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ABSTRACT 

A POSSIBLE ROLE FOR sPLA2 IN OLIGODENDROCYTE DEATH AND SPINAL 

CORD INJURY 

William Lee Titsworth 

July 10, 2008 

Spinal cord injury (SCI) can be divided into two distinct stages, an initial 

mechanical impact and a later “secondary injury” resulting from a cascade of cytokines 

triggering a spreading demyelination and apoptosis of neurons and glia within the spinal 

cord.  It is believed that blockade of this “secondary injury” could improve functional and 

histological recovery following SCI.  Here we propose that sPLA2 might be one of the 

crucial mediators of the secondary injury.  To test this possibility we first elucidated that 

the mRNA and protein of several isozymes of sPLA2 are present in the rodent spinal cord 

and that the group II enzymes are upregulated following SCI with a peak expression at 4 

hours.  Next, we showed that injuring differentiated cultures of oligodendrocyte precursor 

cells with H2O2 or TNFα and IL-1β induces sPLA2 expression and pharmacological 

inhibition with a sPLA2 inhibitor, S3319, creates partial reversal of this injury.  We 

further showed that a nanogram injection of sPLA2 into the naïve dorsolateral funiculus 

of the cervical spinal cord is sufficient to produce demyelination, axonopathy, and glial 

death as well as a dose dependent loss of function as measured by pellet retrieval.  Finally 

we showed that inhibition of sPLA2 by either i.p. injections of S3319 or a frame shift 
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mutation in the sPLA2-IIA gene creates functional improvements in overground 

locomotion and bladder function.  The functional recovery correlates well with increased 

white matter sparing and oligodendrocyte numbers within in the spinal cord, increased 

axon numbers at the lesion epicenter, and decreased inflammation and lesion cavity 

volume.   These findings suggest that sPLA2 may play an important role in secondary SCI 

and that its blockade could facilitate recovery following SCI. 
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CHAPTER I 

INTRODUCTION 

SCI: The Human Cost 

Modern advances in treatment for spinal cord injury (SCI) have resulted in the 

saving of lives but with only limited gains in function.  This in turn has contributed to an 

increasing societal cost.  The National Spinal Cord Injury Statistical Center at the 

University of Alabama in Birmingham estimated in the 1970’s that there were 12,000 

new cases of spinal cord injury (SCI) each year.  Data from 2007 indicates that between 

230,000 and 300,000 people are currently living with a SCI.  In 2005, the average length 

of stay in a hospital was 15 days following a SCI with an additional 36 days in a rehab 

unit.  The average yearly health care and living expenses for a 25 year old patient with 

high tetraplegia is $775,567 with an estimated direct lifetime cost of $3,059,184  

(NSCISC, 2008). 

Many of the current theories involving spinal cord injury (SCI) divide the process 

into two stages, an initial mechanical damage to the cord tissue followed by a cascade of 

“secondary injury.”  The secondary injury is thought to be an immune response to 

damaged tissue that in turn leads to widespread neuronal and glial cell death as well as 

demyelination (McTigue et al., 2001, Cao et al., 2005, Totoiu and Keirstead, 2005).  

Notably, oligodendrocytes are particularly sensitive to apoptosis during secondary injury, 

which results in a loss of myelin around surviving axons peripheral to the lesion epicenter 
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(Blight, 1985, Crowe et al., 1997, Totoiu and Keirstead, 2005).  By seven days post 

injury, 93% of the oligodendrocytes at the impact site are lost (McTigue et al., 2001).  

Since only accident prevention can attenuate the initial mechanical damage from SCI, it 

is hypothesized that therapeutic manipulation of the inflammatory “secondary injury” 

could result in increased oligodendrocyte survival after neurotrauma and that this 

represents a viable approach to restore functional conduction of intact but demyelinated 

axons (Jones et al., 2005b).   

Therefore, much of the current work in SCI has revolved around muting the 

inflammatory response.  Examples of this work include blockade of the TNFα receptor 

(Demjen et al., 2004), injection of the anti-inflammatory antibiotic minocycline (Wells et 

al., 2003), the systemic depletion of macrophages (Popovich et al., 1999) and neutrophils 

(Taoka et al., 1997), use of immunosuppressant pharmaceuticals such as cyclosporine A 

(Rabchevsky et al., 2001).  However, the complex role of inflammation suggests that 

other inflammatory mediators could be present following SCI and their blockade could 

result in therapeutic interventions, possibly even a multi-modal approach.  Therefore we 

have suggested that phospholipases A2, an immerging class of proinflammatory 

molecules, might play a role in secondary SCI. 

Phospholipases A2 (EC 3.1.1.4) are enzymes that catalyze the hydrolysis of the 

sn-2 position of membrane glycerophospholipids, leading to the production of free fatty 

acids and lysophospholipids.  These enzymes are of particular interest since free fatty 

acids can be converted to bioactive eicosanoids via the cyclooxygenase pathway leading 

to increased inflammation.  Additionally, the other reaction product, lysophospholipids, 

such as lysophosphatidic acid and lysophosphatidylcholine (LPC), are also bioactive 
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(Lauber et al., 2003) and can be converted into platelet-activating factor (PAF).  Since 

lipids compose a disproportionately large amount of the CNS and phospholipids 

constitute 44% of myelin (Morell, 1984), understanding the role of phospholipases in 

CNS disorders becomes a major priority.    

To date, more than 27 mammalian isoforms of PLA2 have been found which can 

be classified into four major categories: secretory PLA2 (sPLA2), cytosolic PLA2 

(cPLA2), Ca2+-independent PLA2 (iPLA2), and PAF acetylhydrolases (PAF-AH) 

(Murakami et al., 1997, Murakami and Kudo, 2001, Kudo and Murakami, 2002, 

Schaloske and Dennis, 2006).  See Fig. 1.   
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Figure 1. Classification of the Mammalian PLA2 Isoforms. 

 The top panel shows a branching diagram indicating the relative subdivisions of 

the PLA2 subfamily and their years of discovery.  The mammalian PLA2 family of 

enzymes is grossly divided into the sPLA2, cPLA2, iPLA2, and PAF-AH.  The sPLA2 

subfamily is further divided into groups IB, group II and V, group X, and group III and 

XII based on structural and functional differences presented in the table below. HSPG: 

heparin sulfate proteoglycans 
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Our previous work demonstrated that both total PLA2 activity and cPLA2α 

(PLA2-IVα)  protein expression increased following SCI (Liu et al., 2006).  However, 

total PLA2 activity peaked at 4 hr while cPLA2α (PLA2-IVα) protein did not significantly 

increase until 7 days post injury.  This paradox suggests that another isoform of PLA2 

might be responsible for the increase in total phospholipases activity after SCI.  For this 

reason we chose to investigate the role that the various sPLA2 isoforms might play 

following SCI. 

The 11 mammalian isozymes in the sPLA2 subfamily all have a low molecular 

mass of about 14-18 kD, require the presence of submillimolar to millimolar 

concentrations of Ca2+ for effective hydrolysis of a substrate phospholipid, and lack fatty 

acid selectivity (Dennis, 1994, Kudo and Murakami, 2002, Schaloske and Dennis, 2006).  

The functions of sPLA2s are far reaching, including digestion, exocytosis (Matsuzawa et 

al., 1996), and anticoagulation (Kini and Evans, 1987). However, sPLA2s most prominent 

role is in inflammation following pathological conditions such as infections (Laine et al., 

1996, Weinrauch et al., 1996, Laine et al., 2000), ischemia (Lauritzen et al., 1994), 

atherosclerosis (Ivandic et al., 1999, Leitinger et al., 1999, Tietge et al., 2000), and cancer 

(MacPhee et al., 1995, Cormier et al., 1997, Morioka et al., 2000a, Takaku et al., 2000).  

 

Role in General Inflammation 

sPLA2 has had an established role in inflammation and inflammatory diseases for 

some time (Nevalainen et al., 2000).  The blockade of PLA2 holds a particular interest for 

pharmacologists since inhibition of sPLA2 would in theory prevent the formation of 

inflammatory eicosanoids prior to the cyclooxygenase (COX; EC 1.14.99.1) reaction.  In 
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fact, PLA2 is the rate limiting precursor in arachidonic acid (AA) production (Schaefers 

et al., 1996).  Therefore its blockade should eliminate the need for COX-1 versus COX-2 

specificity in anti-inflammatory therapeutics.  This theory has spurred the development of 

a large number of sPLA2 inhibitors that unfortunately, have not produced the desired 

clinical efficacy to date (Reid, 2005).   

sPLA2s have been linked to many inflammatory diseases.  sPLA2 activity is 

elevated in several body fluids of patients with acute pancreatitis (Makela et al., 1990).  

Synovial fluid from arthritic joints of rheumatic patients contains sPLA2-IIA (Kramer et 

al., 1989, Seilhamer et al., 1989).  Total PLA2 activity and sPLA2-IIA protein is enhanced 

in bronchoalveolar lavage fluids from patients with adult respiratory distress syndrome 

(Kim et al., 1995).  Increased levels of sPLA2-IIA were seen in the skin of patients with 

psoriasis (Andersen et al., 1994).  Increased group II, PLA2 expression was found in 

colonic mucosa of patients with Crohn’s Disease and ulcerative colitis (Minami et al., 

1994) and experimental models of ischemic bowel disease in rodents (Otamiri et al., 

1988, Fabia et al., 1993). Additionally, serum levels of sPLA2, particularly group IIA, 

increase in patients with sepsis (Green et al., 1991, Keuter et al., 1995) and injuries (Uhl 

et al., 1990, Nevalainen et al., 2000), and following many types of surgeries such as 

cardiac surgery (Gronroos et al., 1995), aortobifemoral reconstruction (Gronroos et al., 

1995), and splenectomy (Laine et al., 1996).  Levels of serum sPLA2-IIA correlate with 

C-reactive protein in several disease states, supporting the notion that sPLA2-IIA is an 

acute phase protein (Crowl et al., 1991).  Some suggest that elevations in serum levels of 

sPLA2-IB are a specific marker of pancreatic damage whereas elevation in sPLA2-IIA are 

a more general marker of inflammation (Nevalainen et al., 2000). 
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sPLA2 has been either found in or produced by various inflammatory cells 

including platelets (Horigome et al., 1987), mast cells (Murakami et al., 1992), fibroblasts 

(Shinohara et al., 1992), macrophages (Wightman et al., 1981, Hidi et al., 1993) and 

neutrophils (Kim et al., 2001).  Macrophages isolated from peritoneal exudates of mice 

and rabbits secrete PLA2 (Wightman et al., 1981).  Additionally, sPLA2-IIA is 

constitutively expressed in immune tissues, such as the spleen, thymus, tonsils, and bone 

marrow (Kramer et al., 1989, Seilhamer et al., 1989).  Proinflammatory cytokines such as 

interferon gamma (IFN-γ), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor 

necrosis factor-α (TNF-α) can induce its production in a variety of cell types such as 

human arterial smooth muscle cells, HepG2,  HEK293, and BRL-3A in culture  (Suga et 

al., 1993, Kuwata et al., 1998, Peilot et al., 2000).  Interestingly the AA release from cells 

treated with IIA, IID, IIE and V were found to be dependent on IL-1, while treatment 

with group X released AA irrespective of IL-1 (Kudo and Murakami, 2002).  More 

relevant to the CNS, TNFα, IL-1, and lipopolysaccharide (LPS) were shown to induce 

sPLA2-IIA production in cultured astrocytes and direct injection of LPS into brain 

increased IIA mRNA (Oka and Arita, 1991).  Similarly LPS injections have been shown 

to increase sPLA2-IIE production (Murakami et al., 2002b).  Consistent with its inducible 

nature, the promoter region of sPLA2-IIA gene contains TATA and CAAT boxes as well 

as several elements homologous with consensus sequences for binding of transcription 

factors such as AP-1, C/EBPs, CREB, NF-κB, STAT, and PPARγ (Crowl et al., 1991, 

Couturier et al., 1999).  Finally, sPLA2 induction can be blocked by anti-inflammatory 

cytokines, such as platelet-derived growth factor, transforming growth factor β,  and IL-
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10 as well as glucocorticoids (Muhl et al., 1991, Schalkwijk et al., 1992, Touqui and 

Alaoui-El-Azher, 2001).  

 

Classification, Structure, and Properties of sPLA2 

 Eleven mammalian sPLA2s exist which are further divided into groups I, II, III, 

V, X, XII, and XIII (Fig. 1).  All sPLA2s are structurally related, and generally are 14-17 

kD secreted enzymes, with six absolutely conserved disulfide bonds, which contribute to 

the high degree of stability of these enzymes.  The enzymes do not have strict fatty acid 

specificity, unlike cPLA2, but instead tend to act on anionic phospholipids in the presence 

of high concentrations of Ca2+.  The central, core protein consists of a highly conserved 

Ca2+-binding loop (XCGXGG) and a catalytic site (DXCCXXHD) (Kudo and Murakami, 

2002).  Group differentiations are then made based on the presence or absence of up to 

two additional unique disulfide bonds, the presence or absence of an N- or C-terminal 

extension, and alterations in the conserved catalytic site.    

 

Intracellular Handling 

The site of sPLA2 activity has been a point of exhaustive study in recent years.  

While all sPLA2 isoforms are capable of secretion by definition, recent work has 

indicated that some heterogeneity exists among their site of activity (Bezzine et al., 

2000).  Recent studies in CHO and HEK293 cell lines that were stably transfected with 

human groups IIA and X have shed light on this subject.  Following stimulation by fetal 

bovine serum and IL-1β, both sPLA2-IIA and X are transcribed within the cell nucleus 

and synthesized in the endoplasmic reticulum prior to packaging in the Golgi apparatus 
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(Mounier et al., 2004).  See Fig. 2. This post synthesis packaging most likely results in 

the perinuclear puncta observed after stimulation, an observation which was previously 

ascribed to invagination of heparin sulfate proteoglycans (HSPG)-bound sPLA2, a 

process described later.  It is within the Golgi apparatus and later microvesicles, prior to 

initial secretion, that sPLA2-IIA is primarily active (Bezzine et al., 2000).  The reason for 

this is that most group II sPLA2s as well as sPLA2-IB show a marked preference for 

anionic phospholipids, such as phosphatidylglycerol, phosphatidylethanolamine  and 

phosphatidylserine, which are generally segregated to the inner leaflet of plasma 

membranes (Porcellati, 1983).  In contrast, sPLA2-V and X can hydrolyze both anionic 

phospholipids and charged-neutral phosphatidylcholines.  These difference in 

phospholipid preference results in secreted groups I and II having decreased abilities to 

act on the outer layer of plasma membranes (Bezzine et al., 2000, Murakami and Kudo, 

2001).  Once secreted, sPLA2 isoforms can then 1) metabolize the external plasma 

membrane, 2) bind to the sPLA2 receptor (sPLA2-R), or 3) be internalized by the HSPG 

shuttle.  Again, each of these actions is governed by isoform and species specificity, (see 

Fig. 2).  
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Figure 2. Intracellular Handling and sPLA2 Activity 

 Following stimulation by various cytokines [1], sPLA2 is synthesized in the 

nucleus [2] and endoplasmic reticulum prior to packaging for secretion in the Golgi 

apparatus [3].  It is within the Golgi apparatus and later micro vesicles that certain 

isoforms, particularly IIA, are predominantly active.  Following secretion [4], sPLA2 can 

metabolize the extracellular lipid membrane directly, bind to the sPLA2 receptor (sPLA2-

R), and/or be endocytosed via the heparin sulfate proteoglycan shuttle (HSPG shuttle).  

