (Jacobs, 2013) and expands upon it 

to include functional modeling as a key component in determining an indicative 

complexity metric.  Functional modeling is a method used to abstract system or product 

specifications to a general framework that represents a function based design solution.  

Complexity metrics are developed at the functional and completed design levels and used 

for comparison.  Thirty common household products retrieved from an online design 

repository ("Design Engineering Lab - Oregon State University," 2015) as well as seven 

senior capstone design projects were evaluated using the GCI.  A modification to the GCI 

equation is proposed and to gain a relative scale of complexity within the data, a ranked 

complexity metric was developed and utilized.  The magnitude of the ranked complexity 

metric was only indicative of hierarchical status of a product within the data set and 

therefore is not comparable to GCI values.  Though Jacobs GCI worked well in his study, 

the GCI does not represent a meaningful complexity measure when applied to the data in 

this study.  This study is an initial attempt to apply an independent data set to Jacobs GCI 

model with perhaps greater implications, with respect to products, that complexity is 

multifaceted and is not accurately represented by only interconnectedness, multiplicity, 

and diversity.  

 
1. INTRODUCTION 

 

As the market place remains competitive, companies are looking to shorten the 

product design cycle.  Designers are constantly searching for ways to quickly assess 

initial ideas and determine product feasibility before precious time and resources are 

devoted to development. Traditionally, designs are progressively refined, prototypes are 
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realized, and products are evaluated.  Design tools, such as functional modeling, can be 

utilized in the early stages of design while the project requirements or customer needs are 

being determined and refined.  Functional modeling allows design teams to 

systematically represent a design within a universal framework (Miles, 1972).  Functional 

modeling is widely used (Blanchard et al., 1990; Cross, 2008; Dieter et al., 2009; Dym et 

al., 2004; Gibson et al., 2007; Miles, 1972; Nagel et al., 2015; Nise, 2007; Otto et al., 

2001; Pahl et al., 2013; Technology, 1993; Ullman, 2015; Ulrich, 2003; Voland, 2004) 

and allows complex problems to be abstracted into a form that is easily solvable.  When 

utilized in a capstone design course, functional modeling equips student designers with 

an objective method of representing complex systems based on the functions they will 

perform.  

Product portfolios are becoming increasingly diverse and complexity becomes 

paradoxical, because it is necessary yet unwanted in product design.  Consider the 

following example where complexity meets function.  A customer indicates the desire for 

an artifact with which they can write and erase.  The image of a pencil is prevalent with 

respect to these customer needs.  A basic wood pencil consists of wood pieces, a lead 

core, a metal sleeve, and an eraser.  It could be argued that a wooden pencil has the 

necessary number of components to make it a functionally viable product with respect to 

the customers’ needs.  Therefore, the wooden pencil is necessarily complex.  Now 

consider a mechanical pencil.  The mechanical pencil consists of a plastic body, an 

eraser, a clip, a retaining nozzle, and internal components (such as a lead guide, 

mechanical actuation components, etc.).  Both the wooden and mechanical pencil satisfy 

the same functional requirements (writing and erasing) but the mechanical pencil is 
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traditionally thought to be a more “complex” product.  “Complex” here means that the 

mechanical pencil likely requires greater design effort, more detailed manufacturing and 

assembly processes, and higher per-unit cost.  However, complexity cannot simply be 

affirmed based on perceived design effort, manufacturing and assembly procedures, and 

cost.  A complexity metric must be defined in an objective manner and must be directly 

measurable.  So the question becomes, in general, “what are the characteristics that make 

a product complex and are they measureable?” 

Complexity of a system or product conjures many understandings.  Commonly 

thought to have a negative effect (Blackenfelt, 2001; Pasche, 2008; Suh, 2005), 

understanding complexity in the design process is critical to efficient system and product 

design.  Although some instances in literature attempt to measure complexity (Braha et 

al., 1998; Hölttä et al., 2005; Jacobs, 2013; Minhas, 2002; Novak et al., 2001; Summers 

et al., 2010), there is no unified measure that captures the complexity of a product or 

system during the early design phase or upon product/system realization.  Understanding 

complexity of a product can be beneficial in the early stages of design as an indicator of 

future design complexity.  As designers and managers seek to mitigate complexity, 

having early indicators are paramount to keeping project costs low.  An important aim of 

this research is to determine whether a complexity metric derived at the functional model 

level will be predictive of a complexity metric at the completed product level.  Utilizing 

functional complexity to forecast product complexity will enable designers, managers, 

and organizations to be better informed and take proactive measures in managing and 

mitigating unnecessary complexity in the design cycle.  This paper reports the findings on 

developing a systematic approach to predicting design complexity outcomes based on 
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functional model representations. A proposed framework and measurement metric for the 

GCI proposed by Jacobs (Jacobs, 2013) are examined. 

 
2. BACKGROUND 
 

This section outlines current literature on complexity in section 2.1, functional 

modeling in section 2.2, and Design Structure Matrices (DSMs) in section 2.3.  

 

2.1 Complexity 

In literature, complexity is discussed in domain specific contexts and primarily 

focused on the modeling, management, and negation of complexity of products in supply 

chains, product portfolios, manufacturing and assembly, and organizations as a whole 

(Abbasi, 2008; Adamsson, 2007; Alamoudi, 2008; Calinescu, 2002; Chalidabhongse, 

1999; ElMaraghy et al., 2012; Kim, 1999; Maier et al., 2000; Marti, 2007; Minhas, 2002; 

Summers & Shah, 2010; Tomiyama et al., 2007).  Novak et. al view complexity as a 

measure of product variations within a product family with respect to the supply chain 

(Novak & Eppinger, 2001).  They claim product complexity has three main elements: 

“(1) the number of product components to specify and produce, (2) the extent of the 

interactions to manage between these components (parts coupling), and (3) the degree of 

product novelty” (Novak & Eppinger, 2001).  They apply a simultaneous equations 

model to data gathered from the luxury-performance segment of the auto industry. The 

model takes into account the degree of vertical integration (a percent of the system 

components produced in-house), quality (defined according to Consumer Report 

Reliability Reviews), and complexity.  Complexity was measured by developing key 

characteristics of a system then having industry experts rate statements which were 
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translated into a 0–1 measure; 0 being low complexity and 1 being high complexity.  

They produce a robust methodology however; it is specific to the auto industry.   

Pasche claims (Pasche, 2008), complexity is context dependent, which seems to 

be supported by Novak et. al and Sum et. al (Novak & Eppinger, 2001; Sum et al., 1993) 

who define complexity measures specific to their needs.  Where Sum et al. (Sum et al., 

1993) are focused on complexity’s impact on lot sizing, this study concerns how they 

define complexity.  They consider product structure complexity to be characterized by 

three parameters; the number of items, number of levels, and commonality index.  The 

number of items is indicative of product structure size and as the number of items 

increase so does the complexity of the product structure.  The number of levels indicates 

depth of a product structure and as the number of levels increase greater effects are 

possible within the product structure.  The commonality index, proposed by Collier 

(Collier, 1981), measures the average number of immediate parent items per component 

item where increases in interactions across product levels makes lot sizing more complex.  

Yu et al. consider complexity to be associated with the resources and variables required 

to develop and launch a product (Hagel, 1998; Yu et al., 2010).  Considering relative and 

absolute measures, Summers et al. (Summers & Shah, 2010) frame complexity in the 

mechanical engineering design process to be a function of size, coupling, and solvability.   

Complexity is defined in many ways, at different levels of abstraction, and 

different stages of design (Blackenfelt, 2001; Braha & Maimon, 1998; Hölttä & Otto, 

2005; Jacobs, 2013; Maier & Rechtin, 2000; Summers & Shah, 2010) therefore, 

becoming highly contextual and subjective at best (Jacobs, 2013).  The issue of generality 

rampantly exists in literature when considering complexity, because each methodology 
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defines complexity to exist only within its realm of investigation.  Complexity may be 

necessary for product success in certain cases though, traditionally is viewed as 

unfavorable.  It can also be viewed as a hindrance if unnecessary functions or attributes 

are added to the product.  Such unnecessary functions or attributes could lead to more 

involved design efforts, greater manufacturing or assembly work, and higher production 

costs.  Developing product requirements or customer needs is an effective way to 

explicate significant product functions and mitigate useless ones.  Functional modeling 

allows designers to transform these requirements into a universally understood 

framework (Nagel et al., 2012).  Functional models enable designers to determine the key 

flows of material, energy, and signal information that are necessary to meet the project 

requirements or customer needs.  When considering complexity in a product development 

manner, it is generally considered to have an adverse effect on product performance, 

quality, and manufacturability (ElMaraghy et al., 2012).  However, it is unclear exactly 

what complexity is and how it can be measured on a general scale.  