Of course, each of these actions is governed by species and isoform specificity.  The inset 

shows the general metabolism of phospholipids by sPLA2.  sPLA2 first hydrolyzes the 

acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids (such as 

arachidonic acid) and lysophospholipid (Lyso-PL).  Arachidonic acid can then be further 

modified by COX to form prostaglandins, lipoxygenase to form leukotrienes, or 

cytochrome P450 to form epoxides.  Prostaglandins can be further modified to form 

thromboxanes.  These eicosanoids have metabolic activities including proinflammatory 

and vasoconstrictive functions.   
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HSPG Shuttling 

Some of the group II subfamily of sPLA2s, including IIA, IID, and V are highly 

cationic and bind tightly to anionic heparinoids such as heparin and heparin sulfate 

(Murakami et al., 1996, Murakami et al., 1998)  (See Fig. 2).  Since cell surfaces are 

usually rich in heparin sulfate proteoglycans (HSPG), significant portions of these 

sPLA2s are membrane-bound rather than being secreted into the culture media 

(Murakami et al., 1999b, Murakami et al., 2001).  Other sPLA2s (IB, IIC, and X) with 

neutral to acidic pHs show no, or very low, heparinoid affinity and are secreted into the 

medium.  Some authors suggest that this binding facilitates phospholipid digestion since 

treatment of stably transfected cells with heparinase, exogenous heparin, and GPI-

specific phospholipase C, (Murakami et al., 1993, Suga et al., 1993, Kuwata et al., 1998, 

Murakami et al., 1999a) or mutation of the heparin binding domain in sPLA2-IIA 

(Murakami et al., 1996, Murakami et al., 1998, Murakami et al., 2001) markedly 

attenuates sPLA2-IIA-mediated prostaglandin generation.  In contrast, one recent study 

found that treatment of cells with heparin had little or no effect on sPLA2-IIA activity 

(Mounier et al., 2004).  Also of note, HSPG has been shown to increase following 

cerebral stab injury with an implicated role in storage, nuclear trafficking, and cell-

specific injury responses in CNS wounds (Leadbeater et al., 2006).  The closely related 

chondroitin sulfate proteoglycans are also greatly expressed following SCI (Tang et al., 

2003, Chau et al., 2004). 

 

Receptor Binding Domain 
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  In addition to its enzymatic function, some sPLA2s mediate their biological 

function through a membrane receptor.  Two sPLA2 receptors have been identified to 

date, the M-type (Hanasaki and Arita, 1992b, Ishizaki et al., 1994, Lambeau et al., 1994) 

and the N-type (Lambeau and Lazdunski, 1999), named for their discovery in muscle and 

neural tissue respectively.  However, mammalian sPLA2s only bind to the M-type which 

was later discovered to be relatively widespread and not merely confined to muscle 

(Hanasaki and Arita, 1999).  Since only the M-type has the ability to initiate an 

intracellular signal we will restrict our discussion to its properties and further refer to it as 

sPLA2-R.  The receptor is a type 1 transmembrane glycoprotein with a molecular mass of 

180-220 kDa and is a member of the C-type animal lectin family (subgroup VI) (Ohara et 

al., 1995).  The intracellular region consists of approximately 40 amino acids and 

contains both a consensus sequence for casein-kinase II phosphorylation (Ancian et al., 

1995) and a consensus sequence for coated-pit-mediated endocytosis (Ohara et al., 1995).  

Accordingly, the receptor undergoes internalization after sPLA2 binding (Hanasaki and 

Arita, 1992a).  Interestingly the isozymes of sPLA2 show varying affinities for the 

sPLA2-R in different species.  For example, the rabbit sPLA2-R is very promiscuous, 

binding to almost all sPLA2 tested to date.  The mouse sPLA2-R on the other hand binds 

only IB, IIA, and X, while the rat sPLA2-R only binds sPLA2-IB (Cupillard et al., 1999), 

(See Fig. 1). Likewise sPLA2-IIA does not seem to bind to the sPLA2-R in humans 

(Cupillard et al., 1999).  In general, sPLA2-IB and X appear to be the predominant ligand 

of this receptor (Morioka et al., 2000b) and most of the research has therefore focused on 

their effects (Ancian et al., 1995, Hernandez et al., 1998, Fonteh et al., 2000).  This 

specificity suggests that the biological function of sPLA2-R could vary wildly among 
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species.  However, the generalized functions of the sPLA2-R are far reaching including 

cell growth (Arita et al., 1991), proliferation (Kinoshita et al., 1997), and migration 

(Kanemasa et al., 1992).  It has also been suggested that sPLA2-R functions in the 

clearance of extracellular sPLA2s to protect against enzymatic over activity, particularly 

sPLA2-X which has potent activity against the extracellular membrane, unlike IB and IIA 

as stated above (Lambeau and Lazdunski, 1999, Yokota et al., 2001).  Additionally, 

sPLA2-R knockout mice have significantly reduced levels of TNFα and IL-1β after 

systemic LPS administration suggesting an inflammatory role (Hanasaki et al., 1997).  

For an excellent review on the role of the sPLA2-R in sPLA2 function, please see 

(Lambeau and Lazdunski, 1999, Hanasaki and Arita, 2002).   

 

Group I –  

 

sPLA2-IB was the first sPLA2 to be discovered and is predominantly present in 

pancreatic juices (Seilhamer et al., 1986).  sPLA2-IB lacks a C-terminal extension and is 

secreted as a catalytically inactive propeptide that is later proteolytically cleaved (Verheij 

et al., 1981).  Group IB has a unique five amino acid extension termed the pancreatic 

loop in the middle of the molecule as well as a group specific disulfide bond between 

Cys11 and Cys77 (Verheij et al., 1981, Seilhamer et al., 1986).   sPLA2-IB is almost 

exclusively secreted into the medium of transfected cells (Kudo and Murakami, 2002).  

Interestingly, sPLA2-IB shows low affinity for both heparinoids and phosphatidylcholine 

(PC) on the external membrane leaflet.  Subsequently, it was discovered that sPLA2-IB 
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can only release AA indirectly through the M-type sPLA2 receptor-dependent pathway 

via cPLA2α activation (Ancian et al., 1995, Hernandez et al., 1998, Fonteh et al., 2000).  

 

Groups II and V –  

The second member of the sPLA2 family, later named group IIA, was first cloned 

in 1989 (Komada et al., 1989) and is constitutively expressed in immune tissues, such as 

the spleen, thymus, tonsils and bone marrow (Kramer et al., 1989, Seilhamer et al., 1989) 

as well as the digestive system of some mouse strains (Kennedy et al., 1995).  sPLA2-IIA 

(Komada et al., 1989, Kramer et al., 1989, Seilhamer et al., 1989), IID (Ishizaki et al., 

1999, Valentin et al., 1999), and IIE (Suzuki et al., 2000, Valentin et al., 2000a) are the 

archetypical group II enzymes.  Typically, the enzymes have a C-terminal extension and 

a disulfide bond linking Cys50 with a Cys in the C-terminus.  IIC (Chen et al., 1994) and 

IIF (Valentin et al., 2000b) have minor variations in amino acids and disulfide structure.  

Similar to IIA, sPLA2-IIE is constitutively expressed in human lung and mouse uterus, 

brain, heart, liver and testis at low levels (Valentin et al., 1999, Suzuki et al., 2000, 

Murakami et al., 2002b).  However, LPS has been shown to induce IIE expression in 

macrophages, suggesting an inflammatory role as well (Suzuki et al., 2000).  sPLA2-IIF 

is highly expressed in the mouse embryo, suggesting a roll in development and it is 

upregulated by LPS as with other group II enzymes (Valentin et al., 1999, Murakami et 

al., 2002a).  Finally, groups IIA, IIC, IID, IIE, and V all utilize the HSPG-shuttling 

pathway. 

Often considered in the same breath with group II enzymes is group V.   Group V 

shows the highest homology with the group II enzymes and is similarly located on human 
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chromosome 1 (1p34-36) (Valentin et al., 2000b).  However group V lacks the typical 

group II C-terminal region, thus justifying its isolation.  sPLA2-V functions as the 

primary mouse sPLA2.  This is since mice express group V at higher levels than any of 

the group II enzymes (Sawada et al., 1999) and since some species of mice have a frame 

shift mutation resulting in a natural sPLA2-II knock out (Kennedy et al., 1995).  

However, as with group II, group V is closely linked with inflammation as well being 

found in mast cells (Sawada et al., 1999), macrophages (Balboa et al., 2003), and type 2 

T helper cells (Ho et al., 2001).  As with group II, group V is upregulated by LPS 

(Sawada et al., 1999).       

 

Group X –  

Group X possesses characteristics of both group I and group II enzymes.  sPLA2-

X contains the disulfide bonds of both group I and group II as well as the group II, C-

terminal extension (Cupillard et al., 1997).  Additionally, like group I, it is secreted as a 

zymogen with cleavage of the N-terminal propeptide for activation (Hanasaki et al., 

1999).  Like sPLA2-IB, cells transfected with group X, secrete this sPLA2 almost 

exclusively into the culture medium rather than having it bound to the membrane like 

group II enzymes (Kudo and Murakami, 2002).  This is not surprising since unlike group 

II, group X does not readily bind HSPG and shows high activity towards PC, a dominant 

phospholipid enriched in the outer leaflet of the plasma membrane (Hanasaki et al., 1999, 

Murakami et al., 1999a, Morioka et al., 2000a, Morioka et al., 2000b, Murakami et al., 

2001).    Typically, sPLA2-X is expressed in the digestive organs such as intestine, colon 

and stomach and in some immune organs (Cupillard et al., 1997).  However, unlike group 
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II, group X is constitutively expressed with little or no change in most tissues (Kudo and 

Murakami, 2002).   

 

Groups III and XII –  

A distinct class of soluble sPLA2s, distantly related to groups I and II, were later 

discovered in bee and lizard venom and are classified as group III.  A mammalian 

homolog of group III was discovered in 2000 (Valentin et al., 2000a) .  Groups III and 

XII only share the Ca2+-binding loop and catalytic site with groups I, II, V, and X.  At 

55kDa, Group III is considerably large than all the other sPLA2 isozymes.  While 

maintaining all the sPLA2 signature characteristics such as, 10 cystines, the Ca2+-biniding 

loop, and catalytic site, it additionally has a large N- and C- terminal flanking regions that 

add to its molecular weight (Valentin et al., 2000a).  Within humans, sPLA2-III was 

found to be in high abundance in heart, skeletal muscle, liver, and kidney, but had only 

weak expression in the brain (Valentin et al., 2000a).  Group-XII is a much smaller 

enzyme than group III (19 kDa), lacks an N- or C-terminal flanking regions, and has 

deviations in the Ca2+ bind loop, that are inconsistent with other sPLA2s (Gelb et al., 

2000, Ho et al., 2001).  Group XII is expressed in human kidney, heart, and skeletal 

muscle (Gelb et al., 2000, Valentin et al., 2000a).  Relatively little is known about the 

function of either group III or XII in the mammalian system. 
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Suggested Mechanisms underlying sPLA2-Induced CNS Injury 

 The sPLA2 family of enzymes could damage the CNS by multiple injury 

mechanisms.  First, sPLA2 could damage cells directly by attacking cellular membranes 

and triggering apoptosis.  Secondly, the products of lipid metabolism, lysophospholipids 

and free fatty acids, are detrimental to the CNS and can produce pro-inflammatory 

mediators, generate free radicals, and increase excitotoxicity (O'Regan et al., 1995b, 

Farooqui et al., 1997b, Klein, 2000).   Interestingly often the injurious agents produced 

by sPLA2 metabolism in turn initiate synthesis of sPLA2 resulting in a positive feedback 

loop.  See Fig. 3. Our discussion will begin by looking the direct effects of sPLA2 on 

cells and then how oxidative stress, inflammatory cytokines, and excitotoxic 

neurotransmitters can each initiate sPLA2 synthesis and be exacerbated by sPLA2’s 

presence. 
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Figure 3.  Overview of sPLA2’s Role in Spinal Cord Injury. 

 The toxicity of sPLA2 is compounded by three factors. 1) sPLA2 is upregulated by 

commonly known neurotoxic mechanisms such as oxidative stress, cytokines, and EAA.  

2) Both the primary metabolites of sPLA2 activity, such as free fatty acids and 

lysophospholipids, and the secondary metabolites, such as eicosanoids and platelet 

activating factor, are toxic to the CNS.  3) Finally, sPLA2 has been shown to reciprocally 

upregulate oxidative stress, cytokines, and EAA thus propagating a positive feedback 

loop resulting in cytotoxicity and secondary SCI.  It must also be noted that sPLA2 does 

not work in isolation from cPLA2 and iPLA2, rather a reciprocal activity is often 

demonstrated among the PLA2 subfamilies. 



 34

Membrane Breakdown and Metabolites 

          Phospholipids are the main components of the neural cell bi-layer membrane. In 

addition, they provide the membrane with the necessary environment, fluidity, and ion 

permeability that are required for the proper function of integral membrane proteins, 

receptors, and ion channels. PLA2 directly hydrolyses phospholipids resulting in 

membrane breakdown.  This results in alterations of membrane function such as fluidity 

and permeability, behavior of transporters and receptors, and ion homeostasis, and can 

eventually lead to functional failure of excitable membranes (Farooqui et al., 1997b, 

Klein, 2000, Farooqui et al., 2004).   

In addition to the direct effects of membrane breakdown on cell survival, the 

products of sPLA2 enzymatic, activity also exhibit neurotoxic profiles.  sPLA2 cleaves 

phospholipids into the primary metabolites free fatty acid, such as AA, and 

lysophospholipids such as lysophosphatidyl choline (LPC, a.k.a. lysolechithin).  See 

insert of Fig. 2 and Fig. 3.  Both of these agents have been shown to create injury and 

cytotoxicity in the CNS.  AA induces oxidative injury and death in cultured spinal cord 

neurons (Toborek et al., 1999).  AA can later form epoxides via the cytochrome P450 

pathway, leukotrienes via the lipoxygenase pathway, or thromboxanes or prostaglandins 

via the COX pathway.  See insert of Fig. 2.  Many of these products, such as 

prostaglandin E2 (PGE2) can subsequently act as potent chemoattractants increasing 

endogenous immune responses and subsequent secondary damage.  Additionally, the 

expression of eicosanoids, such as thromboxane A2 (TXA2) and PGE2 following SCI 

have been linked to trauma induced ischemia (Tonai et al., 1999).  LPC produced by 

sPLA2 –induced hydrolysis  is also implicated in CNS damage (Dutta et al., 1979).  
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Interestingly, direct LPC injection has been shown to create a demyelination and 

infiltration of macrophages in the spinal cord, brain, and peripheral nervous system with 

a later remyelination by Schwann cells, the myelinating cells of the peripheral nervous 

system (Blakemore et al., 1977, Blakemore, 1978, Blakemore, 1982, Jeffery and 

Blakemore, 1995).  This demyelination and remyelination by Schwann cells mimics that 

produced by direct injection of sPLA2, however, sPLA2 has the added cost of severe 

axonopathy and death of oligodendrocytes prior to remyelination (Titsworth et al., 2007).  

It has been hypothesized that LPC may mediate the demyelinating effects of sPLA2 

injections.  Additionally, a recent study by Lauber, et al., found that LPC, generated by 

iPLA2, was the main chemoattractant for monocytic cells and primary macrophages 

released by apoptotic cells thus facilitating the efficient phagocytosis of cellular debris 

(Lauber et al., 2003).    

 

Apoptosis 

In recent years, apoptosis has been identified as an important mechanism of cell 

death in many neurological disorders including SCI. Cells undergoing apoptosis 

generally release free fatty acids including AA, which parallels the reduction in cell 

viability (Taketo and Sonoshita, 2002, Balsinde et al., 2006), suggesting the involvement 

of PLA2 in apoptosis.  Recently, sPLA2-IB, IIA, and III have all been shown to induce 

neuronal apoptosis (Yagami et al., 2002a, Yagami et al., 2002b, Yagami et al., 2002c, 

DeCoster, 2003). In contrast, recombinant sPLA2 appears to prevent apoptosis of mast 

cells (Taketo and Sonoshita, 2002). 
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Oxidative Stress 

 Oxidative injury is a common pathological mechanism in neurological disorders.  

Free radicals induce not only lipid peroxidation of neural membranes, but also the 

oxidation of proteins, RNAs, and DNAs.  Reactive oxygen species (ROS) including 

hydrogen peroxide (H2O2) and superoxide radicals are produced by a number of cellular 

oxidative and metabolic processes including metabolism of AA.  PLA2 metabolism of 

phospholipids is a well-established source of ROS (Adibhatla and Hatcher, 2006, Nanda 

et al., 2007).  Application of pathophysiological concentrations of free fatty acids has 

been demonstrated to induce oxidative injury to cultured spinal cord neurons (Toborek et 

al., 1999). Microinjections of PLA2 into the normal spinal cord induced expression of 4-

hydroxynonenal, a product of lipid peroxidation and marker for oxygen free radical-

mediated membrane injury (Liu et al., 2006).  Nethery, et al., (Nethery et al., 1999) found 

that ROS production in contracting muscle required the presence of sPLA2 but not cPLA2 

or iPLA2.  In the presence of 15-lipoxygenase the addition of sPLA2-IIA or IB greatly 

enhances the accumulation of hydroperoxides of oxidized free fatty acids (Neuzil et al., 

1998).  Finally, it can be assumed that the proinflammatory effects of sPLA2 would result 

in an immigration of immune cells, which will release copious amounts of ROS (Blight, 

1985, Popovich et al., 1997, Park et al., 2004, Jones et al., 2005a, Fleming et al., 2006, 

Wang et al., 2006).  For a review of the ROS species produced by the enzymatic effects 

of sPLA2 please see (Nanda et al., 2007).  

While sPLA2 production of ROS is well established, the induction of sPLA2 by 

ROS is an immerging concept.  One study found that mesangial cells treated with H2O2 

utilized both cPLA2 and sPLA2 during AA release and that elimination of sPLA2 greatly 
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inhibited AA release (Han et al., 2003), thus suggesting the first of many positive 

feedback loops. 

 

Inflammation and Inflammatory Cytokines 

Inflammation has been implicated in many CNS neurological disorders including 

SCI. PLA2 may serve as a key molecule that controls the biosynthesis of several well-

known bioactive mediators of inflammation such as eicosanoids (prostaglandins, 

thromboxanes, leukotrienes and lipoxins) and PAF in a rate-limiting manner (Farooqui et 

al., 1997b, Farooqui et al., 1999a). In addition, our recently findings showed that sPLA2 

induced expression of cytokines including  TNF-α and IL-1β in the injured spinal cord 

(Liu et al., 2006). On the other hand, there is also strong evidence to suggest that 

cytokines upregulate sPLA2-IIA in vitro and in vivo.  sPLA2-IIA is up-regulated by TNF-

α and IL-1α/β after transient focal cerebral ischemia in rats (Adibhatla and Hatcher, 

2007).  sPLA2-IIA mRNA is expressed in cultured astrocytes and can be induced in 

response to proinflammatoy cytokines TNFα, IL-1β, and, INFγ (Oka and Arita, 1991, 

Tong et al., 1995, Li et al., 1999, Xu et al., 2003).  Astrocytes isolated from C57Bl/6 

mice, which lack the sPLA2-IIA gene, were less responsive to cytokines in the production 

of PGE2 than were astrocytes expression sPLA2-IIA (Xu et al., 2003).   Additionally, IL-

1β and TNFα can also activate COX-2 continuing the proinflammatory pathways 

(Kuwata et al., 1998, Murakami et al., 1999b, Sawada et al., 1999, Morioka et al., 2000a, 

Morioka et al., 2002).  sPLA2 also induced AA release and COX-2 expression in cultured 

neurons independent of other cytokines (Kolko et al., 2003). 
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Excitatory Neurotoxicity 

Elevated levels of excitatory amino acids (EAA) have been implicated in the 

pathogenesis of neural injury and death in many disorders and evidence suggests that 

sPLA2 may stimulate the release of EAA following CNS trauma.  First, injections of 

sPLA2 into the brain caused epileptic seizures and neurotoxicity in vivo (Dorandeu et al., 

1998).  Secondly, application of sPLA2 to the rat ischemic cerebral cortex resulted in a 

significant increase in EAA levels and inhibition with mepacrine, a global PLA2 

inhibitor, significantly decreased the ischemia-evoked efflux of EAA into cortical 

superfusates (O'Regan et al., 1995a).  Group IIA sPLA2 stimulates exocytosis and 

neurotransmitter release in pheochromocytoma-12 cells and cultured rat hippocampal 

neurons (Wei et al., 2003).  sPLA2-induced neuronal death was blocked by MK-801, an 

N-methyl-D-aspartic acid (NMDA) receptor antagonist, both in vitro and in vivo (Kolko 

et al., 2002).  Finally, administration of the nonselective PLA2 inhibitor, 4-

bromophenacyl bromide, inhibited glutamate release in the spinal cord (Sundstrom and 

Mo, 2002).  Only one study so far has suggested that excessive EEA concentrations 

induce sPLA2 levels in the CNS.  Interocerebroventricular injection of kainic acid (KA) 

resulted in an increase in both total PLA2 and sPLA2 activity and this activity could be 

blocked by a synthetic short inhibitor peptide for sPLA2-IIA (Thwin et al., 2003).   

The exact mechanism of sPLA2 action on EAA release remains unknown. It has 

been suggested that PLA2 disrupts an artificial planar lipid bilayer in a Ca2+-dependent 

manner (O'Regan et al., 1996).  Matsuzawa demonstrated the role of sPLA2-IIA in EEA 

release in a set of elegant experiments.  First, sPLA2-IIA was detected in purified brain 

synaptosomes.  Secondly, sPLA2-IIA was released upon depolarization of neurons with 
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either high concentrations of potassium or neurotransmitters.  Third, addition of sPLA2-

IIA to cultures triggered neurotransmitter release.  Finally, sPLA2-IIA inhibition 

suppressed neurotransmitter secretion (Matsuzawa et al., 1996).  The role of sPLA2 in 

neurotransmitter release is further supported by the fact that exogenously added sPLA2 

paralyzed neuromuscular junction preparations by inducing total neurotransmitter release 

(Rigoni et al., 2005).  Interestingly, an equimolar mixture of lysophospholipids and fatty 

acids closely mimicked the sPLA2 paralysis (Rigoni et al., 2005).  These studies further 

suggest that changes in the local lipid composition within the synaptic buton trigger 

neurotransmitter release which would lead to excitotoxicity (Piomelli et al., 2007).  

Inhibitors of total PLA2 activity such as 4-bromophenacyl bromide, a nonselective PLA2 

inhibitor, 7,7-dimethyleicosadienoic, a sPLA2 specific inhibitor, AACOCF3, a cPLA2 

specific inhibitor, and HELSS, an iPLA2 specific inhibitor, all reduced the efflux of both 

glutamate and aspartate in vivo suggesting the involvement of multiple isoforms of PLA2 

in EAA release not merely sPLA2 (Phillis and O'Regan, 1996).  

 

Role of sPLA2 in CNS Disorders 

Localization within the CNS   

sPLA2s are present in all regions of the mammalian brain. The highest sPLA2 

activities are found in medulla oblongata, pons, and hippocampus; moderate activities in 

the hypothalamus, thalamus, and cerebral cortex; and lowest activities in the cerebellum 

and olfactory bulb (Thwin et al., 2003). Molloy, et al., utilizing RT-PCR found that 

mRNAs for sPLA2-IIA and IIC were expressed in all regions of normal rat brain, sPLA2-



 40

V was found at low levels in most areas of the brain, but at very high levels in the 

hippocampus, and sPLA2-IB was not detected in the rat brain at all (Molloy et al., 1998).  

In contrast, Kolko, et al., reported that sPLA2-IB mRNA was detected in the rat and 

human brain at very high levels as well as in neurons in primary cultures using various 

detection methods. The distribution of sPLA2-IB seems to be mainly neuronal, with the 

highest abundance occurring in the cerebral cortex and hippocampus (Kolko et al., 2005). 

sPLA2-IIA and V were also detected in the rat cerebellum using immunostaining and in 

situ hybridization methods (Shirai and Ito, 2004). sPLA2-IIA is associated with the 

endoplasmic reticulum in perinuclear regions of Purkinje cell somata and sPLA2-V was 

localized in Bergmann glia cells (Shirai and Ito, 2004). Recently, Kolko, et al., found the 

presence of sPLA2-IIE, V, and X in the rat brain as well as in neurons in primary cultures 

using RT-PCR, in situ hybridization, and immunohistochemistry (Kolko et al., 2006). 

The distribution of sPLA2-IIE, V, and X seems to be mainly neuronal, with the highest 

abundance occurring in the cerebral cortex and hippocampus (Kolko et al., 2006). In the 

spinal cord, sPLA2 activity was detected in the normal rat spinal cord homogenate 

(Svensson et al., 2005). Western blots revealed that sPLA2-IIA and V are expressed in the 

normal rat spinal cord (Svensson et al., 2005). mRNAs of sPLA2s (IB, IIA, IIC and V) 

are also detected in the normal rat spinal cord with RT-PCR (Lucas et al., 2005). 

As stated above, the presence of sPLA2 in the CNS, particularly neurons, appears 

to be both constitutive (groups IB, IIA, V, and X) and inducible (group IIA).  While it is 

assumed that the inducible sPLA2 expression is associated with inflammation, the normal 

physiological role of constitutively expressed sPLA2 is believed to play a crucial role in 

exocytosis of synaptic vesicles (Matsuzawa et al., 1996, Phillis and O'Regan, 2004).  
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Support for this theory arises from studies by Matsuzawa, et al., in which differentiated 

PC12 cells were shown to release sPLA2-IIA after depolarization and that inhibition of 

IIA resulted in decreased catecholamine secretion (Matsuzawa et al., 1996).  

Additionally, snake PLA2 neurotoxins cause paralysis of neuromuscular junctions by 

triggering a massive release of all presynaptic vesicles (Rigoni et al., 2005).  Finally, the 

concentration of group V in the hippocampus and studies by Chabot, et al., indicate that 

sPLA2-V may play a role in the regulation of long-term potentiation and long-term 

depression (Chabot et al., 1998). 

Spinal Cord Injury 

Damage from acute SCI occurs in two phases, an initial mechanical injury 

followed by a secondary injury mediated by multiple processes including inflammation, 

free radical induced cell death, cytokine production, and glutamate excitotoxicity (Hall 

and Braughler, 1986, Young, 1993, Buki et al., 2000, Park et al., 2004).  Following SCI, 

inflammatory cells such as polymorphonuclear neutrophils, macrophages, and 

lymphocytes quickly infiltrate into the traumatized cord, and flood the interstitial tissue 

with proinflammatory cytokines such as TNF-α and IL-1β, and neurotoxic factors from 

leukocytes such as nitric oxide, hydrogen peroxide, and myeloperoxidase (Blight, 1985, 

Popovich et al., 1997, Park et al., 2004, Jones et al., 2005a, Fleming et al., 2006, Wang et 

al., 2006).  Free radical generation and lipid peroxidation were also found to be early 

events subsequent to SCI (Hall and Braughler, 1986, Hall et al., 1992, Springer et al., 

1997).  EAAs such as glutamate and aspartate are released rapidly following SCI and 

their extracellular concentrations increased to neurotoxic levels within minutes post SCI 

(Panter et al., 1990, Farooque et al., 1996, Liu et al., 1999b, McAdoo et al., 1999).  The 
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interplay between multiple harmful substances likely perpetuates the progressive course 

of secondary injury, resulting in cell death, axonal destruction, demyelination and 

functional loss.  Evidence suggests that these harmful substances generated in the injured 

cord might induce sPLA2 expression which in turn exacerbates SCI.  This hypothesis is 

supported by in vitro and in vivo experiments that indicate that increases in PLA2 activity 

and its metabolic products can in turn exacerbate inflammation (Bonventre, 1996, 

Murakami et al., 1997), oxidation (Bonventre, 1996, Murakami et al., 1997), 

demyelination (Titsworth et al., 2007), and neurotoxicity (Clapp et al., 1995, Bonventre, 

1996) suggesting that sPLA2 may serve as a common mediator in the progression of 

secondary SCI.  See Fig. 4.
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Figure 4. sPLA2 Activity Within Spinal Cord Injury. 

Following SCI, oxidative stress, cytokines, and EAA are upregulated.  These 

toxic factors then up regulate the synthesis of sPLA2.  Subsequently sPLA2 mediates the 

hydrolysis of phospholipids into lysophospholipids (Lyso-PL), such as LPC, and free 

fatty acids (FFA), such as AA.  Independent of other factors, sPLA2 and LPC demyelinate 

axons in the spinal cord and sPLA2 and AA have been shown to trigger apoptosis in 

neurons and oligodendrocytes.  The metabolism of AA results in increased oxidative 

stress from lipid peroxidation and increased eicosanoids which have been shown to 

increase inflammation and ischemia.  LPC also increases inflammation while its 

metabolite, PAF, triggers ischemia.  Infiltrating polymorphonuclear neutrophils (N), 

lymphocytes (L), and macrophages (Mφ) then flood the CNS with more sPLA2, oxidants, 

and cytokines thus exacerbating the positive feedback loop, while the upregulation in 

sPLA2 and LPC trigger the release of EAAs from synaptic terminals. 

 

 

 

 

 



 44

 

 

 

 

 

 

 

DemyelinationCD 

Inflammation 



 45

Recently, we showed that PLA2 activity increased following SCI, peaking at 4 h 

post injury, and remaining elevated for one week.  In the same study, we found that 

cPLA2 expression did not peak until 7 days post injury (Liu et al., 2006).  In vitro 

experiments showed that both sPLA2 and melittin, an activator of endogenous PLA2, 

induced spinal neuronal death in a dose-dependent manner, an effect that could be 

substantially reversed by mepacrine, a PLA2 inhibitor (Liu et al., 2006).  Similarly direct 

injection of sPLA2 also lead to demyelination that could be effectively attenuated with 

mepacrine, an inhibitor of all PLA2 isoforms (Liu et al., 2006). Injections of sPLA2 also 

induced the expression of inflammatory cytokines TNF-α and IL-1β, as well as 4-

hydroxynonenal, a product of lipid peroxidation and a marker for oxygen free radical-

mediated membrane injury (Liu et al., 2006).  Indeed, in vivo and in vitro experiments 

show that exogenous administration of sPLA2 can induce neuronal death, 

oligodendrocyte death, and tissue damage (Clapp et al., 1995, Kolko et al., 1996, Kolko 

et al., 1999, Yagami et al., 2002a, Yagami et al., 2002b, Yagami et al., 2002c, Liu et al., 

2006, Titsworth et al., 2007).  Importantly, no study to date has directly observed whether 

sPLA2 mRNA or protein expression increases following SCI. 

The induction of sPLA2 following SCI is supported by the fact that the substrate 

of PLA2 metabolism, phospholipids, decreases acutely following SCI.  There is a 

dramatic loss of membrane phospholipids following CNS trauma.  During the first 

minute of compression trauma to the spinal cord, 10% of the plasmenylethanolamine  is 

reduced with an overall loss of 18% found at 30 min post compression injury (Horrocks 

et al., 1985). The hydrolysis of membrane phospholipids by PLA2 is a rate-limiting step 
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for generation of proinflammatory mediators, eicosanoids, and PAF (Farooqui et al., 

1997b, Farooqui et al., 1999b).   

Additionally, there is an increase in free fatty acids, eicosanoids, lipid peroxides, 

and lysophospholipids following SCI (Demediuk et al., 1985, Demediuk et al., 1989, 

Lukacova et al., 1996).  Severe trauma was associated with  biphasic increases in free 

fatty acids levels, with levels peaking at 15 min and 24 hr post-trauma before declining 

over the next 6 days (Demediuk et al., 1989).  Within the first few minutes of SCI, free 

fatty acids have increased in the grey matter and later increase within the white matter 

suggesting acute PLA2 activity (Demediuk et al., 1985, Faden et al., 1987, Demediuk et 

al., 1989).  The production of free fatty acid represents a source of potentially dangerous 

ROS by initiating lipid peroxidation.  Hydroxyl radicals can attack polyunsaturated fatty 

acids in membrane glycerophospholipids forming peroxyl radicals and propagating the 

chain reaction of lipid peroxidation products (Muralikrishna Adibhatla and Hatcher, 

2006, Sun et al., 2007). The generation of free fatty acids in SCI is closely associated 

with increases in free radical formation observed in the lesion of the injured spinal cord 

(Hamada et al., 1996, Azbill et al., 1997). Application of pathophysiological 

concentrations of free fatty acids has been demonstrated in vitro to induce oxidative 

injury in spinal cord cell cultures (Toborek et al., 1999).  The neurotoxic effects of AA 

have also been observed in hippocampal neurons and cortical neurons (Li et al., 1997) as 

well as oligodendrocytes (Wang et al., 2004).  