The starting point for this study will be Jacobs’ Generalized Complexity Index 

(GCI) (Jacobs, 2013).  The GCI requires scrutiny of three factors; 1.) multiplicity, 2.) 

diversity, and 3.) interconnectedness.  Multiplicity is defined as the number of variants or 

versions of a product or the number of suppliers if evaluating at the supply chain level 

(Bozarth et al., 2009; Closs et al., 2008; Closs et al., 2010).  Diversity refers to the degree 

of dissimilarity seen across the elements and can be quantified by comparing the number 

of unique elements to the total number of elements within a system.  Interconnectedness 

is a ratio of the number of connections within a system and the total number of possible 

connections.  The degree of interconnectedness can be illustrated and derived through the 
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use of a Design Structure Matrix (DSM) (English et al., 2008; Hommes et al., 2003; Otto, 

2001; Otto & Wood, 2001; Pahl & Beitz, 2013).  For the GCI, Jacobs prescribes a simple 

mathematical formula to calculate complexity (Equation 1).  Table I on the next page 

provides an explanation of the variables in Equation 1.  

 

 

𝐺𝐶𝐼 = 𝑉 (1 −
𝑈
𝑇) (

𝐴
𝑀) (1) 

 
 
 

TABLE I  
 

DESCRIPTION OF VARIABLES IN THE GENERALIZED COMPLEXITY INDEX. 
Variable Description 

V Number of Variants 
U Number of unique elements 
T Total number of elements 
A Number of connections 
M Maximum number of connections 

 

2.2 FUNCTIONAL MODELING 
 

Functional modeling presents a graphical description of what a system should do 

based on customer needs, target specifications, objectives, and constraints.  Models are 

generated at two levels of abstraction: a black box model and a sub-functional model. 

Black box functional models are stand-alone functional models abstracting a high-level 

transformation intended for the product to complete and are generated based on the 

system design requirements. A functional model decomposes the overall functional black 

box into specific flow transformations. Flow transformations define the operations 

required of the system such that the identified input flows do become the identified 

output flows through the operation of the system.  Stone et al. (Stone et al., 2000) develop 
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the general framework for functional modeling and Nagel et al. (Nagel et al., 2012) 

develop an algorithmic approach to teaching functionality.  The Nagel et al. approach 

uses a series of grammar rules to assemble function chains from a list of enumerated 

functions desired of the final product.  Function chains are then aggregated into a 

complete functional model which represents a system or product. Creating a functional 

model consists of three primary steps; Black box model, chains, and the aggregated 

functional model. Nagel et al. (Nagel et al., 2012) produce an example of a black box 

model, chains, and an aggregated functional model show in Figure 1, 2, and 3, 

respectively (Nagel et al., 2015). 

 

 

 
FIGURE 1: BLACK BOX MODEL. (NAGEL ET AL., 2015) 
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FIGURE 2: FUNCTIONAL MODELING CHAINS. (NAGEL ET AL., 2015) 

 
 

 
FIGURE 3: FUNCTIONAL MODEL. (NAGEL ET AL., 2015) 
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Utilizing the framework and teaching methodologies of functional modeling, 

functional models are created and analyzed.  Functional models are a key factor of this 

study’s approach to complexity analysis as variable values are derived directly from 

analysis of functional models.  This study considers functional modeling to be a pre 

design stage activity. 

 
2.3 DESIGN STRUCTURE MATRIX 
 

The Design Structure Matrix (DSM) is a compact and visual representation of a 

system, project, or artifact in the form of a square matrix (Eppinger et al., 2012).  DSM’s 

have been used in aerospace, manufacturing, and software engineering industries as well 

as research and academia (Ahmadi et al., 2001; Farid et al., 2006; Guenov et al., 2005; 

Lambe et al., 2012; Makins et al., 2000; Sullivan et al., 2001).  Example DSM 

applications are estimation of product development time, definition of complex system 

interactions, and determining system modularity (Carrascosa et al., 1998; Eppinger & 

Browning, 2012; Sullivan et al., 2001).   DSM’s are widely used because of their ease of 

readability even when mapping becomes complex.  DSM’s are constructed by listing 

system elements in a square matrix then noting the interactions between elements with a 

value.  Whole numbers, dots, or even probabilities are utilized to signify element 

interactions.  This study will utilize whole numbers to signify element interactions.  A 

simple DSM of elements A – E are listed in Table II (on the next page) where a single 

element connection is signified by placing “1” in the respective cell.   
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TABLE II 
  

SIMPLE DSM. 
  A B C D E 
A           
B 1         
C 1 1       
D     1     
E 1 1 1     

 

 

The simple DSM indicates element B is connected with element A.  Similarly, C is 

connected with A and B, D is connected with C, and E is connected with A, B, and C.  

 
3. METHODOLOGY 
 

Building upon Jacobs’ move toward an empirical measure of complexity, thirty 

common household products and seven capstone projects are considered.  The approach 

here differs from Jacobs in that product variants (V) are not considered therefore; 

multiplicity is disregarded as an influencing factor of complexity.  The reason for 

disregarding the multiplicity factor is that each product analyzed presents only one 

variation therefore, the number of variants, V, would not influence the GCI and this 

variable becomes obsolete. Jacobs’ GCI equation as well as modifications deemed 

necessary are considered.  As Jacobs’ original equation stands, holding 

interconnectedness (A/M) constant, a low diversity (U/T) value will translate to a high 

complexity metric.  This study argues that low diversity should lead to low complexity 

because this implies part reuse within a system or product is favorable to obtaining low 

complexity. The proposed GCI equation is presented below.  

 

𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐺𝐶𝐼 = (
𝑈
𝑇) (

𝐴
𝑀) 

(2) 
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After investigating two sample products, a door handle and a lawnmower 

carburetor, as baseline measures, a larger sample size of 30 common household products 

are considered.  The thirty products were retrieved from a repository ("Design 

Engineering Lab - Oregon State University," 2015) previously created by Bohm et al. 

(Bohm et al., 2006; Bohm et al., 2005) where preexisting functional models and product 

design structure matrices were readily available.  Eventually, seven senior capstone 

design projects are evaluated to determine if complexity is accurately measured in 

prototypes.  Capstone groups ultimately produce a functional prototype as a culmination 

of semester long projects. The functional prototypes will be analyzed as final products.  

As will be explained in detail in the next sections, functional models are analyzed and 

quantified to produce a complexity metric at the functional abstraction level of design.  

Similarly, DSM’s are utilized to quantify a complexity metric at the post design stage or 

product level.  This study aims to produce a functional model complexity metric which 

will be indicative of final product complexity.  The implications of this study would be a 

method to derive final product complexity from functional modeling complexity analysis.  

 
3.1 RANKED COMPLEXITY 
 

Consider two products from the repository: a vegetable peeler and an induction 

cooktop.  The vegetable peeler is molded plastic with a stamped metal part used to peel 

the skin off vegetables.  It is intuitive to assume that the vegetable peeler would have low 

complexity.  In stark contrast to the vegetable peeler, the induction cooktop utilizes 

special materials, novel technology, and complex functions.  The cooktop could be 

considered to have high complexity.  Because complexity of a product is highly 

dependent on the context in which it is analyzed, a ranking method was used to produce a 
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low to high complexity scale for the data set.  Having a ranked complexity metric is 

helpful because it provides a general spectrum of low to high complexity for the products 

analyzed.  The thirty products from the design repository cover a wide array of 

mechanical and electro-mechanical devices.  To gain a ranked measure of product 

complexity a 9-point Likert scale questionnaire was utilized.  Ranked complexity 

questionnaires were completed by graduate students with backgrounds in mechanical 

engineering and exposure to industry based cooperative educational experiences.  

Questionnaire statements were worded such that a high score would indicate a product to 

have high complexity.  The five statements were:  

 
1) This product is difficult to manufacture. 
2) This product is difficult to assemble. 
3) This product utilizes novel technology. 
4) This product requires major design effort. 
5) This product is highly complex. 

 
 
Agreeing to all of the statements (choice of 9) indicates the highest possible 

complexity.  The five ranking questions were chosen as they represent elements that have 

traditionally thought to influence complexity during a product lifecycle (Adamsson, 

2007; Alamoudi, 2008; Bozarth et al., 2009; Braha & Maimon, 1998; ElMaraghy et al., 

2012; Eppinger & Browning, 2012; Hölttä & Otto, 2005; Jacobs, 2013; Marti, 2007; 

Minhas, 2002; Summers & Shah, 2010; Tomiyama et al., 2007).  Ranked complexity 

metrics are bound between 0 and 1, not comparable to GCI values, and only indicative 

within the repository and capstone project data sets.  To obtain a final ranked complexity 

metric for each product, each answer was divided by 9 to obtain a fraction of agreeability, 

multiplied by an equal weight of 0.2 (1/5 questions), summed over all evaluators, and 
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divided by the total number of evaluators.  The ranked complexity equation can be seen 

below (Equation 3). 

 
 

𝐶𝑝𝑙𝑥𝑅𝑎𝑛𝑘𝑒𝑑 = (
𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛 1𝑎𝑣𝑒𝑟𝑎𝑔𝑒

9 ∗ (
1
5)) + (

𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛 2𝑎𝑣𝑒𝑟𝑎𝑔𝑒

9 ∗ (
1
5)) +  … 

+  (
𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛 5𝑎𝑣𝑒𝑟𝑎𝑔𝑒

9 ∗ (
1
5)) 

(3) 

 
 
 
3.2 EXPLANATION OF VARIABLES 
 

When considering function or design structure matrices, the four parameters 

previously introduced in Table 1 are used to produce a complexity metric.  The total 

number of elements are represented by the variable T and the unique number of elements 

are represented by the variable U.  Variable M is the maximum number of element 

connections and is calculated by  

 

𝑀 =
(𝑇2 − 𝑇)

2  
(4) 

 
and A is the actual number of connections with in a matrix.  Variables A and M are 

obtained by constructing a function or design structure matrix at the functional or 

completed product level of design.  The ratio U/T represents the diversity of a design 

whereas ratio A/M represents the connectivity.  Probabilistic values are not considered 

here and only the number one is used if a connection is present.  Complexity metrics 

from either Equation 1 or 2 are bound between 0 and 1, where 1 is the highest possible 

complexity.  The abbreviation FSM for Function Structure Matrices and DSM for 

Decision Structure Matrices will be observed. FSM’s were analyzed using two distinct 
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methods, MES and FLOW methods.  MES stands for Material-Energy-Signal, as they are 

the primary function-flow pairs of functional modeling.  FLOW method indicates use of 

single distinct flows of material, energy, or signal through the functional model.  MES 

and FLOW methods will be referred to as method 1 and 2, respectively. The Total 

number of elements (T) will be the same for both method 1 and 2 however, unique 

number of elements (U), will differ.  Two examples below explain the procedures and 

quantification in each method (FSM and DSM).  

 
3.3 FUNCTION STRUCTURE MATRIX (FSM) – AN EXAMPLE 
 

At the function level obtaining values for A and M are similar among evaluation 

methods and will be demonstrated first considering a door handle (Table III on the next 

page – a snippet of a full DSM).  Functions are listed in a column then transposed to a 

row to create a square matrix.  Counting the total number of functions (import hand, 

import human energy, import door frame … export door) yields 15 (T = 15).  The 

number of connections (A) is determined by summation of the matrix and division by 

two, or simply counting the number of ones on either side of the matrix diagonal.  The 

maximum number of connections (M) is obtained utilizing Equation 4.  For the door 

handle example M = 105.  As mentioned before, when considering functional model 

complexity there are two methods used to obtain the unique number of elements (U).  

Each method will be presented separately below. 
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TABLE III  
 

FUNCTION STRUCTURE MATRIX (FSM) – DOOR HANDLE SNIPPET. 

 
 
 
3.3.1 FSM – METHOD 1 – THE MES METHOD 
 

First, method 1, the MES method, will be reviewed.  In viewing the functional 

model representation of the door handle (Figure 4 on the next page), each action or block 

of the functional model represents an element.  As found before, the total number of 

elements are 15 (T = 15).  Method 1 states that an element is considered to be unique only 

if it appears once, at the highest level of abstraction, in the functional model.  For 

example, “Import Hand”, “Import Door Frame”, and “Import Door” are all individual 

elements, yet not unique.  All three elements can be described by the phrase “Import 

Material.”  “Hand”, “Door Frame”, and “Door” are all considered a material in the 
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functional modeling context.  Even though three separate elements exist, they can be 

described by a single phrase and therefore constitute one unique element.  Classifying 

unique elements with respect to method 1 is defined as “verb – noun” or “verb – MES” 

(Material–Energy–Signal).  Another example of this classification is seen when 

considering three elements “Guide Hand”, “Guide Frame”, and “Guide Door”.  Each 

individual element contains the verb “guide” and again “hand”, “frame”, and “door” are 

considered materials.  Therefore, these three individual elements comprise a single 

unique element “Guide Material.”  Using method 1 to classify unique elements leads to a 

number of 9 (U1 = 9) for the door handle example.  

 

 
FIGURE 4: FUNCTIONAL MODEL – DOOR HANDLE. 
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3.3.2 FSM –  METHOD 2 – THE FLOW METHOD 
 

Method 2, the FLOW method, follows material, energy, and signal flows through 

the functional model. Method 2 focuses on noun words such as “Hand”, “Human 

Energy”, “Door Frame”, and “Door Lock/Unlock Signal.”  Therefore, a single FLOW 

represented in Figure 4 is “Import Hand – Guide Hand – Export Hand.”  Each FLOW 

represents a unique element and we can conclude that using method 2 for the door handle 

functional model in Figure 4 yields five unique elements (U2 = 5).  Table IV provides a 

summary of each variable, value, and method utilized at the function level.  

 
TABLE IV  

 
FUNCTION STRUCTURE MATRIX (FSM) VALUES. 

Method A M A/M T U U/T 
1 14 105 0.13 15 9 0.60 
2 14 105 0.13 15 5 0.33 

 
 
3.4 DESIGN STRUCTURE MATRIX (DSM) – AN EXAMPLE 
 

An important aim of this research is to determine whether a complexity metric 

derived at the functional model level will be predictive of a complexity metric at the 

completed product level. Continuing to use the door handle example, complexity analysis 

at the completed product level is explored.  A bill of materials (BOM) can be seen in 

Table V on the next page for the door handle and is an important starting point for 

creation of the DSM.   
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TABLE V  
 

BILL OF MATERIALS (BOM) – DOOR HANDLE. 

 
 

Variables U (Unique number of elements) and T (Total number of elements) can 

be derived directly from the BOM.  Summation of the “quantity” column yields a total of 

38 parts.  Unique number of elements, 31, can be observed from the BOM.  DSM’s are 

created by listing the unique number of parts in a column then transposing them to an 

additional row.  DSM creation differs from FSM creation as DSMs utilizes the unique 

number of parts to create the matrix and FSMs utilize the total number of elements to 

create the matrix.  Table VI (on the next page) illustrates the DSM constructed for the 

door handle at the completed product level. DSM values for A and M, are enumerated in 

a similar way to FSM values with one minor change. Since the DSM lists only unique 

components in the matrix, the maximum number of possible connections, MDSM, is 

calculated with the following equation (Equation 5). 

 

𝑀𝐷𝑆𝑀 =  
(𝑈2 − 𝑈)

2  
(5) 
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When determining the number of connections (A) in a DSM, utilizing a BOM and 

an exploded part view is beneficial because they show which parts are connected.  

Utilizing a BOM and an exploded part view allows for non-subjective analysis and 

consistent DSM creation.  Table VII provides a summary for each variable obtained from 

the DSM.  

TABLE VI:  
 

DESIGN STRUCTURE MATRIX (DSM) SNIPPET – DOOR HANDLE. 

 
 

TABLE VII  
 

DESIGN STRUCTURE MATRIX (DSM) VALUES.  

DSM A M A/M T U U/T 
51 465 0.11 38 31 0.82 

 
Both functionally derived complexity and product level complexity for the door 

handle example can be calculated from Tables IV and VII.  As another baseline indicator, 
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a lawnmower carburetor was analyzed and results are shown in Table VIII on the next 

page.  For reference, Jacobs M1 designates Jacobs’ original equation (Equation 1) and 

method 1 were used for this complexity metric.  Jacobs M2 designates the original 

equation and method 2 were used for this complexity metric.  Proposed M1 designates 

the proposed equation (Equation 2) and method 1 were used for this complexity metric.  