Later products of free fatty acid metabolism also increase within the injured spinal 

cord.  COX, also known as prostaglandin G/H synthase, is the rate-limiting step in the 

production of prostaglandins.  See insert of Fig. 2.  COX-2 mRNA and protein expression 
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are increased from 2 to 48 hr following SCI and the selective inhibition of COX-2 results 

in histological and functional sparing as assessed by the Basso, Beattie, and Bresnahan 

locomotion score (Resnick et al., 1998, Hoffmann, 2000, Schwab et al., 2000, Hains et 

al., 2001).  COX-1 has also been shown to increase following SCI, persisting for as long 

as 4 weeks (Schwab et al., 2000).  This upregulation in COX in the presence of free fatty 

acids, such as AA, logically progresses to an upregulation of eicosanoids.  Bioactive 

eicosanoids, derived from PLA2-induceds production of AA, have been implicated as 

mediators of secondary injury via a host of mechanisms.  The expression of eicosanoids, 

such as TXA2 and PGE2 increased in the injured cord tissue within hours of SCI and their 

vasoactive properties are thought to create microemboli in addition to PGE2’s well known 

pro-inflammatory effects (Tonai et al., 1999, Resnick et al., 2001).  Increased production 

of TXA2, PGI2, LTC4 and 5-HETE has also been confirmed in experimental SCI (Jacobs 

et al., 1987, Mitsuhashi et al., 1994).  PGF2α increases three fold following SCI, and 

when exogenously added caused significant cell loss, increased hydroxyl radicals, and 

malondialdehyde - an end product of membrane lipid peroxidation (Liu et al., 2001). 

The effect of lysophospholipids on spinal cord tissue has been extensively studied 

and lysophospholipids such as LPC and its later metabolites, such as PAF, are 

metabolically active in the CNS.  For over 30 years it was known that injections of LPC 

into the spinal cord causes demyelination (Blakemore et al., 1977, Blakemore, 1978, 

Blakemore, 1982, Toborek et al., 1999) as well as expression of a number of chemokines 

and cytokines, similar to those produced following SCI (Ousman and David, 2000, 

Ousman and David, 2001).  While lysophospholipid levels following SCI or traumatic 

brain injury (TBI) have not been assessed directly, their presence is strongly implied from 
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the generous production of free fatty acids and a decrease in phospholipids.  PAF, a 

metabolite of lysophospholipids, increases 20-fold after SCI induced by stroke 

(Lindsberg et al., 1990, Faden and Halt, 1992, Xiao et al., 1995, Xiao et al., 1996, 

Hostettler and Carlson, 2002).  Intrathecal administration of PAF leads to reduced spinal 

cord blood flow and motor deficits, an effect which can be blocked by the PAF receptor 

antagonist, WEB 2170 (Faden and Halt, 1992). Treatment with WEB 2170 after acute 

spinal cord contusion resulted in significant increases in white matter sparing as well as 

decreases in proinflammatory cytokine mRNA levels within the lesion epicenter 

(Hostettler and Carlson, 2002, Hostettler et al., 2002).  Treatment with the PAF receptor 

antagonist BN52021 also improves behavioral function after SCI (Xiao et al., 1998).  In 

vitro experiments showed that low concentrations of PAF resulted in neuronal 

differentiation and sprouting, while higher concentrations were neurotoxic (Kornecki and 

Ehrlich, 1988).  PAF-induced death of not only cultured neuronal cells in a concentration 

-dependent manner (Xu and Tao, 2004, Bate et al., 2007) but also that of 

oligodendrocytes and astrocytes (Hostettler et al., 2002).   

Oxidative stress is well established following SCI (Liu et al., 1999a, Liu et al., 

2001, Liu et al., 2003, Bao and Liu, 2004, Liu et al., 2004a).  Work by Liu et al., has 

shown that H2O2 (Liu et al., 1999a), iron (Liu et al., 2004a), and hydroxyl radicals  (Liu 

et al., 2004a) are formed following SCI.  Furthermore pathophysiological doses of these 

oxidants administered exogenously in vivo created significant cell death at 24 hr that 

could be blocked by a broad spectrum reactive species scavenger (Liu et al., 2004a).  

Administration of PGF2α resulted in a 3- fold increase in hydroxyl radicals and a 2-fold 

increase in malondialdehyde, an end product of membrane lipid peroxidation (Liu et al., 
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2001).  It has also been shown that H2O2 is toxic to neurons (Whittemore et al., 1994, 

Hoyt et al., 1997, Samanta et al., 1998, Lim et al., 2002, Fatokun et al., 2007), astrocytes 

(Rouach et al., 2004, de Almeida et al., 2007), and oligodendrocytes (Richter-Landsberg 

and Vollgraf, 1998, Vollgraf et al., 1999, Mronga et al., 2004).  Oxidative stressors, such 

as H2O2 administration, also increase AA release in neurons and mesangial cells 

(Samanta et al., 1998, Han et al., 2003).  It has recently been suggested that generation of 

ROS and polyunsaturated fatty acids, via cPLA2, following CNS injury mediates NF-κB 

migration from the cytosolic to the nucleus where it induces gene expression of sPLA2 

and other lipid enzymes, thus potentiates a positive feedback loop (Sun et al., 2007). 

High levels of EAAs such as glutamate and aspartate in experimental SCI are also 

an important mechanism inducing secondary injury (Park et al., 2004). Growing evidence 

indicates that sPLA2 could mediate EAA-induced neuronal death and tissue damage.  

Marked increases in PLA2 activity and AA release have been reported after treatments of 

neuronal cultures with glutamate, NMDA and KA) (Dumuis et al., 1988, Farooqui et al., 

2001).  In addition, glutamate release in the spinal cord can be suppressed by PLA2 

inhibitors such as indomethacin by 40%, AACOCF3 by 45%, and 4-bromophenacyl 

bromide by 36%, suggesting that increased PLA2-mediated EAA release is part of a 

positive feedback mechanism (Sundstrom and Mo, 2002).  Additionally, application of 

sPLA2 to the ischemic rat cerebral cortex resulted in a significant increase in EAA levels 

and a general PLA2 inhibitor mepacrine significantly decreased the ischemia evoked 

efflux of EAA into cortical superfusates (O'Regan et al., 1995a).  Thus, the excessive 

stimulation of NMDA receptors, as occurs in the spinal cord trauma, may result in 
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stimulation of sPLA2 activity leading to alterations in membrane composition, 

permeability, and fluidity leading to neuronal and glial cell death.  

In summary, sPLA2 can be induced by several key injury mediators such as 

inflammatory cytokines, free radicals, and EAAs that have been shown to increase 

following traumatic SCI.  Furthermore, this increase in sPLA2 activity can further 

increase inflammation, oxidation, and EAA release. This indicates that sPLA2 activation 

may play a central role in a positive feedback loop triggered by traumatic SCI resulting in 

neuronal and glial cell death, tissue damage, and corresponding behavioral impairments.  

If sPLA2 is present and increased following SCI then it may act as a convergence 

molecule that mediates multiple key mechanisms of secondary spinal cord injury and 

blocking sPLA2 action may represent a novel and efficient strategy to block multiple 

injury mechanisms. 

 

Brain Injury 

Similar to SCI, TBI also triggers secondary or delayed cell death by multiple 

injury processes including ischemia, inflammation, generation of free radicals, and 

glutamate release, all of which have been showed to induce PLA2 activity (Phillis and 

O'Regan, 2004, Mattson, 2005, Farooqui et al., 2006).  Like SCI, there is clear evidence 

that TBI induces PLA2 activity resulting in membrane phospholipid degradation, 

generation of proinflammatory mediators, such as eicosanoids and PAF, formation of free 

radicals, and subsequent lipid peroxidation.  Following closed head injury in rats, total 

PLA2 activity increased (Shohami et al., 1989).  Additionally, after open traumatic brain 

injury, free fatty acids, such as AA, were released and membrane phospholipid 
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degradation was found (Dhillon et al., 1994, Homayoun et al., 1997, Homayoun et al., 

2000).  In humans, an increase in free fatty acids in cerebrospinal fluid (CSF) following 

brain injury has been reported (Pilitsis et al., 2003).   

No report to date has investigated the expression of sPLA2 following traumatic 

brain injury either, however, cPLA2 and 4-hydroxynonenal were expressed in the 

transected brain (Lu et al., 2001).  Additional reports have confirmed the presence of 

down stream metabolites of AA.  Pronounced increases in prostaglandin F2α, 

prostaglandin D2, leukotrienes, and thromboxane B2 have all been reported to occur in 

brain tissues after KA injection (Baran et al., 1987) and increases in PGE2 following 

closed head injury (Shohami et al., 1989). 

Conditions that increase sPLA2 have been shown following TBI, just as in SCI.  

Cerebral penetration and contusive injury both increase oxidative stress in the brain 

(Layton et al., 1997, Kline et al., 2004) and blockade of oxidative stress increases 

learning and histological sparing (Kline et al., 2004).  Under both experimental and 

clinical settings, the level of extracellular EAAs such as glutamate and aspartate 

increased following TBI (Faden et al., 1989; Palmer et al., 1993; Globus et al., 1995; 

Bullock et al., 1998).  Additionally, both competitive and noncompetitive NMDA and 

non-NMDA receptor antagonists are efficacious in the treatment of experimental brain 

injury (Bullock and Fujisawa, 1992).  Several studies showed that glutamate, NMDA, 

and KA result in a dose-dependent increase in AA release in hippocampal neuronal 

cultures (Dumuis et al., 1988) and PLA2 activity in neuron enriched spinal cord cultures 

(Farooqui et al., 2001). In vivo intercerebroventricular injections of KA were shown to 

increase total PLA2 and sPLA2 activity in the rodent brain (Thwin et al., 2003).  Increased 
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levels of extracellular glutamate following TBI causes overstimulation of glutamate 

receptors that may result in secondary events such as sPLA2 release, degradation of 

membrane phospholipids, and accumulation of free fatty acids, leading to neuronal cell 

death as well as increased levels of eicosanoids and leukotrienes (McIntosh et al., 1998, 

Park et al., 2004).  As suggested above oxidative stress, EAA, and cytokines could induce 

sPLA2 release and abnormal phospholipid metabolism and may represent a common 

mechanism involved in traumatic spinal cord and brain injuries.   

 

Ischemia   

sPLA2 has been more thoroughly studies in ischemia.  Additionally, ischemia is a 

component of secondary injury after CNS trauma (Tator, 1991, Tator and Fehlings, 1991, 

Gennarelli, 1993).  Posttraumatic ischemia may result in energy failure that initiates a 

complex series of metabolic events, ultimately causing neuronal death. One such critical 

metabolic event is the activation of PLA2 which can result in hydrolysis of membrane 

phospholipids, release of free fatty acids, generation of oxygen free radicals, and 

formation of eicosanoids (Nakano et al., 1990, Phillis and O'Regan, 2004, Muralikrishna 

Adibhatla and Hatcher, 2006).  

In both experimental models of brain (Yoshida et al., 1983, Abe et al., 1988, 

Nakano et al., 1990, Narita et al., 2000) and spinal cord ischemia (Halat et al., 1987) 

significant increases in the level of free fatty acids, indirectly reflecting PLA2 activity, 

were found.  Significant increases in sPLA2 activities were also reported in vivo 

following brain ischemia (Lauritzen et al., 1994, Yagami et al., 2002b, Adibhatla et al., 

2006) and in astrocytes cultured under ischemic conditions such as oxygen and glucose 
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deprivation (Lin et al., 2004).  Biphasic increased expression of sPLA2-IIA is observed in 

ischemic rat forebrain (Lauritzen et al., 1994). An early increase in sPLA2-IIA mRNA 

occurred at 1-6 h post-ischemia and a late phase of greater induction of sPLA2-IIA 

appeared between 7 and 20 days post-ischemia. Recently, increased expression of sPLA2-

IIA has been confirmed at both mRNA and protein levels after brain ischemia (Lin et al., 

2004, Adibhatla et al., 2006). Cytokines such as TNF-α and IL-1β have been shown to 

mediate the ischemia induced PLA2 activation and sPLA2-IIA expression in transient 

focal rat cerebral ischemic model (Adibhatla et al., 2006, Adibhatla and Hatcher, 2007).  

Indoxam, a specific sPLA2 inhibitor, was shown to offer protection against the ischemia 

induced damage (Yagami et al., 2002b).  Quinacrine / mepacrine, a non-specific inhibitor 

of PLA2 activity, also showed sparing of hippocampal neurons (Phillis, 1996) and 

reduced infarct size following transient focal ischemia (Estevez and Phillis, 1997).  In 

vitro experiments showed that increased sPLA2 activity was associated with ischemia-

induced apoptosis (Yagami et al., 2002b).  Other studies have shown cPLA2 increases 

following ischemia (Owada et al., 1994, Bonventre et al., 1997, Saluja et al., 1997, 

Stephenson et al., 1999, Tabuchi et al., 2003) and other authors suggest that cPLA2 rather 

than sPLA2 mediates neuronal death in ischemia (Arai et al., 2001).  In summary, 

ischemia induces PLA2 activation which could result in deleterious effects such as the 

loss of membrane integrity through excessive phospholipids hydrolysis, formation of 

eicosanoids, cytotoxic products, ROS, and induction of apoptosis of affected cells 

(Sapirstein and Bonventre, 2000, Farooqui et al., 2006). 

 

Other Degenerative Diseases  
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Beyond neurotrauma, sPLA2 has been suggested as a mediator of 

neurodegenerative disorders such as Alzheimer’s disease (AD) (Moses et al., 2006), 

Multiple Sclerosis (Pinto et al., 2003, Marusic et al., 2005), and Parkinson’s disease 

(Tariq et al., 2001).  AD is characterized by an increased deposition of amyloid plaques 

infiltrated by reactive astrocytes and microglia. Aggregated forms of amyloid β (Aβ) 

peptides, particularly A β 1-42, have been shown to elicit cytotoxic effects resulting in 

neuron cell death (Sun et al., 2004).  There is evidence for alterations in phospholipid 

levels in patients with AD (Farooqui et al., 1997a).  In two separate studies, a decrease in 

PLA2 activity was found in the parietal and temporal cortices (Ross et al., 1998), as well 

as in the prefrontal cortex of the AD brain (Talbot et al., 2000).  Contrary to these studies, 

immunohistochemical experiments showed increases in both sPLA2–IIA (Moses et al., 

2006) and cPLA2 (Stephenson et al., 1996) in astrocytes of the AD brain.  A recent gene 

array study in AD patients indicated an increase in cPLA2 and COX-2 expression, as well 

as upregulation of a number of apoptotic and proinflammatory genes, but no mention was 

made of sPLA2 (Colangelo et al., 2002). These findings are in agreement with the 

increased oxidative and inflammatory responses and presence of reactive astrocytes 

associated with AD pathology (Butterfield et al., 2002).  In vitro studies demonstrated the 

ability of Aβ to enhance the activity of a number of phospholipases (Kanfer et al., 1998).  

Nicotine, a cholinergic agonist, inhibited an Aβ-induced increase in PLA2 activation 

(Singh et al., 1998).  The ability of PLA2 inhibitors to attenuate Aβ-induced ROS 

production could indicate the involvement of PLA2 in Aβ cytotoxicity (Andersen et al., 

2003).  For a more thorough review please see (Sun et al., 2004). 
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 Evidence also linked sPLA2 generation to white matter disorders and their 

experimental equivalents.  An early study by Huterer, et al., in the post mortem brains of 

Multiple Sclerosis patients found no difference in sPLA2-IIA activity and a decrease in 

cPLA2 activity within white matter lesions (Huterer et al., 1995).  However, more recent 

studies found that cPLA2α -/- mice were more resistant to experimental autoimmune 

encephalomyelitis a rodent model of Multiple Sclerosis.  Additionally, cPLA2α appeared 

to play a role in both the induction and effecter phases as well as increasing inflammation 

in the white matter lesions (Marusic et al., 2005).  Pinto, et al., found that extracellular 

inhibitors of sPLA2 were able to decrease CNS inflammation, prevent the induction of 

proinflammatory cytokines and ameliorate experimental autoimmune encephalomyelitis 

(Pinto et al., 2003).  Finally, in the brains of patients with Krabbe Disease, a 

demyelinating disease of the CNS, sPLA2 was increased in post mortem human samples, 

and in twitcher mice, its rodent equivalent.  Additionally, the use of a sPLA2 specific 

inhibitor reduced psychosine-induced oligodendrocyte death in vitro (Giri et al., 2006). 

 Studies using indirect markers for phospholipid metabolism have also suggested a 

role for sPLA2 in Parkinson’s disease, a degenerative disease of the CNS characterized by 

bradykinesia and death of dopaminergic neurons in the substantia nigra (Hayakawa et al., 

2001).  More importantly, Quinacrine, a nonselective PLA2 inhibitor, significantly 

reduced MPTP-induced dopamine loss in an experimental model of Parkinson’s disease 

(Tariq et al., 2001).  Mice deficient in cPLA2 were also shown to exhibit more resistance 

to MPTP neurotoxicity than wild-type mice, supporting a role for cPLA2 in mediating 

MPTP neurotoxicity (Klivenyi et al., 1998). 
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Conclusions and Direction of Study 

sPLA2 is a family of molecules that are closely associated with inflammation.  

Secondly, the inflammatory response is thought to exacerbate the damage associated with 

secondary SCI.  Third, inhibition of sPLA2 in conditions such as arthritis and ischemic 

bowel disease lessens the inflammation and resulting pathology associated with these 

disorders.  Current evidence shows that sPLA2 is present in the naive CNS, but it is 

unknown whether neurotrauma increases its expression.  Finally, while the products of 

sPLA2 metabolism, such as lysophospholipids and AA, are neurotoxic to the CNS and 

present following SCI and other neuropathologies, it has not been determined whether 

sPLA2’s presence directly contributes to the inflammatory state following SCI and if so 

whether blockade of sPLA2 can create histological and functional improvements.   

 The focus of this research was to determine if SCI upregulate sPLA2 and whether 

other CNS insults, such as H2O2 or TNFα and IL-1β, can upregulate sPLA2 in cultured 

oligodendrocytes.  Secondly, we sought to determine whether an artificial increase in 

sPLA2, by exogenous addition of sPLA2, could damage the CNS or cultured cells.  

Finally, we assessed whether sPLA2 inhibition could produce histological and functional 

sparing following experimental SCI.   
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CHAPTER II 

EXPRESSION OF sPLA2 FOLLOWING SPINAL CORD INJURY 

 

INTRODUCTION 

Our lab previously showed that total PLA2 enzymatic activity in spinal cord 

homogenates increases after injury, peaking at 4 hr post injury.  In the same study we 

showed that cPLA2-IVα (cPLA2α) protein expression, while increased following SCI, 

did not peaked until 7 days post injury (Liu et al., 2006).  This discrepancy led us to 

believe that other PLA2 isozymes constituted the majority of total phospholipase activity 

observed following SCI.  This lead us to investigate the expression profile of the largest 

group of PLA2s, namely sPLA2, following SCI. 

There are three rationales for investigating sPLA2’s role in SCI-induced 

oligodendrocyte death.  First, although sPLA2 is found in both neurons and 

oligodendrocytes its role in neuron death is well documented in association with cerebral 

ischemia (Yagami et al., 2002b, Yagami et al., 2005) while sPLA2’s role in 

oligodendrocytes has been effectively ignored.  Secondly, when sPLA2 was injected into 

the border zone between the grey and white matter of the ventral horn, we noticed 

substantially more inflammation within the white matter (Supp. Fig 1).  This suggested 

that sPLA2 may have a more deleterious effect on white matter.  Third, many mediators 

of secondary SCI are both activators of sPLA2 and cytotoxic to oligodendrocytes.  For 
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example, hydrogen peroxide injury triggers phospholipid metabolism and AA release in 

various cell types (Meyer et al., 1996, Tournier et al., 1997, Cane et al., 1998) and H2O2 

induced AA release is mediated, at least in part, by sPLA2-IIA (Han et al., 2003).  

Likewise, IL-1β and TNFα trigger AA release from cultured cells via a sPLA2-IIA and 

cPLA2-IVα dependent mechanism (Mounier et al., 2004, Kuwata et al., 2005).  Finally 

H2O2 (Richter-Landsberg and Vollgraf, 1998, Mronga et al., 2004), IL-1β (Takahashi et 

al., 2003), TNFα (Selmaj and Raine, 1988, Lee et al., 2000, Buntinx et al., 2004), and 

AA (Wang et al., 2004) have all been shown to damage cultured oligodendrocytes.   

Until now, the expression of sPLA2 isoforms after SCI and their possible role in 

oligodendrocyte death has not been directly studied. Here we provide cellular and 

molecular evidence that sPLA2-IIA and IIE are the two major sPLA2 isoforms that 

increase expression hours following SCI and that both isoforms are present within 

oligodendrocytes.  Moreover, administration of sPLA2-IIA in vitro can induce 

oligodendrocyte cell death.  Finally, blockade of sPLA2 can partially ameliorate culture 

oligodendrocyte cell death induced by either H2O2 or IL-1β and TNFα injury.  Thus, 

sPLA2-IIA may serve as a mediator of oligodendrocyte death and a target for therapeutic 

intervention against injury-induced oligodendrocyte cell death following SCI.   

 

MATERIALS AND METHODS 

Animals 

A total of 82, adult female Sprague–Dawley rats (Harlan, Indianapolis, IN), 

weighing 200 to 220 gm, were used in this study (Table 1). All surgical interventions and 

postoperative animal care were performed in accordance with the Guide for the Care and 
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Use of Laboratory Animals (National Research Council, National Academy Press, 

Washington, D.C., 1996) and the Guidelines of the University of Louisville Institutional 

Animal Care and Use Committee.   

 

Table 1. Animal Usage and Experimental Groups 

 Sham 15 min 1 hr 4 hr 1 day 1 week 

Contusion - + + + + + 

mRNA n=3 n=3 n=3 n=3 n=3 n=3 

Protein n=4 n=4 - n=4 n=4 n=4 

Subcellular Protein n=4 - - n=4 - - 

Histology n=5 n=5 - n=5 n=5 n=5 

 

 

Spinal Cord Injury 

Rats received either a 200 kDyn injury (measured force = 210±7 kDyn, CV = 

3.28%) between the 4th and 5th cervical vertebra level (C4-5), inflicted via an Infinite 

Horizons (IH) impactor (Scheff et al., 2003), or sham laminectomy according to a 

previously published work (Iannotti et al., 2004). Briefly, rats were anesthetized with 

Nembutal (50 mg/kg, i.p., Abbott Laboratories, Chicago, IL) and a dorsal laminectomy 

was performed at the C4-5 level to expose the spinal cord. The exposed vertebral column 

was stabilized using a rat stabilizer developed at the University of Louisville. After the 

injury, displacements were recorded and compared to insure lesion uniformity (1086±93 
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μm; CV = 8.56%).  Post-operative care followed those described previously (Iannotti et 

al., 2004). 

 

RNA Extraction and RT-PCR 

A 1.5 cm long spinal cord segment containing the injury epicenter or equivalent 

was removed 4 hr post injury, frozen in liquid nitrogen, and later homogenized in STAT-

60 solution (TelTest, Friendswood, TX). This kit was subsequently used according to the 

manufacturer’s instructions to purify RNA, which was quantified by spectrophotometric 

analysis of absorbance at 260 nm. Primers used for end point RT-PCR are listed in Table 

2. 
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Table 2. End point RT-PCR primers. 

Gene Accession No. Primer sequence 5’-3’ Product (bp) Reference 

PLA2-IB NM_031585 232–251: ACA ATC AGG CCA AGA AGC TG 250 (Kolko, 2004) 

  462–481: ACG GCA TAG ACA GGA AGT GG   

PLA2-IIA NM_031598 687-707: TTGCCATTGTGGTGTGGGTGG 300 (Molloy, 1998) 

  965-986: CAACTGGGCGTCTTCCCTTTGC   

PLA2-IIC NM_019202 1-20: CCTCCACCTCTCAAATGCTG 250 (Molloy, 1998) 

  231-250: CATTGCTGTTCCAGCCTTTT   

PLA2-IID NM_001013428 1–20: CTGCCTTGCTCTGTGCTGGA 254  

  234-253: CCATCGATCTTCAGGTGGGC   

PLA2-IIE XM_238421 401-419: GTGGGAACCTGGTCCAGTT 285 (Kolko, 2004) 

  667-687: GGCAGCTCTCTTGTCACACTC   

PLA2-IIF XM_233589 1-20: ATGAAGGAGGTTGAGTTTGC 262  

  242-261: TGGAATATCACAGAGCTGGA   

PLA2-III XM_223553 12-36: TATACTTGAGTATAAGACCTCGTGT 251  

  243-262: TCAGAAGAATTGAGCAGGAC   

PLA2-V NM_017174 380-401: CCCTAAGGATGGCACTGATTGG 172 (Molloy, 1998) 

  530-551: CCCTAAGGATGGCACTGATTGG   

PLA2-X NM_017176 461–481: TCC CCT CGG TTT TAT GTG AG 200 (Kolko, 2004) 

  640–660: GCT CCA CAG GCT CAT AGT CC   

PLA2-XIIa XM_342340 144-163: CCAGGAACAGGACCAGACCA 250  

  373-393: CTTGGTCAGGGAAGGGATGC   

 

Primers for sPLA2-IID, IIF, and XIIA were designed using Primer Express 2.0 

(Applied Biosystems, Foster City, CA).  Each primer set was validitated in mRNA 

extracted from the liver, lung, kidney, and spleen.  This led to a band in the correct 

weight for at least one of sources for each primer set tested. Total RNA (0.5 µg) was used 

in a 20 µl mixture containing 4 µl of 5x reaction buffer, 0.2 mM dNTP, 1 µM of up and 

down stream primer, 1 mM MgSO4, 0.1 u/µl AMV Reverse Transcriptase, 0.1 u/µl Tfl 

DNA Polymerase.  The reverse transcription was conducted on an Eppendorf Master 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=Nucleotide&dopt=GenBank&val=9506976
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=Nucleotide&dopt=GenBank&val=61740622
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=Nucleotide&dopt=GenBank&val=62649914
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=62649911
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=Nucleotide&dopt=GenBank&val=62660710
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=Nucleotide&dopt=GenBank&val=8393970
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=Nucleotide&dopt=GenBank&val=62644324
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Cycler (Westbury, NY) with a 45 min first strand cDNA synthesis (45 °C), 2 min 

denaturation (94 °C), followed by 35 cycles of synthesis and amplification consisting of 

30 seconds (94 °C), 1 minute (60 °C), and 2 minutes (72 °C) (Access RT-PCR system, 

Promega, Madison, WI). Amplified samples were separated on a 1% agarose gel 

containing ethidium bromide in 1x TBE buffer. After electrophoresis, gels were imaged 

using an Image Station 4000R (Kodak, Rochester, NY).  Finally, each image was 

quantified using Image J software (NIH, Bethesda MD). 

 

Real-Time Quantitative PCR 

Total RNA was extracted from spinal cords, as described above, 4 hr after sham 

operation or 15 min, 1 hr, 4 hr, 1 day, or 1 week after SCI.  Primers and taqman probes 

for sPLA2-IB and IIA were designed using Primer Express 2.0 (Applied Biosystems, 

Foster City, CA) and are as follows: IB sense 5’- AACTACGGCTGCTACTGTGG-3’, 

IB antisense 5’-AGCAGTGGTCATGAGTCTGG-3’, IB probe 5’-

CGGCTCAGGCACCCCAGTGGAC-3’, IIA sense 5’-

CCAAATCTCCTGCTCTACAAACC-3’, IIA antisense 5’-

CTTTTCTTGTTCCGGGCAAAAC-3’, and IIA probe 5’- 

CGGCAGCTTTATCGCACTGGCACA-3’.  PCR products were detected by measuring 

the increase in fluorescence on a MX3000P (Stratagene, La Jolla, CA). The sequence-

detector software calculated the threshold cycle number (Ct) when signals reached ten-

fold the standard deviation of the baseline.  Primer pairs were chosen to minimize primer 

dimerization and secondary structure; and to generate an amplicon of 96 bp. After PCR, 

reaction products were electrophoresed on a 1% agarose gel containing ethidium bromide 
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in 1x TBE buffer and then visualized. This step was included to ensure that the only PCR 

product was at the desired amplicon size. To correct for possible volume differences, 

transparency of the caps, or other well-to-well differences, the passive reference dye 5(6)-

carboxy-X-rhodamine-C5-maleimide (also known as ROX; Stratagene) was used in all 

reactions. Relative expression of the PCR products was determined by using the ΔΔCt 

method (Gibson et al., 1996; Winer et al., 1999). This method calculates relative 

expression with the equation: -Fold induction = 2[ΔΔCt], where Ct = the threshold cycle, 

i.e., the cycle number at which the sample’s relative fluorescence rises above the 

background fluorescence; and ΔΔCt = [Ct gene of interest (unknown sample) – Ct β actin 

(housekeeping gene)]. Each sample was run in duplicate, and the mean Ct was used in the 

ΔΔCt equation. After a 3 min denaturation step, the PCRs were subjected to 40 cycles of 

30 sec annealing and 30 sec extension at 72 °C. 

 

Western Blotting 

Western blotting followed a previously described procedure (Liu et al., 2004b). In 

brief, whole cell lyses proteins were extracted from a 1.5 cm long spinal cord segment 

containing the injury epicenter 4 hr after sham laminectomy or 15 min, 4 hr, 1 day or 1 

week after SCI.  Additionally, subcellular protein isolation was performed on either sham 

animals or 4 hr after injury using the Focus SubCell kit (G-Biosciences, St. Louis, MO) 

according to manufacturer’s protocol.  In brief, 100 mg of fresh tissue was homogenized 

and centrifuge at 700 x g for 5 minutes to pelletize nuclei.  Supernatant was removed and 

centrifuged at 12,000 x g for 10 min to pelletize mitochondria.  Supernatant was again 

removed and centrifuged at 14,000 x g for 60min to separate the enriched cytosolic 
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membrane fraction from the soluble cytosol fraction. The protein content of all samples 

was assessed by the Bradford method (Bio-Rad Protein Assay, Hercules, CA) and 

normalized prior to adding sample buffer. 

Similar amounts of protein (40 µg) was electrophoresed on a 12% sodium 

dodecyl sulfate-polyacrylamide gel, transferred onto a polyvinylidene diflouride 

membrane, and immunoblotted with primary rabbit monoclonal anti-sPLA2-I antibody 

(1:100; “Anti-PLA2, low molecular weight” Millipore, Billerica, MA), polyclonal anti–

sPLA2-IIA antibody (1:1000; Cayman Chemical, Ann Arbor, MI), polyclonal anti-

sPLA2-IIE antibody (1:1000; Biovendor, Candler, NC), or goat polyclonal anti-sPLA2-X 

antibody (1:200; Santa Cruz Biotechnology, Santa Cruz, CA) and a secondary 

horseradish peroxidase–conjugated donkey anti–rabbit or anti-goat IgG antibody 

(1:10,000; Amersham Pharmacia Biotech, Piscataway, NJ). The blot was visualized using 

the ECL Plus Detection Kit (Amersham Pharmacia Biotech). Whole cell lysis membranes 

were stripped and reblotted with β-tubulin, to confirm consistent well loading (Liu and 

Xu, 2006).  Subcellular fraction membranes were stripped and reblotted with β-tubulin, 

caveolin, or histone 1 for the cytosol, membrane, and nuclear fractions.  The primary 

antibody was omitted for negative controls. Protein extracted from the rat spleen was 

used as a positive control for the expression of sPLA2-IIA.  Densitometry allowed for 

relative comparison of signal strength by Image J software.  When a doublet appeared at 

the correct weight both bands were included in the analysis. 