Proposed M2 designates the proposed equation and method 2 were used for this 

complexity metric.  Example calculations for the door handle example can be seen in 

Table IX on the next page. Functional model illustrations were utilized to create FSM’s, 

as they did not already exist in the repository.  However, DSM’s did already exist in the 

repository and after minor formatting adjustments they were used directly for analysis.  

Capstone students produced a functional model relevant to their project before concept 

generation began.  Each capstone group submitted a final report that included a BOM and 

an exploded view of the final product.  These final reports were utilized to construct a 

DSM. 

TABLE VIII  
 

COMPLEXITY METRICS AT FUNCTION AND PRODUCT LEVEL – BASELINE 
EXAMPLES. 

 FSM DSM 

Product Jacobs  
M1 

Jacobs  
M2 

Proposed 
M1 

Proposed 
M2 Jacobs Proposed 

Door 
Handle 0.052 0.287 0.078 0.043 0.726 0.090 

Carburetor 0.015 0.121 0.168 0.061 0.014 0.105 
 

 
 
 
 
 
 
 



34 

TABLE IX  
 

CALCULATIONS AT FUNCTION AND PRODUCT LEVEL – DOOR HANDLE. 
Function Level (FSM) Calculations 

 
𝐽𝑎𝑐𝑜𝑏𝑠 𝑀1 = (1 − 0.13)(0.6) =  0.052 

𝐽𝑎𝑐𝑜𝑏𝑠 𝑀2 = (1 − 0.13)(0.33) =  0.015 
𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑀1 = (0.13)(0.6) =  0.078 
𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑀2 = (0.13)(0.33) = 0.043 

 
Product Level (DSM) Calculations 

 
𝐽𝑎𝑐𝑜𝑏𝑠 = (1 − 0.11)(0.82) = 0.726 
𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (0.11)(0.82) =  0.090 

 

4. RESULTS AND DISCUSSION  
 

This section presents results of the study for ranked complexity in section 4.1, for 

function and product level in section 4.2, and discussion in section 4.3.  

 
4.1 RANKED COMPLEXITY  
 

The door handle and carburetor examples covered in the previous sections 

provide a baseline for understanding complexity at functional model and completed 

product levels.  Microsoft Excel for Mac 2011 Version 15.6 was used for all matrix 

manipulation, calculations and analysis.  Ranked complexity data for the thirty repository 

products had relatively low coefficients of variation (Table X) for each question, 

indicating agreeable evaluations from the graduate students.  

TABLE X  
 

COEFFICIENTS OF VARIATION FROM RANKED COMPLEXITY 
QUESTIONNAIRE – REPOSITORY AND CAPSTONE DATA. 

Data 
Source Q. 1 Q. 2 Q. 3 Q. 4 Q. 5 

Repository 0.34 0.38 0.44 0.30 0.29 
Capstone 0.47 0.47 0.37 0.39 0.40 
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For the products form the design repository there is greater variation of answers to 

question 3.  Larger variation in question 3 could be explained as evaluators may not have 

known the specific technologies used in each product.   Pearson correlations were utilized 

per question and at every evaluator combination to determine agreeability.  Higher 

disagreement among evaluators was seen in questions 2 and 3 (Pearson’s Correlation 

from 0.13 to 0.26) whereas higher agreement was observed on question 5 (Pearson’s 

Correlation from 0.68 to 0.78).  

The capstone project data coefficients of variation were higher than repository 

data on all questions except question 3.  A potential explanation is that evaluators knew 

they were evaluating capstone projects, therefore had the perception that each project 

utilized novel technologies, ultimately leading to less variation in their responses.  Higher 

coefficients variation in the capstone data could be explained in that the products being 

evaluated were not in finalized product form.  Evaluators needed to estimate what 

manufacturing processes would take place, how the part would be assembled, and what 

kind of design effort would be needed to produce a finalized product.  Ranked 

complexities in order from low to high, left to right, are illustrated in Figure 5.

 

 
FIGURE 5: RANKED COMPLEXITIES (LOW TO HIGH, LEFT TO RIGHT) – 

REPOSITORY AND CAPSTONE DATA. 
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4.2 FUNCTION AND PRODUCT LEVEL COMPLEXITY 
 

Utilizing ranked complexity in increasing order is insightful because it provides a 

guide to compare GCI calculated complexities and as such, x-axes on Figure 6 and 7 

remain unchanged from Figure 5, as ranked complexity is taken to be the ultimate 

measure.  It is important to reiterate that the numerical value of ranked complexity has 

only an indicative value with in the data set and is not comparable to Jacobs or the 

proposed GCI metrics.  Functional and product level complexities are graphically 

represented in Figures 6 and 7, respectively on the next page.  Recalling that complexity 

values are expected to increase for products listed from left to right on the x-axis, 

functional level complexity does not increase, indicating no correlation was present.  

Product level complexity, derived from either Equation 1 or 2, and illustrated in Figure 7, 

was expected to follow a general trend of increasing complexity.  Visual inspection of the 

repository and capstone data shows that equated product complexity do not follow a 

general increasing trend.  Linear regression analysis confirms very poor correlations for 

repository data with respect to ranked complexity. Jacobs and the Proposed equations 

yield trend-line R2 values of 0.00603 and 0.00612, respectively.  Considering only 

capstone project data, linear regression shows improvement (Jacobs R2 = 0.396 and 

Proposed R2 =0.0239) yet remains undesirable.   
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FIGURE 7: PRODUCT LEVEL COMPLEXITY – REPOSITORY AND CAPSTONE 

DATA. 

 
FIGURE 6: FUNCTION LEVEL COMPLEXITY – REPOSITORY AND CAPSTONE 

DATA. 
 

 
When considering ranked complexity as the ultimate measure, observation of no 

general increasing trends in Figure 6 or 7 indicates that Jacobs and the proposed 
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complexities, from Equation 1 and 2, do not accurately represent overall product 

complexity with respect to ranked complexity.  Figures 8a and 8b illustrate scatter plots 

of equated complexities at both function and product level.  There is no general 

agreement among data and as trend line slopes were approximately horizontal.  

Complexity at the function level is not suggestive of product level complexity as 

calculated with the GCI.  

 

 
 

FIGURE 8A: JACOBS COMPLEXITY (EQUATION 1) – PRODUCT VS FUNCTION 
LEVEL. 

 

 

FIGURE 8B: PROPOSED COMPLEXITY (EQUATION 2) – PRODUCT VS 
FUNCTION LEVEL. 
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4.3 DISCUSSION 
 

Since the ranked questionnaire use generalized questions, there is concern when 

using ranked complexity as the ultimate guide.  To increase reliability of ranked 

complexity as the ultimate guide, incorporating objective measures directly from Design 

for Manufacturing and Assembly (DFMA) (Boothroyd, 1994), such as number of 

assembly procedures, and determining less subjective measurement criteria would 

provide a more consistent and objective method of ranking complexity.  Although 

ranking complexity was necessary for this study to provide a general scale with which to 

measure against, ideally a measure of complexity will be non-subjective.  Measuring 

complexity by consideration of only three factors (multiplicity, diversity, and 

interconnectedness) may not be sufficient to capture product complexity on a generalized 

scale because other factors such as manufacturing, assembly, novel technology, and 

design effort are likely to significantly influence product complexity.  Therefore, 

capturing a multitude of factors in an objective manner is imperative to creating a 

meaningful generalized complexity metric.  

When considering major sources of variation, DSM’s obtained from the online 

repository are of concern.  DSM’s are prefabricated and downloaded directly from the 

repository.  As a result, there is uncertainty in the specific method of part deconstruction 

and mapping as it may have been different than was outline in section 3.4.  Additionally, 

some DSM’s were composed using all unique components leading to a unique issue.  

When utilizing eqn1, having all unique components leads to the ratio U/T being 1 and 

ultimately complexity equal to 0.  This phenomenon can be seen on the y-axis of Figure 

8a.  Figure 8b shows promise with the fitted equation having a slight positive slope. Low 
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R2 values, indicating poor trend line fit to the data, are an indication that the equation 

derived using the proposed GCI and method 2 is an inaccurate predictor or completed 

product complexity.  

Complexity may easily be represented by interconnectedness, multiplicity, and 

diversity when supply chains are considered however, when considering product-based 

design, a complexity metric needs to consider manufacturing, assembly, technological 

novelty, and design effort.  Generalized complexity is an elusive subject as there is no 

absolute measure that currently exists.  A need still remains for proposing and validating 

a general complexity metric.  Through empirically supported research it may be possible 

to derive a generalized complexity metric.  This study estimated product complexity by 

ranking thirty products and seven capstone projects and using the ranked complexity as 

an ultimate measure.  Complexity values calculated from Jacobs GCI model were 

expected to follow in a similar increasing trend as ranked complexities.  No similar trends 

were found to exist.  Assuming ranked complexity to be the ultimate measure, Jacobs 

GCI and the proposed version of Jacobs GCI do not accurately represent the product data 

to which they were applied.  This study is an initial attempt to apply an independent data 

set to Jacobs GCI model with perhaps greater implications that complexity is 

multifaceted and is not accurately represented by only interconnectedness, multiplicity, 

and diversity, when considering product-based designs.  With respect to product-based 

design, building upon Jacobs’s claim of complexity, indicators of great importance, such 

as interconnectedness, multiplicity, diversity, manufacturability, assembly, technological 

novelty, and design effort, need to be considered when defining and measuring 

complexity on a general scale. 
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5. FUTURE WORK 
 

Future investigation upon this study would limit the source of variability of 

product data by utilizing documented and consistent methods of part deconstruction 

leading to accurate DSM representations.  Due to time and resource limitations, a sample 

size of thirty products and seven capstone projects were analyzed.  Gathering of a larger 

sample size, with consistent data collection methods, would build upon this study and 

possibly form an empirical relationship between function level and product level 

complexity.  The need for a multifaceted complexity measure on a generalized scale has 

been demonstrated.  Developing objective measures of what this study indicates are 

complexity’s core components (interconnectedness, multiplicity, diversity, 

manufacturability, assembly, technological novelty, and design effort) and incorporating 

them into a unified framework, would be a next step toward a generalize complexity 

metric.  
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BRIDGE 
 

The previous paper investigated complexity and proves it to be a nuanced subject.  

The focus of this study shifts from function and product complexity analysis to the 

process of design, specifically what motivates designers and how can product quality be 

evaluated.  The second paper in this work titled “A Preliminary Study: The Effects of 

Personal Motivation on Design Quality,” investigates personal motivation effects on 

design quality.  Sociological surveying techniques are used to extract participant 

motivation levels and a design quality survey is used to measure design quality outcomes 

of various senior mechanical engineering capstone projects.  
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ABSTRACT 
 

 The ultimate goal of most design projects or endeavors should be to create a 

product with high quality as it typically leads to higher customer satisfaction and brand 

retention.  Product design teams are usually comprised of a group of engineers with 

varying backgrounds, personalities, and motivational drives.  This paper presents an 

initial study on how motivation of individuals affects the quality of their resulting 

designs. The overarching hypothesis of this research is that highly motivated individuals 

and teams produce better quality designs when compared with designers whom possess 

lower levels of motivation.  Initial data for this study stems from a senior level capstone 

design course in a mechanical engineering program and takes the form of design quality 

and motivational inventory surveys.  Design quality is measured by a group of 

engineering faculty and industry representatives utilizing a proposed design quality rubric 

which scrutinizes factors such as customer satisfaction, manufacturability, and product fit 

and finish.  Motivational factors are measured using the Serious Leisure Inventory and 

Measure (SLIM) short form, a 9 point Likert style questionnaire.  The goal of this 

research is to identify teaming strategies such that a group of designers will achieve the 
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level of design quality desired of a specific product or project.  Findings in this study 

indicate that teams, comprised of individuals largely motivated by group aspects, or 

conversely demotivated by personal aspects, tend to realize better design quality 

outcomes. 

 

1. INTRODUCTION  
 

Ultimately a design aims to create a product or system with high quality leading to 

high customer satisfaction.   Product quality is often assessed during the prototype stages 

or perhaps even later in the design cycle, which leaves organizations at risk of lost time if 

a design fails to meet customer needs and quality specifications.  As product design 

cycles shorten and customer demand increases, accurately measuring design quality is 

imperative.  Design quality has been linked with greater customer satisfaction, lower 

production costs, and better product performance (Bai et al., 2008; Fine, 1986; Keating, 

2000); therefore, consideration of design quality is critical for project success.  Several 

researchers have proposed and piloted methods to assess design quality within a variety 

of disciplines and settings (Bansiya et al., 2002; Davis et al., 2007; Davis et al., 2006; 

Davis et al., 2009).  Much of the research concerning design assessment focuses on the 

processes, steps, and learning that occurs throughout the design project.  This study 

utilized a proposed design quality measurement survey to assess design quality which 

scrutinizes factors such as customer satisfaction, manufacturability, and product fit and 

finish. 

Design teams are generally composed of individuals from a broad range of 

backgrounds, with varying personalities, and motivational drives.  Individual designers in 
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a career environment may be motivated by organizational incentives such as expected 

performance level, financial compensation, etc.  However, in a leisure environment, 

individual designers may be motivated by personal incentives such as self-enrichment, 

self-actualization, etc.  Individuals are motivated in many different ways to participate in 

a wide variety of activities and hobbies.  Intrinsic and extrinsic motivations play a large 

role in why individuals choose to participate in a particular activity.  Intrinsic motivation 

arises from rewards gleaned from participation in an activity whereas extrinsic 

motivation focuses on processes apart from participation for its own sake.  

Leisure consists of discretionary participation in activities expected to result in 

pleasure and/or satisfaction.  The Serious Leisure Perspective (SLP) (Robert A Stebbins, 

2007) is an especially influential theoretical framework wherein individuals orient toward 

a leisure activity in three ways: casual, serious, and project-based.  Serious leisure 

pursuits tend to be goal directed as an individual strives to improve performance 

outcomes.  It is argued that motivation for serious leisure stems predominantly from the 

intrinsic challenge of the activity, yet strong self-identification with the activity as well as 

seeking prestige and social connection within a social world have much in common with 

integrated and external forms of extrinsic motivation, respectively. This study focus’ on 

individual leisure motivation and the effect it has on design quality. 

 
 
2. BACKGROUND 
 

This section will explore background literature related to design quality, 

motivation, and leisure.  
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2.1 Quality 
 

Several researchers have proposed and piloted methods to assess design quality 

within a variety of disciplines and settings. Bansiya and Davis (Bansiya & Davis, 2002; 

Davis et al., 2009) proposed a framework for assessing software design quality. The 

authors state that functionality, effectiveness, understandability, extendibility, reusability, 

and flexibility are quality attributes. They do offer a word of caution when discussing 

quality attributes “just like overall quality, these are abstract concepts and therefore not 

directly observable.” Stone-Romero et al. (Stone-Romero et al., 1997) coin the term 

“perceived quality” and argue that it is a valid measure of product quality as it takes into 

consideration the consumers view. Perceived quality consists of flawlessness, durability, 

appearance, and distinctiveness. They offer a note that perceived quality focus’ on 

product quality and not service quality.  

In an industry-based publication, Keating (Keating, 2000) observes that 

“[computing] chips continue to get larger and more complex and as they do, design 

quality continues to become more difficult [to measure].”  Arguing that quality must be 

designed and is measured by observing design complexity, Keating assesses complexity, 

and therefore quality, through four factors: 1) the number of modules at each level of 

hierarchy, 2) the number of levels of hierarchy, 3) the number of interfaces per block, 4) 

complexity of the interconnect between blocks. Keating asserts that chips ought to be 

easy to design correctly so that quality is designed, not tested, in the chip. While 

proposing a specific method of measuring complexity and quality of computing chips, 

Keating calls for further research of measuring quality to “tame the enormous and rapid 

growth of design complexity.”  
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A NSF funded study (DUE 0404924) focuses on assessing performance areas in 

capstone design courses (Davis et al., 2007; Davis et al., 2006). The work centers on 

assessment in four areas: personal capacity, team processes, solution requirements, and 

solution assets. Of the four areas, solution requirements and solution assets are the most 

related to examining design quality whereas personal capacity and team processes are 

more focused on growth and personal interactions. The authors propose a scoring rubric 

for personal growth assessment, but do not propose a similar rubric for solution 

requirements or solution assets. Their research has expanded into TIDEE (Transferable 

Integrated Design Engineering Education) Assessment Model (Davis et al., 2009). Key to 

the TIDEE Assessment Model is a set of scoring rubrics that help to give the evaluation 

more meaning and context. For example, an assessment of concept generation processes 

asks team members to rate the team on implementation of the basic steps in the concept 

generation process (Wilson, 1980). Other studies employ methods of protocol analysis, 

where the process of team concept generation and problem solving is described in finely 

grained detail (Zainal Abidin et al., 2009). In one longitudinal study investigating how an 

engineering design course influences how students think about and practice design, 

protocol analysis was used to characterize students’ design thinking (Christopher B 

Williams et al., 2010; C.B. Williams et al., 2011). 