 

Immunohistochemistry 
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Spinal cords were removed 4 hrs after sham operation or 15 min, 1 hr, or 4 hr 

after SCI.  After perfusion with PBS and 4% paraformaldehyde, a 2 cm-long spinal cord 

segment containing the injury epicenter of each rat was removed, cryoprotected in 30% 

sucrose buffer, sectioned transversely at 40 µm on a cryostat, and mounted on 

Superfrost/Plus slides (Fisher Scientific, Pittsburgh, PA) in eight identical sets. Three 

sections were taken from each of five sample sites within the tissue, every 0.5cm, and 

were incubated with either rabbit monoclonal anti-sPLA2-IB (1:200, Chemicon) or rabbit 

polyclonal anti-sPLA2-IIA (1:300, Cayman Chemical) overnight at 4°C. On the second 

day, the sections were incubated with secondary biotinylated IgG antibody (1:400; Vector 

Laboratories, Burlingame, CA) for 1 hr at room temperature. The reaction product was 

shown by incubation for 5 minutes with 0.02% diaminobenzidine tetrahydrochloride 

(DAB) and 0.003% H2O2 in 0.05M Tris-HCl (pH 7.6). Slides were examined using an 

Olympus BX60 light microscope (Olympus America, Inc., Mellville, NY). To further 

confirm the specificity of the immunohistochemical labeling, negative controls of pooled 

antibodies from healthy adult animals (Vector Laboratories) in serum blocking solution 

were used simultaneously. 

 Using standard light and aperture settings, images were captured with MicroFire 

Digital Camera (Optronics, Goleta, California) at 2 x and staining intensities were 

determined using Image J software (NIH) by first inverting the image and then measuring 

the mean intensity.  The intensity of the negative control animal was subtracted from the 

recorded intensities to account for unintentional secondary antibody binding and natural 

tissue coloration. 
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Immunofluorescence Labeling 

Immunofluorescence double labeling at the injury epicenter was performed on 

different tissue sets using previously described methods (Liu et al., 2004b). In brief, a 

mixture of rabbit monoclonal anti-sPLA2-IB (1:100; Chemicon), polyclonal anti-sPLA2-

IIA (1:100; Cayman Chemical), or  polyclonal anti-sPLA2-IIE antibody (1:50; Biovendor, 

Candler, NC), and mouse anti-CC1 (1;100; Chemicon), anti–glial fibrillary acidic protein 

(1:300; Sigma), and anti-O4 (1:1; hybridoma), anti-NeuN (1:100; Chemicon, Temecula, 

CA), and anti-SMI-31 (1:2,000; Sigma, St. Louis, MO) antibodies were used to examine 

colocalization of sPLA2 in neurons, axons, oligodendrocytes, or astrocytes in vivo or 

mature oligodendrocytes in vitro respectively. The paired antibody solutions were applied 

to the sections overnight at 4°C. The following day, sections were incubated with 

fluorescein-conjugated goat anti–mouse (1:100; Jackson Immunoresearch, West Grove, 

PA) and Texas red-conjugated goat anti–rabbit (1:100; Jackson Immunoresearch) 

antibodies. Negative controls of pooled antibodies from healthy adult animals (Vector 

Laboratories) and normal serum controls were used to further confirm the specificity of 

the immunofluorescence double labeling. Images were taken using a Nikon Eclipse 90i 

confocal microscopy (Nikon Instruments; Melville, NY). 

 sPLA2-IIA signal within oligodendrocytes was quantified using Stereo 

Investigator software (Microbrightfield,Williston, VT) on an Olympus BX60 microscope 

(Center Valley, PA) under 100x oil immersion.  Under standard exposure times contour 

tracing was begun around the cells of interest while viewed through an FITC filter.  After 

switching to Texas Red filter, luminescence data was acquired for the cell of interest by 

closing the contour.  Twenty oligodendrocytes were chosen from each of three different 
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tissue sections, by systematic random sampling from the ventral funiculus of the lesion 

epicenter.  The averaged intensities were averaged to create mean florescent intensity for 

oligodendrocytes in each animal (n=5, per group).  Background intensity was gathered in 

a similar manner from primary antibody omission control section and subtracted from the 

mean intensity for that given animal.  This was done to control for non-specific binding 

of secondary antibody following contusion. 

 

Oligodendroglia Culture 

Adult oligodendrocyte precursor cells (aOPCs) were immunopanned with an anti-

O4 antibody from the adult spinal cord of rats (Kisseberth et al., 1999), using a protocol 

modified from (Cao et al., 2002).  Briefly, the dissected spinal cords were minced into 1 

mm3 pieces and incubated in HBSS containing 0.1% papain, 0.1% neutral protease, and 

0.01% DNase for 30 min at 37°C.  The digestion was stopped by the addition of an equal 

volume of DMEM containing 10% fetal bovine serum. Tissues were dissociated by 

repeated trituration with fire-polished Pasteur pipettes and were filtered through a 70 μm 

nylon mesh. The cells were then incubated on an anti-RAN-2 antibody (ATCC, 

Rockville, MA) coated dish for 30 min to deplete type-1 astrocytes and meningeal cells 

and then transferred to an anti-O4 antibody-coated dish for 45 min to select for adult 

OPCs.  

The purified adult OPCs on the dish were removed with 0.05% trypsin and 

cultured in DMEM/F12 medium containing N2 and B27 supplements, FGF2 (20 ng/ml), 

PDGF-aa (10 ng/ml), Insulin (5 μg/ml) and BSA (0.1%). An aliquot of cells was 

analyzed the next day to determine the efficiency of the immunopanning. Only those cell 
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preparations in which >95% of the bound cells expressed A2B5 were used in the 

experiments. The results were confirmed by FACS analysis. 

The cells were seeded onto either PDL / laminin coated culture dishes for survival 

experiments and western blot analysis, or chamber slides for immunocytochemistry. Two 

days after seeding or once cells reached 70-80% confluence, the FGF-2 and PDGF-aa 

were removed, and CNTF (0.001 µg / ml) was added to the OPC medium to induce 

differentiation. A2B5+ OPCs were induced to differentiate in vitro for 4 days and were 

either challenged to induce injury, lysed for western blot, or fixed for 

immunocytochemical analysis. 

Mature oligodendrocyte cultures were injured with recombinant human sPLA2-IIA 

(Biovendor, Candler, NC) and assayed at 48 hr for cytotoxicity by lactate dehydrogenase 

(LDH) present in the medium (CytoTox96 non-radioactive assay; Promega, Madison, 

WI) or reduction of (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide by 

the mitochondria of surviving cells (MTT, CellTiter 96 Cell Proliferation Assay; 

Promega, Madison, WI).   

A second set of cultures were pretreated with vehicle, or 0.25, 1.25, 6.25 µM of 

S3319, a sPLA2-IIA inhibitor diluted in 1% DMSO (Sigma Aldrich, St. Louise, MO) or 

50 µM of 4-aminophenyl α-D-mannopyranoside, non-catalytic sPLA2 receptor ligand 

(APMP, Sigma Aldrich, St. Louise, MO).  Then cells were challenged with vehicle, 

1mM, 5 mM, or 10mM H2O2, with or without sPLA2-IIA inhibitor for 30min, washed 

once with fresh medium, and the vehicle or S3319 was replaced.  Again cytotoxicity was 

evaluated by measuring LDH released in the media 48 hr after H2O2 exposure.  
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A third set of cultures were pretreated as above with S3319 but were challenged with 

the cytokines IL-1β (PeproTech Inc., Rocky Hill, NJ) and TNFα (PeproTech) at low (1 

and 2 ng respectively) or high dose (5 and 10 ng).  Again cytotoxicity was evaluated by 

measuring LDH released in the media.  Data were normalized to the amount of LDH 

released from similarly-treated cells receiving a lysis buffer and are corrected for baseline 

LDH release from blank wells. This procedure was necessary to ensure that the reported 

effects are not attributable to the various vehicles used or cell death due to pretreatment 

with S3319.  All cell culture experiments consisted of at least 4 separate wells.  All 

experiments were repeated in triplicate on separate days.  The results presented are the 

averaged of the three separate experiments.  The area of process extensions was 

calculated using three separate images take from the center of each well.  Images were 

converted to a binary by setting a common constant threshold and then the area was 

determined by Image J software.   

 

Statistical Analysis 

A Student’s t-test, two tailed, was used to compare RT-PCR results utilizing 

Levene's Test for Equality of Variances.  One-way analysis of variance (ANOVA) with 

post hoc Tukey HSD was used to determine statistical significance of three or more 

groups. A multiple analysis of variance (MANOVA) with post hoc Tukey's HSD was 

used to determine statistical significance of three or more groups when repeated measures 

were taken from each animal overtime or space.  A p value less than 0.05 was considered 

statistically significant.  Two extreme outliers were excluded from the Q-PCR data using 

the Grubb’s extreme studentized deviate method.   
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RESULTS 

sPLA2 mRNAs are differentially expressed following SCI. 

End point RT-PCR was used to scan for the expression of all the sequenced 

mammalian sPLA2 isoforms in either sham or contused animals 4 hr following surgery (n 

= 3).  Primer sets were designed for sPLA2-IB, IIA, IIC, IID, IIE, IIF, V, X, and XIIA.  

Seven of the nine mammalian sPLA2 were detected in naïve and contused animals with 

mRNA present for sPLA2-IB, IIA, IIC, IIE, V, X, and XIIA (Fig. 5).  Pictured are three 

representative animals for each isoform that yielded replication.   
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Figure 5. Changes in secretory PLA2 mRNA following SCI. 

A) Gels shown are representative samples of mRNA levels from either 3 sham-operated 

rats (lanes 2-4) or 3 rats sacrificed at 4 hr post-SCI (lanes 5-7).  Lane 1 is a 100 bp ladder.  

Total RNA samples were reverse transcribed for all the mammalian sPLA2 isoforms.  

Statistical increases were seen in sPLA2-IIA and IIE with a decrease seen in sPLA2-X.  

No change was observed in sPLA2-IB, IIC, V, and XIIA.  B) Relative fold increase of 

sPLA2-IIA mRNA expression after real time Q-PCR at 15 min, 1 hr, 4 hr, 1 day, or 1 wk 

following SCI (mean ± SD).   
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Among all sPLA2 isoforms examined, sPLA2-IIA showed the most dramatic 

change after SCI.  sPLA2-IIA mRNA produced only a slight signal in the sham operated 

cord but increased (t(4) =6.44, p = .003) following contusion (Fig. 5A).  Similarly, 

sPLA2-IIE, while almost absent in the naïve cord, showed an increase in the injured cord 

(t(2.42) = 3.93, p = .043).  In contrast, PLA2-X showed a significant decrease in signal 

intensity (t(2.53) = 5.980, p = .015) (Fig. 5A). sPLA2-IB, IIC, V and XIIA were present 

in both the sham and contused cord in similar intensity following RT-PCR. Thus, we 

demonstrated, for the first time, that sPLA2 isoforms are differentially expressed 

following a contusive SCI. 

Next, real-time Q-PCR was used to quantify the qualitative increases seen after 

RT-PCR and determine the time course of sPLA2 expression following SCI.  Two sPLA2 

isoforms, IIA and IB, were  chosen for this study because of their significant association 

with inflammation or highest expression in the CNS, respectively (Kolko et al., 2004).  

Both subgroups were quantified as a fold increase from naïve animals (Fig. 5B).  In 

agreement with the RT-PCR results, sPLA2-IIA mRNA expression had a significant 4-

fold increase at 1hr following contusion compared to the sham operated animal 

(ANOVA, F6, 30 = 2.885, p = 0.02).  Similar to the end point PCR, sPLA2-IB showed no 

change at 4 hr but by one day a statistically significant 2.54 fold decrease was observed 

that persisted through one week (ANOVA, F6, 11 = 3.649, p = 0.04) (data not shown).  

This data suggests that isoforms of sPLA2 are differentially regulated following traumatic 

SCI and that sPLA2-IIA synthesis dramatically increases and peaks at 4 hr following 

contusion. 
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sPLA2 proteins are differentially expressed following SCI. 

To confirm that changes in mRNA in fact reflect changes in protein production, 

spinal cord homogenates were immunoblotted with antibodies to sPLA2-IB, IIA, IIE, or 

X. While a general increase in the mean expression of sPLA2-IB was seen, this was not 

statistically significant further confirming the PCR results (Fig. 6A & B; ANOVA, F4,15 = 

0.8335, p = 0.52).  In contrast, sPLA2-IIA showed a 3-fold increase in protein expression 

at 4 hr compared to sham controls (Fig. 2A & C, ANOVA, F4,15 = 4.860, p < 0.01).  

Significantly increased sPLA2-IIA expression was also found at both 4 hr and 1day post 

injury (Fig. 6C).  An equal amount of splenic protein was run as a positive control for 

sPLA2-IIA and showed a band about 3.6 times greater than the strongest spinal cord 

band, confirming the lower abundance in the spinal cord as compared to the spleen (Fig. 

6A).  Not surprisingly, sPLA2-IIE showed similar results to IIA with a significant 2.5 

fold-increase that peaked at 4 hr after SCI and returned to the baseline by 1 day (Fig. 6A 

& D, ANOVA, F4,15 = 5.025 , p < 0.01).  Finally,  while sPLA2-X mRNA decreased 

following SCI there was little change in the protein levels compared to the sham controls 

(Fig. 6A & E, ANOVA, F4,15 = 0.2554, p = 0.90).  These results confirm that both sPLA2-

IIA and IIE proteins are significantly increased following SCI.  Interestingly, the peak 

expression of the two sPLA2 isoforms coincides well with the peak activation of total 

PLA2, as we demonstrated previously (Liu et al., 2006). Thus, sPLA2-IIA and IIE may 

represent major contributors to phospholipase activity following SCI. 
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Figure 6. Temporal changes in sPLA2 protein expression following SCI. 

A) Representative western blots of whole cell lysates from sham or contused animals at 

15 min, 4 hr, 1 day, or 1 wk post injury.  The top panel in A shows a representative time 

course of sPLA2-IB (16 & 14 kDa) protein expression showing no changes following 

SCI.  SCI induced a significant increase in sPLA2-IIA (15 kDa) and IIE (18 kDa) 

expression beginning at 4 hr and continuing through 1 day post injury, but returning to 

baseline by 1 week.  Group X (13 kDa) showed no change in expression.  B - E) 

Quantification of western blots in A from four separate animals per group (n = 4/group, 

mean ± SD). β-tubulin (50 kDa) was used to confirm even sample loading in all blots. 

(**p < 0.01 versus sham) 
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Spatiotemporal distribution of sPLA2 isozymes following SCI 

Since sPLA2 mRNA and proteins were differentially expressed post SCI, we next 

determined their temporal and spatial distribution using immunohistochemistry.  In this 

study, sPLA2-IB, IIA, IIE, and X were examined at 5 mm intervals from the injury 

epicenter.   

We chose to focus on white matter because we previously showed that bilateral 

injections of sPLA2-III (0.1 μg) into the ventral grey matter / white matter interface of rat 

spinal cords resulted in a massive destruction of white matter with a relative sparing of 

grey matter at 4 weeks (Sup. 1)(Liu et al., 2006).  sPLA2-IB showed strong expression in 

white matter (Fig. 7A & E) both before and after injury.    Quantification of labeling 

intensity using Image J showed no change in sPLA2-IB signaling either among different 

time points post SCI or distance from the epicenter (MANOVA F3, 263.806 = 4.367, p > 

0.05, Fig. 7I).  

 In contrast, sPLA2-IIA (Fig. 7, 2nd column) and IIE (Fig. 7, 3rd column) each 

showed a weak baseline staining in the white matter of sham controls. However, 

following SCI, sPLA2-IIA and IIE immunoreactivity increased markedly (Fig. 7F & G).  

Within the white matter, a strong increase in sPLA2-IIA and IIE staining in glial cells and 

axons, particularly swollen axons, was seen (Fig. 3F, arrows).  Quantification data 

showed a significant increase in sPLA2-IIA immunoreactivity at the injury epicenter in all 

SCI groups over sham controls (MANOVA F18.3, 15.575  = 46.437, p < 0.001, Fig. 7J).  

Finally, sPLA2-X showed little immunoreactivity either in sham or SCI animals (Fig. 7, 

4th column).   
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 Thus, the present study showed that IIA and IIE, but not IB and X, are the major 

sPLA2 isoforms that markedly increased following SCI and their expression was induced 

mainly at the site of injury. It should be noted that IIA and IIE are structurally and 

functionally similar and are both located at the same genetic locus (Kudo and Murakami, 

2002).  
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Figure 7. Immunohistochemical Changes in sPLA2-IB, IIA, IIE, and X Expression 

Following SCI. 

A - H) Changes in the ventral white matter in sham (A - D) or 4 hr post contusion (E - H).  

Little change in sPLA2-IB staining was seen (A & E).  In contrast, SCI induced a 

significant increase in sPLA2-IIA (B & F) and IIE (C & G) IR within the white matter. 