A number of different metrics for assessing design problems have been used to 

evaluate conceptual (non-physical) designs (Bouchard Jr, 1969; Van der Lugt, 2002). 

Shah et al. developed a set of metrics specifically for the evaluation of engineering idea 

generation techniques including quantity, quality, novelty, and variety of ideas (Shah et 

al., 2000; Shah et al., 2003). Quality, as defined by Shah, et al., (Shah et al., 2003) is a 
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measure of a product solution’s feasibility and how well it meets design specifications. 

They note the fact that engineering design concepts must meet a particular need and 

function and thus require an expanded set of measures. For engineering, a unique idea is 

not useful if it is not technically feasible. 

Much of the research concerning design assessment focuses on the processes, 

steps, and learning that occurs throughout the design project. In a review of design 

assessment tools, Moazzen et. al (Moazzen et al., 2013) prescribe three key features 

required of an assessment tool. They state that a ‘good’ assessment tool should be 

systematic, flexible, and efficient. Systematic refers to the consistency and reliability of 

the tool, flexibility refers to the breadth and context in which a tool can be applied, and 

efficiency refers to the time and costs required to perform the assessment.   

 
2.2 Motivation  
 

Humans have basic psychological needs that are critical for growth and 

psychosocial well-being (Ryan et al., 2000); psychological needs are often fulfilled via 

leisure directly (Tinsley et al., 1995) and may serve as mediators between leisure and 

well-being (Gunnell et al., 2013; Leversen et al., 2012; Rodríguez et al., 2008).  

Developmental psychologists have developed numerous theories on how needs germinate 

behavioral motivations (Beard et al., 1983; Maslow, 1982). For example, Self 

Determination Theory (SDT) posits that autonomy, competence, and relatedness fuel 

self- motivation, and acknowledges that motivations may be enhanced or blunted by 

social context (Ryan & Deci, 2000).  Intrinsic motivation stems from rewards gleaned 

from participation in the activity, and is often regarded as “ . . . the prototypic 

manifestation of the human tendency toward learning and creativity . . . “ (Ryan & Deci, 
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2000), and there is empirical backing for the assertion (Amabile et al., 1994).  Others 

have subdivided intrinsic motivation into motivation to know, to accomplish, and to 

experience stimulation (Pelletier et al., 1995; Vallerand et al., 1992; Weissinger et al., 

1995).  Evaluation theory – housed within the broader SDT – takes the position that 

forces external to the individual shape intrinsic motivation by raising or lowering levels 

of perceived competence toward the activity (Deci et al., 1985). 

In contrast, extrinsic motivation focuses on processes apart from participation for 

its own sake.  There are several types of extrinsic motivation under SDT (Ryan & Deci, 

2000): (1) integrated motivation concerns situations when the individual so internalizes 

an activity that it becomes a core part of their self and/or social identity; (2) identified 

motivation occurs when the individual believes participation is in her best interest; (3) 

introjected motivation stems from internalization of obligation; (4) external motivation 

stems from recognition or prizes that might accrue from participation, or conversely, the 

possibility of punishment for nonparticipation.  The motivational terrain is nuanced by 

additional considerations. There is debate as to the extent to which motivations should be 

treated as fairly malleable situational states (Guay et al., 2000; Harter, 1981) or relatively 

stable – though not immutable – psychological traits (Amabile et al., 1994; Manfredo et 

al., 1996), with the latter position holding sway. Although “global” motivations exist, 

researchers have also developed specific motivational inventories toward a wide range of 

activities, such as paid work (Beard & Ragheb, 1983), academics (Vallerand et al., 1992), 

sport (Pelletier et al., 1995)  and leisure (Manfredo et al., 1996; Weissinger & Bandalos, 

1995), and religion (Hoge, 1972). 
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2.3 Leisure 
  

Much of leisure research has centered on why individuals participate in certain 

leisure activities (Dannefer, 1981; Kelly, 1978; Kuehn et al., 2006; Ruddell et al., 2006; 

Zarnowski, 2004), whether they persist or not when faced with constraints (Auster, 2008; 

Barnett, 2006; Brehm, 2013; Bryan, 1977; Carini et al., 2015; Kuentzel et al., 2006; 

Schulte, 2015; Weber et al., 2012), and how leisure may confer a variety of personal and 

social benefits (Brown et al., 2008; Bryan, 1977; Joudrey et al., 2009; Kelly, 1978; 

Lareau, 2002; Palmer et al., 2007; Robert A Stebbins, 2008; Van Ingen et al., 2009; 

Wood et al., 2007).  Sociologists studying leisure have long been interested in leisure-

work nexuses (Rapoport et al., 1974; Veblen, 1899).  Others have emphasized processes 

of socialization that facilitate participation, as well as socialization that occurs through 

leisure itself (Atkinson, 2008; Robert A Stebbins, 2001), i.e., leisure has the potential to 

change our attitudes, preferences, and behaviors via participation (Kleiber et al., 2011; 

Shinew et al., 2004; Son et al., 2007).  Sociologists often focus on the meanings attached 

to leisure and its place in our lives (Cohen, 1984; Conley, 2009; Cunningham, 1961).  

Further, theories on motivation have been used to understand psychological antecedents 

toward leisure involvement in social contexts (Caldwell, 2005; Gage et al., 2012; Stone et 

al., 2008; Witt et al., 1970).  Importantly, leisure motivations often shape the perceived 

quality of leisure outcomes (Lee et al., 2013; Manfredo et al., 1996; Shupe et al., 2016).  

The field of leisure studies, and in particular, the social psychology of leisure, may offer 

key insights into the motivations of contestants in crowdsourced design competitions, 

e.g., how incentives may shape their motivations, the meanings they attach to their 
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participation, and how specific types of leisure motivations/incentives may shape design 

outcomes and maximize learning opportunities    

Although scholars continue to debate the nuances of how leisure should be 

defined, there is broad agreement that, at a minimum, leisure consists of discretionary 

participation in activities expected to result in pleasure and/or satisfaction (Blackshaw, 

2010; Churchill et al., 2007; Gunter et al., 1980; Robinson et al., 2010; R.A. Stebbins, 

2005; Wilson, 1980).  Personal freedom to sample and become more deeply involved 

with a leisure activity may be tempered and constrained by personal, social, 

organizational, and/or cultural factors (Kay et al., 1991; R.A. Stebbins, 2005).  Leisure 

may hold aspects of obligation, yet obligations should not be perceived as overly 

burdensome by participants (Robert A Stebbins, 2000; R.A. Stebbins, 2005).   

 
2.4 Categorizing Leisure 
 

Scholars have made attempts in recent decades to reduce complexity inherent in 

the universe of leisure activities by creating typologies or categorizations (Cottrell et al., 

2005; Kelly, 1983). The Serious Leisure Perspective (SLP) is an especially influential 

theoretical framework wherein individuals orient toward a leisure activity in three ways: 

casual, serious, and project-based forms (Robert A Stebbins, 2007, 2014).  Serious leisure 

is characterized with six distinguishing qualities: (1) perseverance to overcome 

performance obstacles or leisure constraints (McQuarrie et al., 1996); (2) development of 

a “leisure career” in the activity; (3) considerable effort that invokes specialized 

knowledge, training, experience, and/or expertise; (4) accrual of a host of personal and 

social benefits (e.g., self-actualization, self-enrichment, self-expression, regeneration or 

renewal even after intense focus, feelings of accomplishment, improved self-image, 
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social interaction and belongingness, social recognition, products of the activity, 

fulfillment, and financial returns); (5) a unique ethos concomitant with the activity, such 

that values, norms, and symbols are shared to the extent that a “social world” is formed 

(Unruh, 1980); and (6) strong identification with the activity such that it becomes a 

“central life interest” due to strong affective investment (Dubin, 1979).  Stebbins 

identifies three types of serious leisure: amateurs, hobbyists, and volunteers.  

Makers/tinkerer are a subtype within amateurs, who participate in fields that have 

professional counterparts to emulate (Robert A Stebbins, 2007). 