Both IIA and IIE showed staining of axons and glia.  However, there was little or no 

staining of sPLA2-X (D & H).  I & J) Quantification of IB and IIA staining intensity is 

shown at the epicenter and at 5 mm increments, both rostral and caudal to it.  Increases 

above sham controls were only seen in sPLA2-IIA and were only present at the injury 

epicenter of sPLA2-IIA.  Bar: A-H, 500 μm. I-J; n = 5 per group, mean ± SD; * p < 0.05; 

sham , 15 min , 1 hr , 4 hr . 
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Cellular localization of sPLA2 isozymes following SCI 

To better understand what cell types express sPLA2 isoforms, immunofluorescent 

double labeling of sPLA2–IB, IIA, IIE, or X and cell specific markers was performed. As 

was suggested by the immunohistochemistry, we found that oligodendrocytes (CC1/APC; 

Fig. 8) co-localized with sPLA2-IB (Fig. 8B & C), sPLA2-IIA (Fig. 8E & F), and sPLA2-

IIE (Fig. 8H & I).  However, sPLA2-X did not appear to co-localize with 

oligodendrocytes (Fig. 8J–L).  The sPLA2-X staining appeared to reside only in the 

extracellular space. This morphology is not surprising since sPLA2-X has the greatest 

secreted fraction and the lowest cytosolic fraction of any sPLA2 (Murakami et al., 2002b).  

Additionally, previous work with stably transfected cell lines yielded similar sPLA2-X 

immunofluorescence (Kudo and Murakami, 2002). 
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Figure 8. Co-localization of sPLA2 Isoforms in Oligodendrocytes at 4 hr Post-SCI. 

Confocal images of immunofluorescent double labeling indicates that sPLA2-IB (A-C), 

IIA (D-F), IIE (G-I), but not X (J-L) are present within oligodendrocytes (CC1/APC) 4 hr 

following contusion.  All images are orthogonal views of confocal image stacks with the 

point of interest indicated by the green cross hairs in the merged image.  Within each 

frame the X/Y plane is represented by the square picture, the Y/Z plane is represented to 

the right, and the X/Z plane is represented along the bottom of the X/Y frame.  Scale 

bars: 20 µm for all. 
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Within the white matter, astrocytes (GFAP; Sup. 2) co-localized with sPLA2-IB 

(Sup. 2B & C) and weakly with sPLA2-IIA (Sup. 2E & F) but showed no co-localization 

with sPLA2-IIE (Sup. 2H & I).  Similar to staining seen in oligodendrocytes sPLA2-X 

again did not appear to co-localize with any astrocytes (Sup. 2J–L).  Neurons within the 

ventral grey matter (NeuN; Sup. 3), showed similar staining to oligodendrocytes with the 

presence of sPLA2-IB (Sup. 3B & C), sPLA2-IIA (Sup. 3E & F), and sPLA2-IIE (Sup. 3H 

& I), but not sPLA2-X (Sup. 3K & L).  Almost all axons (SMI-31; Sup. 4) within the 

ventral white matter showed co-localization with sPLA2-IB (Sup. 4B & C) and sPLA2-

IIA (Sup. 4E & F).  sPLA2-IIE staining was weak and confined mainly in axons that 

appeared to be swollen (Sup. 4H & I, arrows) and no axons appeared to co-localize with 

sPLA2-X (Sup. 4K & L). 

To further confirm that sPLA2-IIA was not merely present in oligodendrocytes 

but increases following contusion, we compared sPLA2-IIA labeling intensities within 

oligodendrocytes at the injury epicenter 4 hr after either sham surgery (Fig. 9A-C) or SCI 

(Fig. 9D-F).  A significant increase in sPLA2-IIA expression was found within 

oligodendrocytes (t(5.947) = -3.517, p = 0.01, Fig. 9G).  Increased expression of sPLA2s, 

particularly IIA, opens a new possibility that it may play a role in the death of 

oligodendrocytes following SCI. 

 

sPLA2-IIA increases in membrane fraction following SCI.  

To determine whether sPLA2, particularly IIA, play a role in increased 

phospholipid hydrolysis, we determined the co-localization of sPLA2 with its 
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phospholipid substrate, which is most abundant in the membrane fraction of cells. 

Subcellular fractions of sham and contused spinal cords were immunoblotted for sPLA2-

IIA expression.  Four hours following contusion, sPLA2-IIA increased about 4-fold 

within the cytosolic membrane fraction (Fig. 9H). While the non-membrane fraction of 

the cytosol did show a strong band for sPLA2-IIA there was little increase following 

contusion.  Additionally, the nuclear fraction showed no sPLA2-IIA expression.  These 

results suggest that the increase in sPLA2-IIA protein expression observed in the whole 

cell lysates after SCI is within the membrane fraction which is rich in phospholipid 

substrates suggesting a functional role sPLA2-IIA on its phospholipid substrates.   
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Figure 9. sPLA2-IIA Expression Increases in Oligodendrocytes Following SCI and 

Increases Within the Membrane Fraction. 

A-C) In a sham-operated rat, sPLA2-IIA was localized in a CC1-positive oligodendrocyte 

at a baseline level.  D-F) However, at 4 hr post-injury, sPLA2-IIA expression increased in 

CC1-positive oligodendrocytes (E versus B).  Images were taken under identical 

conditions within one session.  G) Quantification of the sPLA2-IIA staining intensity in 

oligodendrocytes at the injury epicenter (n = 3 animals per group, mean ± SD; ** 

p<0.01).  H) Western blots of subcellular fractions taken from either sham or contused 

spinal cords 4 hr following injury showing the increase of sPLA2-IIA observed in A is 

predominantly within the membrane bound fraction and not the soluble cytosolic or 

nuclear fractions.   
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sPLA2-IIA induces oligodendrocyte death in vitro. 

Since sPLA2-IIA increased globally and within the membrane fraction following 

SCI, we next examined what effect increased sPLA2-IIA might have on 

oligodendrocytes. These studies focused on oligodendrocytes for two reasons.  First, 

whereas sPLA2-IIA induced neuronal apoptosis has already been shown (Yagami et al., 

2002b, DeCoster, 2003, Yagami et al., 2003), the role of sPLA2-IIA in oligodendrocyte 

cell death remains unknown. Secondly, our previous observation indicates that sPLA2 is 

potentially more destructive to white than grey matter (Sup. 1). 

To determine whether sPLA2-IIA can directly affect oligodendrocyte viability, 

recombinant human sPLA2-IIA was added to differentiate adult oligodendrocyte 

precursor cultures.  sPLA2-IIA triggered a dose-dependent increase in LDH within the 

culture medium corresponding to an increase of cell cytotoxicity from 16.0 ± 5.3 % in 

control wells to 34.3 ± 6.3 % in wells treated with 2 µM of sPLA2-IIA at 48 hr (F3,16 = 

13.04, p < 0.001; Fig. 10E).  Similarly, the MTT assay showed a corresponding change 

with control wells showing an optical density (OD) of 0.040 ± 0.005 and the 2 µM 

sPLA2-IIA dose resulting in an OD of 0.027 ± 0.005 (F3,16 = 13.04, p < 0.001; Fig. 10F).  

Phase contrast images of these wells confirmed oligodendrocyte damage with a decreased 

arbor in the 0.01 and 0.1 µM concentrations and a complete degradation of the cell soma 

and processes at the 2µM concentration (Fig. 10A–D).  Since sPLA2-IIA administration 

can induce oligodendrocyte cell death in vitro, blocking sPLA2-IIA expression or activity 

may prevent such cell death following injury. 

To determine the relative specificity of sPLA2-IIA’s effect on oligodendrocytes, 

identical concentrations were added to primary astrocytes and Schwann cells cultures.  
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Interestingly, no cell death was noted in either culture suggesting that sPLA2-IIA has 

little effect on other glia within the CNS and that the myelinating cells of the peripheral 

nervous system show resistance to sPLA2 activity.  These findings might explain why 

sPLA2 injections into the spinal cord white matter result in oligodendrocyte death but 

shows strong gliosis and delayed Schwann cell remyelination (Titsworth et al., 2007).  

Since sPLA2-IIA administration can induce oligodendrocyte and neuron death in vitro, 

blocking sPLA2-IIA expression or activity may prevent such cell death following injury. 



 90

 

 

 

 

 

 

Figure 10. Oligodendrocytes show sensitivity to sPLA2-IIA triggered cell death 

relative to Schwann cells and astrocytes.   

Low levels of exogenously added sPLA2-IIA (0.01 and 0.1 μM; B & C) result in a 

loss of processes extending from the soma and a higher dose (2 µM; D) triggers loss of 

process and cell death as shown by phase contrast images.  An 18.2 % increase in 

cytotoxicity as measured by an increase in lactate dehydrogenase within the media (LDH, 

E), and a 33.1% decreased conversion of tetrazolium into a formazan product (MTT, F) 

suggesting decreased cell survival.  In contrast the 2 μM had no effect on either LDH 

release or MMT conversion in cultured Schwann cells (F-G) or astrocytes (H-I) 

suggesting a specific sensitivity to sPLA2-IIA in oligodendrocytes.  
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sPLA2 attenuates H2O2 induced oligodendrocyte death in vitro. 

To address what effects injury induced sPLA2-IIA expression might have on 

oligodendrocytes, an in vitro Hydrogen peroxide (H2O2) injury model was developed.  

When adult oligodendrocytes were challenged with a 30 min pulse of H2O2, there was a 

dose dependent increase in sPLA2-IIA expression over the vehicle control 48 hr after 

H2O2 insult (Fig. 11A).  Immunoflorescence staining confirmed the presence of sPLA2-

IIA-IR in oligodendrocytes in naïve (Fig. 11B–D) and following H2O2 treatment (Fig. 

11E–J).  Interestingly, sPLA2-IIA staining in naïve oligodendrocytes were homogenously 

distributed (Fig. 11D insert) whereas in H2O2 treated cells showed sPLA2 aggregates in 

perinuclear puncta (Fig. 11G & J inserts).  It should be noted that the cells showing 

sPLA2-IIA aggregation also show nuclear fragmentation stained by Hoechst 33342, a 

nuclear dye suggesting apoptosis (Fig. 11G&J inserts, blue).   
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Figure 11. H2O2 Injury Induces sPLA2-IIA Expression in Cultured 

Oligodendrocytes. 

A) Western blots showing a dose dependent increase in sPLA2-IIA 48 hr following a 30 

min injury with vehicle, 1mM, or 10mM of H2O2.  B-J) Confocal images of 

oligodendrocytes 48 hr following treatment with vehicle (B-D) or 10 mM of H2O2 (E – 

J).  Dead or dying cells showed either a fragmentation of the nuclei, loss of arborization, 

and micro-puncta (E – G) or a round nuclei, swelling of primary processes, and larger 

puncta (H – J).  Bar: 50 µm.  
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Next, differentiated oligodendrocyte cultures were challenged with either 1 mM 

or 10 mM H2O2 for 30 min prior to the administration of various doses of S3319, a small 

molecule inhibitor designed to block the sPLA2-IIA enzymatic site.  48 hr following 

H2O2 injury, wells containing the sPLA2-IIA inhibitor S3319 showed reduced 

cytotoxicity in both H2O2 injury intensities (MANOVA F3,48 = 26.63, p < 0.0001; Fig. 

12A).  In the 10 mM H2O2 treated wells; cells treated with vehicle showed LDH levels 

suggestive of 46.3 ± 9% cell death as compared to 28.4 ± 3% cell death in the S3319 

treated wells (p < 0.001).  These results suggest that increased sPLA2-IIA enzymatic 

activity partially mediates H2O2 induced oligodendrocyte cell death. 

Independent of its enzymatic site, the binding of sPLA2 to its receptor (sPLA2-R) 

has been shown to have limited pro-survival functions.  To assess the receptors role in 

cell survival, oligodendrocytes were pretreated with either vehicle or 50 µM APMP, a 

non-catalytic sPLA2 receptor ligand 30 min prior to the addition of vehicle or 5 mM H2O2 

for 30 min.  In contrast to its enzymatic blockade, inhibition of the sPLA2-R resulted in 

increased cell death (ANOVA F3,44 = 364.5, p < 0.0001, Fig. 12B), approximately 14% 

more cytotoxicity compared to the vehicle controls (59.9 ± 7.9 % vs. 46.0 ± 5.3 %).  

Similarly, when the same cultures were assessed with MTT reduction assay, treatment 

with APMP reduced the optical density from 0.189 ± 0.02 to 0.154 ± 0.03 (ANOVA F3,34 

= 50.79, p < 0.0001, Fig. 12C).  Thus, in contrast to blockade of the enzymatic site which 

increases cell survival, blockade of the sPLA2 receptor decreased cell survival.   
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Figure 12. sPLA2-IIA Enzymatic Inhibition Partially Reversed H2O2 Induced 

Oligodendrocyte Cell Death.   

(A).  The highest dose of sPLA2-IIA inhibitor S3319 (1.25 µM) was able to decrease by 

17.9 % the amount of cytotoxicity induced by a 30 min treatment with 10 mM H2O2.  

Blockade of the sPLA2-IIA receptor in contrast appears in increase cell death in both the 

vehicle and H2O2 treated oligodendrocytes (B & C).  Following addition of 5 mM of 

H2O2, cell cytotoxicity increases by 13.9% in the APMP treated condition (p < 0.001, B).  

Within the same wells, cell viability as measured by MTT reduction reduces by 18.9% 

among uninjured cells treated with APMP (p < 0.001,C). Note doted line in C denotes 

O.D. of wells that were lysed prior to addition of MTT.  (n = 7 wells per group in A, n = 

6 wells per group in B & C, all in vitro studies repeated in triplicate, mean ± SD; ** p < 

0.01, *** p < 0.001).   
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sPLA2 mediates IL-1β and TNFα induced oligodendrocyte injury in vitro. 

To investigate whether the beneficial effects of sPLA2 blockade mediate more 

than H2O2 induced oligodendrocyte injury, we developed a cytokine injury model for 

oligodendrocyte.  IL-1β and TNFα were chosen because both are suggested mediators of 

secondary SCI (Hostettler and Carlson, 2002, Demjen et al., 2004) and exogenous IL-1β 

and TNFα induces sPLA2-IIA dependent AA release in many cell lines (Kuwata et al., 

1998, Kuwata et al., 2000, Kuwata et al., 2005).  Similarly, we found that treatment with 

IL-1β and TNFα created a time dependent increase in sPLA2-IIA expression in cultured 

oligodendrocytes (Fig. 13A).  When high doses of IL-1β and TNFα were added to 

oligodendrocyte cultures, pretreatment with S3319 showed a decrease in cytotoxicity, as 

measured by LDH release after treatment (MANOVA F1,30 = 16.85, p < 0.0001; Fig. 

13H).  More dramatic than the observed sparing was the morphological changes 

associated with this injury model.  IL-1β and TNFα treatment results in a dramatic 

decrease in oligodendrocyte processes extending from the soma at 48 hr (Fig. 13B-D).  

Interestingly, this process loss was similar to that observed following addition of 0.01 and 

0.1 μM of sPLA2-IIA to oligodendrocyte cultures (Fig. 10B & C).  When cultures were 

pretreated with S3319, this loss of oligodendrocyte processes was almost fully prevented 

(Fig. 13E-G).  Quantification of area covered by oligodendrocyte processes confirms this 

observation (MANOVA F1,30 = 9.27, p < 0.01, Fig. 13I).   
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Figure 13. Blockade of sPLA2 in Oligodendrocyte Cultures Prevents Morphological 

Changes and Death Associated with IL-1β and TNFα Injury. 

A) Representative western blot showing time dependent sPLA2-IIA expression following 

treatment with low doses (1 and 2 ng/ml) or high doses (5 and 10 ng/ml) of IL-1β and 

TNFα.  B-G) Phase contrast images showing oligodendrocyte cultures 72 hr after injury 

with either vehicle, low doses (1 and 2 ng/ml) or high doses (5 and 10 ng/ml) of  IL-1β 

and TNFα.  Cultures were either pretreated with vehicle (B-D) or 1.25 µM S3319 (E-G).  