Serious leisure pursuits tend to be goal directed as the individual strives to 

successively improve performance outcomes (R.A. Stebbins, 2005), and competitive 

events serve as a means to assess skill development within a comparative schema (Yoder, 

1997).  It is argued that motivation for serious leisure stems predominantly from the 

intrinsic challenge of the activity (Stebbins 1981), yet strong self-identification with the 

activity as well as seeking prestige and social connection within a social world have 

much in common with integrated and external forms of extrinsic motivation (Ryan & 

Deci, 2000), respectively.  In terms of the benefits of serious leisure, self-enrichment, 

self-gratification, and self-actualization typically rank one through three in importance, 

respectively (Robert A Stebbins, 2007).  Further, psychological flow is more likely to 

occur when individuals pursue serious leisure over casual leisure pursuits (Robert A 

Stebbins, 2007).  Flow can be characterized as a form of temporary self-transcendence in 

that the self – and even one’s sense of time – is submerged during all-encompassing 

absorption in a challenging activity, only to be reappear in an elevated state after the 

activity ceases (Csikszentmihalyi et al., 1992).  Flow results in deeply fulfilling leisure 
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experiences and is sought after as an important reward by serious leisure enthusiasts 

(Csikszentmihalyi & Csikszentmihalyi, 1992).  Although a number of benefits are 

possible in serious leisure, Stebbins (Robert A Stebbins, 2007) cautions against 

confounding the benefits of serious leisure participation with motivations to participate in 

it. 

This paper presents an initial study on how motivation of individuals with respect 

to serious leisure affects the quality of their resulting designs.  The overarching 

hypothesis of this research is that, with respect to serious leisure, highly motivated 

individuals and teams produce better quality designs when compared with designers 

whom possess lower levels of motivation. The next section will outline methods used to 

collect and analyze data. The following sections will outline results of the study, discuss 

the results, and outline potential future work.  

 
3. METHODOLOGY  
 

Data for this study stems from a senior level capstone design course in a 

mechanical engineering and takes the form of design quality and motivational inventory 

surveys. Capstone projects have four distinct milestones in which physical artifacts are 

presented; proof of concept one (POC 1), proof of concept two (POC 2), alpha prototype 

(ALPHA), and beta prototype (BETA).  POC 1 and 2 are considered early stage designs 

and often great changes are seen between these iterations.  Greater changes in early stage 

design are seen because teams are considering how to maximize design potential to meet 

customer needs while working within project constraints.  The purpose of milestone 

presentations are to assess “how well” the project meets the customer needs.  To evaluate 

quality in the early stages of design, specifically POC 1 and POC 2, the professor and 
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students rated presentation of designs on three parameters; progress, value, and style.  

Some factors of the proposed Design Quality Survey (Figure 1) do not apply to early 

stage designs therefore; the survey was not utilized for POC 1 and 2.  Quality 

measurements at POC 1 and 2 were averaged to form a single measurement of early stage 

design quality for each project.   

Data was collected over two consecutive semesters and as this paper concluded 

before the second semester ended, quality data for ALPHA and BETA milestones are not 

considered for the second semester.   ALPHA/BETA quality measurements were 

analyzed for the first semester only, effectively reducing the sample size from 59 to 27.  

After early stage design phases, quality was measured by a group of engineering faculty 

and industry representatives utilizing the proposed design quality survey (Figure 1) which 

scrutinizes factors such as customer satisfaction, manufacturability, and product fit and 

finish. No orientation or training was provided to evaluators for rubric use as the rubric 

utilized precise language and instructions.  The goal was to demonstrate that the proposed 

rubric could be utilized without training to objectively evaluate quality. 
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FIGURE 1: PROPOSED DESIGN QUALITY SURVEY. 

 

Motivational factors were measured using the Serious Leisure Inventory and 

Measure (SLIM), a 9 point Likert style questionnaire.  Broadly, the SLIM questionnaire 

reveals an individual’s motivation with respect to serious leisure.  Motivational categories 

consist of personal and group motivators which can be broken down in to 18 sub-sets.  

Original Customer Needs Statement:
Ranking 

(0-5) Instructions:
1. CN 1 Statement CN-R1
2. CN 2 Statement CN-R2
... ...
n. CN n Statement CN-Rn

Average:
Avg(CN-

R1:CN-Rn)

Major/Critical Components
Ranking

(0-5) Instructions:
1. Component 1 M-R1
2. Component 2 M-R2
... ...
n. CN n Statement M-Rn

Average:
Avg(M-

R1:M-Rn)

Maintenance/Serviceability:
Ranking 

(0-5) Instructions:
Overall product servicability S

Fit and Finish:
Ranking 

(0-5) Instructions:
Overall product fit and finish F

out of 20 points possible
Overall Design Quality:

Customer Needs Assessment:

Manufacturability:

Design Quality Survey

0 - Product is poorly constructed and is not  
appealing, 3 - Product is moderately  
constructed and somewhat appealing, 5 -  
Product is constructed well and is very  
appealing

0 - Product must be fully redesigned to  
allow serviceability, 3 - Product requires  
some modification for serviceability, 5 -  
Product requires no modification to allow  
for serviceability

Avg(Avg(CN-R1:CN-Rn),Avg(M-R1:M-Rn),S,F)

0 - Need not addressed, 1 - Need addressed  
poorly, 2 - Need somewhat addressed, 3 -  
Need moderately addressed, 4 - Need  
mostly addressed, 5 - Need fully satisfied

0 - Component must be fully redesigned to  
be manufacturable, 3 - Component  
requires some redesign to be  
manufacturable, 5 - Component is ready 
for  manufacture
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Personal motivators account for 14 of the 18 sub-sets while group motivators account for 

the remaining four.  Personal motivators indicate an individual’s motivation for personal 

reasons, while group motivators indicate an individual’s motivation for group reasons.  

Some personal motivators include effort, financial return, self-image, and personal 

enrichment.  Group motivators include unique ethos, group maintenance, group 

accomplishment, and group attraction.  A complete table of motivation qualities and 

descriptions can be seen in Table I on the next page.  In a study involving both a 

convenience sample of university students in leisure education classes and a purposive 

sample of adventure racers, trail runners, and paddle sports participants, confirmatory 

factor analysis of the SLIM short form demonstrated excellent model fit (RMSEA=0.04 

and CFI=0.95) (Gould et al., 2008).  Overall, the instrument displayed acceptable 

convergent validity (factor loadings above 0.707 for all but five items and average 

variance explained in indicators by each of the 18 sub-scales generally exceeded 50 

percent) and discriminant validity (factor correlations constrained to unity exhibited 

significant differences in model chi-squares).  For the present study, Cronbach's alphas 

were 0.978, 0.969, and 0.945 for the serious leisure summative index, personal, and 

group motivation indexes, respectively, for those who participated in design as leisure.  

For the 18 sub-scales, internal consistencies ranged from 0.699 (self- actualization) to 

0.954 (self-image).  The SLIM survey was administered early in the semester before 

quality measurements were assessed and as such, motivation was considered an 

independent variable, with quality a potential depended variable.   
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TABLE I  

MOTIVATION QUALITIES AND DESCRIPTIONS. 

 Motivator Description 
Pe

rs
on

al
 

Effort Willingness to exert considerable effort and practice to 
become more competent in design-related leisure.  

Financial Return Financial compensation or monetary benefits drive 
participation in design-related leisure. 

Career 
Contingencies 

Certain defining moments and events have influenced and 
shaped involvement in design-related leisure.  

Self-Image Design-related leisure has enhanced and improved individual 
self-image. 

Identity Devotion to, and identification with, design-related leisure 
defines an individual’s identity.  

Perseverance Persistence in overcoming obstacles and adversity in design-
related leisure.  

Self-Actualization Personal potential is realized when utilizing talents for 
design-related leisure.  

Self-Gratification - 
Satisfaction 

Design-related leisure is intensely gratifying and provides a 
profound sense of satisfaction.  

Self-Gratification - 
Enjoyment 

Design-related leisure is enjoyable and fun.  

Re-creation A feeling of renewal, revitalization, and invigoration follow 
design-related leisure participation.  

Career Progress Improvements and progression have been realized since 
beginning design-related leisure. 

Self-expression of 
Individuality 

Expression of individuality is realized through design-related 
leisure.  

Self-expression of 
Abilities 

Design-related leisure is a way to display and demonstrate 
skills and abilities. 

Personal Enrichment Design-related leisure experiences have led to personal 
enrichment.  

G
ro

up
 

Unique Ethos Sentiments and ideals are shared among design-related 
leisure group individuals. 

Group Maintenance Development and unification of design-related leisure group 
is of high importance.  

Group 
Accomplishments 

A sense of group accomplishment is important to 
participation in design-related leisure.  

Group Attraction Affinity to seek, interact, and associate with other individuals 
who are devoted to design-related leisure.  

 
Three variations of analyzing the data were considered.  First, on an overall 

summative basis, an individual’s survey score was totaled.  Each question was worded 
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such that a high scoring answer (selection of 9) indicated the individual was highly 

motivated with respect to that question.  This study refers to the first variation of analysis 

as the major summative score.  The maximum major summative score is 495.  Second, 

personal and group motivation was considered.  Personal motivation is comprised of 14 

individual motivators where group motivation is comprised of four individual motivators.  

This study refers to the second variation of analysis as personal and group scores.  

Maximum scores of 414 and 81 are possible for personal and group motivation, 

respectively.  Lastly, each motivator was considered individually.  Since each motivator 

score is defined by three survey question answers, a maximum total score for each 

motivator is 27 (selection of 9 all 3 times).  This study refers to the 18 sub-set motivators 

on an individual basis, which can be seen in Table I on the previous page.  

 
4. RESULTS AND DISCUSSION 
 

Results and discussion of the results are presented in this section.  

 

4.1 Quality and Motivation Scores 
 

All quality measurements were designed to have a maximum of 20 points.  For 

semester 1 and 2, POC average design quality ranged from 14.1 to 19.1 as can be seen in 

Table II on the next page.  Using the proposed Design Quality Survey, ALPHA/BETA 

average quality ranged from 13.9 to 17.8. With respect to POC 1 and 2, the average 

quality score for semester 1 and 2 was 16.91 with a standard deviation of 1.45.  With 

respect to ALPHA/BETA, the average quality score for semester 1 was 15.88 with a 

standard deviation of 1.31.  Pearson correlations were computed on the design quality 

survey responses as a form of interrater reliability and ranged from 0.51 to 0.88, 
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indicating moderate agreeability. Considering the diverse backgrounds and experience 

level of evaluators, and that there was no training provided, the Pearson correlations are 

considered relatively strong. 

TABLE II  

AVERAGE QUALITY SCORES BY SEMESTER AND DESIGN PHASE. 

  Team 
Average 

POC 
Average 

ALPHA/BETA 

Se
m

es
te

r 1
 

1 17.11 13.95 
2 15.42 16.23 
3 18.11 16.93 
4 17.08 16.23 
5 18.67 17.85 
6 16.92 15.31 
7 18.89 13.95 

Se
m

es
te

r 2
 

8 16.00 

 

9 15.12 
10 16.15 
11 19.07 
12 19.00 
13 16.60 
14 17.98 
15 15.90 
16 16.33 
17 15.76 
18 14.17 

 
 

With respect to motivation scores, a maximum major summative score of 481 and 

minimum score 145 were seen over semesters 1 and 2.  Personal motivational scores 

ranged from 124 to 364, where group motivational score ranged from 6 to 107.  The 18 

sub-set motivational indicator scores ranged from 1 to 27.  Regression analysis, 

performed in Minitab 17.2.1, indicated that of the three methods of analysis (major 
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summative, personal-oriented, and group oriented) only personal-oriented motivation was 

statistically significant (P = 0.020) to design quality outcomes.  Incomplete data was 

ignored in the analysis, reducing sample size from 72 to 60 observations.  The 

relationship between design quality and personal-oriented motivation was negative with 

an adjusted R2 of 0.252.  

 
4.2 Quality and Motivation Intersection Trends  
 

Only motivation scores that were deemed statistically significant from regression 

analysis results will be presented graphically.  No trends were seen utilizing the major 

summative or group-oriented motivational scores.  Figure 2 depicts design quality in an 

increasing manner from left to right on the secondary vertical y-axis while person-

oriented motivation scores and their associated standard deviation error bars are plotted 

on the primary y-axis.  Average personal-oriented motivation was negatively correlated 

with design quality indicating that teams consisting of individuals who are less personally 

motivated produce higher quality designs.  A possible social explanation of this 

phenomenon, is that teams who reported lower levels of personal-oriented motivation 

toward design as a serious leisure activity, were individuals motivated by group activities.  

Though analysis of group-oriented motivation was not statistically significant (P = 0.294) 

to design quality, with a larger sample of data this could change.  As this study was of 

preliminary data, findings for personal-oriented motivation were considered respectable.  
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FIGURE 2: TEAM AVERAGE  PERSONAL-ORIENTED MOTIVATION, DESIGN 

QUALITY SCORES, AND STANDARD DEVIATION ERROR BARS. 

  
 

Though found to be statistically insignificant in regression analysis, group-oriented 

motivation displayed unique trends.  Again, keeping quality on the secondary y-axis in 

increasing order, Figure 3 indicates standard deviation by team, for group-oriented 

motivation, decreases as design quality increases.  This finding suggest that teams 

comprised of individuals whom have similar group-oriented motivation scores, tend to 

produce better quality designs.   As decreased team variability leads to higher levels of 

group cohesion, a lower emphasis of individually-achieved outcomes could be realized 

by design groups as a whole.   
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FIGURE 3: GROUP-ORIENTED MOTIVATION STANDARD DEVIATION BY 

TEAM. 

 
 

Utilizing the SLIM survey scores in a major summative manner produced no 

insight with respect to design quality.  Of the 18 sub-set motivators non were found to be 

significant with a 95% confidence level.  Personal-oriented motivation was found to be 

statistically significant and negatively correlated with design quality outcomes. As group-

oriented motivation standard deviation decreased by team, design quality increased, 

indicating teams with greater and similar group-oriented motivation qualities produce 

better quality designs.  As teams were comprised of three to five individual members and 

motivational survey participation was voluntary, some teams reported incomplete data.  

Reasonable Pearson correlations provided preliminary validity to the proposed design 

quality survey.  Findings in this study indicate that teams largely motivated by group 

aspects or conversely demotivated by personal aspects, tend to realize better design 

quality outcomes.  The information in this study could be of particular interest to 

engineering educators, sociologist, or team managers as a means to leverage design 

quality outcomes in a team based environment.   
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5. FUTURE WORK 
 

 As this study works with preliminary data findings, sample size is of concern for 

statistical validity.  However, this study does indicate observed trends in the preliminary 

data, which can be further analyzed in subsequent studies containing greater sample sizes.  

The researchers aim to utilize the observed trends in the preliminary data with subsequent 

studies.  The researchers intend to continue utilization of the design quality survey in 

subsequent semesters and increase sample size to substantiate statistical validity of the 

survey.  
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CONCLUSION 
 

While the first paper revealed complexity to be a highly nuanced subject, the 

second paper uncovered a relationship between personal motivation and design quality.    

Jacob’s Generalized Complexity Index adequately represented complexity in supply-

chain designs however, when applying the measurement method to a diverse product 

dataset, nonsensical results were observed.  A sociological motivation survey provided 

valuable insight to personal motivations toward the design process.  Specifically, that 

design teams composed of individuals who exhibit high personally-oriented motivation, 

tended to realize lower quality designs.  Alternatively, design teams composed of 

individuals with similar and high group-oriented motivations, tended to realize higher 

quality designs.  This study reported on findings with respect to a low sample size 

preliminary dataset.  Upon additional data collection, the observed trends of this study are 

expected to remain largely unchanged for a larger sample size.  Though it is evident that 

a great deal of work is needed in order to define and measure product complexity at both 

pre and post design stages, the preliminary findings suggest the interaction of complexity, 

motivation, and design quality is nontrivial.  With respect to complexity, future 

enhancements of this study would include framing complexity in a categorical versus a 

generalized method.  Comparing products or systems of a similar category may produce 

meaningful complexity results.  This study brought to light a preliminary understanding 

of the relationships between complexity, motivation, and design quality.   It is crucial that 

scientists, educators, and managers understand the influential and impactful factors in a 

group oriented design environment to achieve project success.  This study brings together 

two fields of study that are seldom-conjoined, resulting in a mix of novel insights and 
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research products. While complexity, motivation, and design quality have been explored 

individually, interconnections between these variables have rarely – if ever – been 

explored in combination.  There is great significance in knowing how complexity and 

motivation effect design quality.  In both academia and industry, complexity, motivation, 

and quality are factors that can be used to manage design expectations, assemble effective 

design teams, and predict design success.     
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