Note the decrease in oligodendrocyte process extension.  H) IL-1β and TNFα injury 

resulted in very mild cytotoxicity at 72 hr, but there was a significant sparing when 

pretreated with the sPLA2 inhibitor S3319.  I) Quantification of process area in (B-G) 

showing that 1.25 µM S3319 significantly prevents the destruction of oligodendrocyte 

processes after IL-1β and TNFα injury. 
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DISCUSSION 

sPLA2 expression following SCI 

We previously showed that cPLA2-IVα (cPLA2α) protein expression increased 

following SCI and peaked at 7 days post injury.  However, measurements of total PLA2 

enzymatic activity in spinal cord homogenates, while increasing after injury, peaked at 4 

hr (Liu et al., 2006).  This led us to believe that PLA2 isozymes, other than group IV, 

most likely contribute to the increase in phospholipases activity observed following SCI.  

To this end we used RT-PCR to screen for which mammalian isoforms of sPLA2 were 

expressed in the naïve and contused spinal cord at 3hr post injury.  We found that of the 

seven isoforms expressing mRNA, two were up regulated (IIA and IIE), one was down 

regulated (X), and four were unchanged (IB, IIC, V and XIIA).  These results were 

further confirmed at the protein level with a peak expression at 4 hr which coincides with 

both apoptosis following SCI (Liu et al., 1997) and the time of peak phospholipase A2 

activity following SCI (Liu et al., 2006).  Next we showed that IIA and IIE increased 

within the lesion area and that groups IB, IIA, and IIE were present in oligodendrocytes 

as well as axons and neurons while group X was only found extracellularly.   

The presence of sPLA2-IB, IIA, IIC, IIE, V, and X is well established within the 

mammalian brain (Molloy et al., 1998, Suzuki et al., 2000, Kolko et al., 2004) as is 

upregulation of certain isoforms following CNS injury (Kolko et al., 2004, Kolko et al., 

2005, Adibhatla and Hatcher, 2007).  However, only one study has demonstrated sPLA2-

IIA and V protein in naïve spinal cords (Svensson et al., 2005).  Therefore this was the 

first study to document differential changes of sPLA2 isoforms following CNS trauma.  
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Interestingly, in separate studies sPLA2-IB increased following KA injection and 

electroconvulsive shock (Kolko et al., 2005), IB, V, and X increased after retinal damage 

(Kolko et al., 2004), and IIA increased following cerebral ischemia (Yagami et al., 

2002b, Lin et al., 2004, Adibhatla and Hatcher, 2007).  In comparison, this study found 

only the group II enzymes increased, while no change was observed in IB, and group X 

decreased following traumatic SCI.  Consistent with this tight regulation, the promoter 

region of sPLA2-IIA gene contains TATA and CAAT boxes as well as several elements 

homologous with consensus sequences for binding of transcription factors such as AP-1, 

C/EBPs, CREB, NF-κB, STAT, and PPARγ (Touqui and Alaoui-El-Azher, 2001).  The 

differential regulation of sPLA2 groups suggests a possible injury and isoform specific 

induction mechanism and varying cellular functions for sPLA2 isoforms in 

neuropathogenesis.   

In addition to demonstrating an induction of sPLA2-IIA following SCI, we also 

demonstrated an increase of sPLA2 within the membrane fraction of cells and a 

perinuclear compartmentalization of sPLA2-IIA following H2O2 injury.  This is 

significant since sPLA2-IIA, while being a secreted molecule, actually displays extremely 

low enzymatic activity toward the phosphatidylcholine-rich external membrane of cells 

because this enzyme cannot bind to the zwitterionic interface.  As a result sPLA2-IIA 

shows a marked preference for anionic phospholipids located on the inner leaflet of the 

bi-lipid membrane.  This results in group II enzymes having a decreased ability to act on 

the external membranes when added exogenously (Bezzine et al., 2000, Murakami and 

Kudo, 2001). This is supported by the fact that cytotoxicity was initiated by µM levels of 

exogenously added sPLA2-IIA in this study as opposed to nM levels of sPLA2-III 
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(unpublished observation), which shows little preference for anionic phospholipids.  

Recent studies have confirmed that AA release by sPLA2-IIA transfected cells occurs 

within the Golgi compartment following synthesis but prior to its initial secretion to the 

extracellular fluid or binding to anionic heparin sulfate chains on the cell surface 

(Mounier et al., 2004).  Therefore, these authors believe that our observations of 

increased mRNA levels and increased protein within the cytosolic membrane fraction, in 

conjunction with a perinuclear punctuate appearance of sPLA2-IIA following injury 

indirectly supports the prevailing theory of sPLA2-IIA synthesis and activation.  

However, further enzymatic studies will be needed for conclusive confirmation.   

 

sPLA2-IIA’s effect on oligodendrocytes 

Since we demonstrated sPLA2 induction following SCI, our next question was 

whether different injury mediators could induce sPLA2-IIA upregulation in 

oligodendrocytes and whether blockade of sPLA2-IIA could reverse injury induced 

oligodendrocyte cell death.  We narrowed our focus to group IIA because of its acute 

induction following SCI both within the cord and more specifically in oligodendrocytes; 

as well as its known association with inflammation (Kudo and Murakami, 2002, Pinto et 

al., 2003, Thwin et al., 2004, Moses et al., 2006).   

Most significantly, H2O2 or IL-1β, and TNFα injury induce sPLA2-IIA expression 

in cultured oligodendrocytes and that blockade of sPLA2 attenuates H2O2 or IL-1β, and 

TNFα induced cell injury. ROS damage is a pervasive injury mechanism involved not 

only in SCI (Liu et al., 1999a, Liu et al., 2004a, Park et al., 2004) but also Multiple 

Sclerosis (Lev et al., 2006), Alzheimer Disease (Reddy, 2006), Parkinson Disease 
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(Everse and Coates, 2005), and Huntington Disease (Rego and Oliveira, 2003).  It was 

previously shown that H2O2 (Richter-Landsberg and Vollgraf, 1998) and AA (Wang et 

al., 2004) can trigger oligodendrocyte death and that H2O2 injury utilizes cPLA2α and 

sPLA2-IIA for AA release in non-CNS cell lines (Han et al., 2003).  However, this was 

the first study to demonstrate that blockade of sPLA2-IIA could partially ameliorate the 

cytotoxic effects of H2O2 in oligodendrocytes.   

Likewise, IL-1β and TNFα have been known to increase sPLA2-IIA expression 

and trigger AA release from cultured cell lines via sPLA2-IIA and cPLA2-IVα dependent 

mechanisms (Mounier et al., 2004, Kuwata et al., 2005).  Additionally these cytokines 

have been shown to damage cultured oligodendrocytes (Selmaj and Raine, 1988, Lee et 

al., 2000, Takahashi et al., 2003, Buntinx et al., 2004).  However, this was the first study 

to demonstrate that blockade of sPLA2-IIA could partially ameliorate the cytotoxicity and 

morphological damage created by IL-1β and TNFα in oligodendrocytes.  It must be 

noted that although S3319 was developed as a specific inhibitor of sPLA2-IIA, its activity 

against other isozymes has not been fully assessed.   This being said, sPLA2 induction in 

oligodendrocytes following ROS and cytokine injury could be a novel target for 

therapeutic intervention.    

While the contradictory results achieved from the blockade of the sPLA2-R are at 

first troubling, these findings are not surprising.  First, the sPLA2 isozymes show varying 

affinities for the sPLA2-R in different species.  Within rats, the sPLA2-R only binds 

sPLA2-IB (Cupillard et al., 1999) which was present, but not increased following SCI.  

Secondly, the generalized functions of the sPLA2-R are far reaching, often grossly 

beneficial, and include cell growth (Arita et al., 1991), proliferation (Kinoshita et al., 
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1997), and migration (Kanemasa et al., 1992).  Finally, others have suggested that sPLA2-

R might function as a clearance mechanism for extracellular sPLA2s to protect against 

enzymatic over activity (Lambeau and Lazdunski, 1999, Yokota et al., 2001).  

In this study we chose to focus on the direct cytotoxicity of sPLA2 in isolated 

oligodendrocytes.  A second, equally compelling, yet unexplored hypothesis is that 

sPLA2 could increase secondary SCI not merely by direct cytotoxicity, as demonstrated 

here, but also by exacerbating the recruitment of neutrophils and macrophages to the 

injury site which has been previously reported (Popovich et al., 1997).  Following sPLA2 

hydrolysis, phospholipids generate a free fatty acid, such as arachidonic acid (AA), and a 

lysophospholipid such as lysophosphatidyl choline (LPC, a.k.a. lysolechithin).  AA can 

later form epoxides via the cytochrome P450 pathway, leukotrienes via the lipoxygenase 

pathway, or thromboxanes or prostaglandins via the cyclooxygenase pathway.  Many of 

these products, such as prostaglandin E2 (PGE2), can subsequently act as potent 

chemoattractants that increase the endogenous immune response (Tonai et al., 1999, 

Resnick et al., 2001).  Furthermore, LPC has been shown to transiently demyelinate both 

the central and peripheral nervous system (Blakemore et al., 1977) and act as a 

proinflammatory chemoattractant for macrophages (Lauber et al., 2003).  Taken together, 

sPLA2 could have detrimental effects on the spinal cord by two means.  First, sPLA2-IIA 

could directly induce tissue damage as we have shown here in isolated oligodendrocytes.  

Secondly, sPLA2-IIA could increase inflammation following SCI and exacerbate 

secondary spinal cord injury, a hypothesis that is under current investigation.   

The results presented here suggest that the expression of sPLA2, particularly IIA, which 

is seen following SCI, might participate in oligodendrocytes death mediated by several 
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cytotoxic pathways.  More importantly the blockade sPLA2, could provide a crucial 

therapeutic intervention for not only SCI but other CNS injuries in which H2O2, IL-1β 

and TNFα mediate damage.  Whether inhibition of sPLA2 following SCI in vivo creates 

histological and functional sparing is under active investigation.
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CHAPTER III 

sPLA2 INJECTIONS INTO THE NAÏVE SPINAL TISSUE RESULT IN A DOSE 

DEPENDENT LOSS OF FUNCTION AND TISSUE DAMAGE 

 

INTRODUCTION 

After confirming that sPLA2 presence in the naïve spinal cord and increases in 

oligodendrocytes following SCI, we next determined what effect an increase in sPLA2 

could have on the naïve spinal cord.  PLA2 hydrolysis of phospholipids generates a free 

fatty acid, such as arachidonic acid (AA), and a lysophospholipid such as 

lysophosphatidyl choline (LPC, a.k.a. lysolechithin).  AA can later form epoxides via the 

cytochrome P450 pathway, leukotrienes via the lipoxygenase pathway, or thromboxanes 

or prostaglandins via the cyclooxygenase pathway.  Many of these products, such as 

prostaglandin E2 (PGE2) can subsequently act as potent chemoattractants increasing the 

endogenous immune response and subsequent secondary damage.  Furthermore, LPC has 

been shown to transiently demyelinate both the CNS and peripheral nervous system 

(PNS) (Blakemore et al., 1977) and has been shown to be a chemoattractant as well 

(Lauber et al., 2003). 

It is well established that following spinal cord injury a breakdown of 

phospholipids and a release of free fatty acids occurs (Demediuk et al., 1985, Demediuk 

et al., 1989).  To determine whether phospholipases are sufficient to create damage in 



 108

normal CNS tissue, Group III secretory PLA2 (sPLA2-III), an extract of bee venom, was 

injected into the rat thoracic spinal cord (Liu et al., 2006) which created a broad 

demyelination at 24 hr post-injection.  What still remains unclear how sPLA2 might affect 

the fate of axons and glial cells within the demyelinated white matter over time.  

Additionally it is unknown whether increased sPLA2 within the spinal cord could produce 

a dose dependent loss of function.  Therefore, in this study nano-gram doses of sPLA2-III 

were injected into the rat cervical spinal cord to induce confined lesions in the 

dorsolateral funiculus (DLF) to better understand the time course of functional and 

histological damage.  It was anticipated that sPLA2-III would create a dose dependent 

demyelination of the spinal cord, as well as destroy oligodendrocytes, astrocytes, and 

axons within the lesion area.  Accordingly, this dose dependent pathology should produce 

a graded loss of forelimb function as measured by both pellet retrieval and footprint 

analysis. 

 

MATERAILS AND METHODS 

A total of 47 female Sprague-Dawley rats (Harlan Sprague Dawley, Inc.), 190-

220 g, were used in this study (Table 3). All behavior testing, surgical interventions and 

postoperative animal care were performed in accordance with the Guide for the Care and 

Use of Laboratory Animals (1996) and were approved by the University of Louisville 

Institutional Animal Care and Use Committee.   
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Table 3. Experimental groups 

Groups 1 week 2 weeks 3 weeks 4 weeks 
Sham 3 3 3 4 

Vehicle 3 3 3 4 
1.5 ng - - - 4 
3.0 ng 3 3 3 4 
6.0 ng - - - 4 

Behavior No No No Yes 
 

 

Pellet Retrieval Acquisition and Assessment 

Twenty female rats were diet restricted to promote acquisition of the pellet 

retrieval behavior.  Animals were intermittently fasted on alternate-nights for 18 hr and 

allowed ad libitum feeding on weekends.  Food was removed from the cages at 5:00 p.m. 

prior to randomized testing between 8 and 11 am the next morning.   

The modified pellet retrieval device consisted of a large Plexiglas holding 

chamber connected to a smaller feeding chamber (Montoya et al., 1990, Montoya et al., 

1991)  The rat laid on an elevated (50 mm) platform, removing the need for the injured 

rat to weight support and any interference by truncal or hindlimb dysfunction (Onifer et 

al., 1997).  Unlike the original “Staircase Test” (Montoya et al., 1990, Montoya et al., 

1991), each rat in the present study randomly used its left or right forelimb to retrieve 

pellets from the simultaneously loaded left or right feeding tubes instead of from stairs on 

either side of the elevated platform.  Rats reached 1cm into shoulder-high feeding tubes 

to grasp chocolate-flavored dustless precision purified food pellets (45 mg, Bio-Serv, 

Inc., Frenchtown, NJ).  The contralateral limb was prevented from reaching into the 

opposite tube by extension of their inner wall.  Removal of the staircase allowed the rats 
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to use the same movement for each pellet retrieved, instead of different movements for 

retrieving pellets on different stairs.  It also allowed rats to eat as many pellets as possible 

within the testing period (mean = 63.4 at baseline) rather than just 24 pellets as in the 

“Staircase Test” used by Onifer and colleagues (Onifer et al., 1997). This increased 

volume should allow for increased test sensitivity.  Care was taken to insure that animals 

unable to perform the task were given the same level of reward in their home cage 

following testing. 

Once limb dominance was determined, the dominant limb was exclusively used 

for further acquisition training, injury, and testing.  At the end of each acquisition trial, an 

observer blinded to the treatment groups calculated the percentage of pellets retrieved by 

dividing the difference between the number of pellets retrieved from the feeding tube and 

the number remaining on the floor of the feeding chamber by the number of pellets 

retrieved.  Careful attention was given to dismiss any pellet that was eaten from the floor 

of the chamber.  This consisted of < 1% of all pellets retrieved from the feeding tubes 

since pellets typically fell out of reach.  The objectivity of this score was viewed as a 

benefit over more commonly used behavior assessments.  All rats were given two 5-min 

training sessions a day for 10 days.  Once a rat met training criteria, training was reduced 

to one session per day.  The training criteria were defined as at least 20 pellets retrieved 

from the feeding tube within 5 minutes with at least 70% of pellets successfully eaten.  

One animal that failed to reach training criteria within the 10 day training period was 

removed from the study.  On the last day of the training period, baseline data was 

collected. After surgery, the rats were tested without diet modification for one session on 
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day 3 and weekly for 4 weeks. Sessions were videotaped and images presented were 

enhanced with Adobe Photoshop for clarity. 

 

Footprint Analysis 

Following pellet retrieval testing, walking track footprint data was collected. Its 

analysis was modified from the method of de Medinaceli and colleagues (de Medinaceli 

et al., 1982). The animal’s forepaws were dipped in blue dye (nontoxic). Hindpaws were 

not evaluated since pilot studies showed only minor behavioral changes and only inking 

the forepaws increased print clarity.  The rats moved from a brightly illuminated starting 

box to a darkened box containing a food reward by walking through a narrow Plexiglas 

trough (8.7 cm wide by 60 cm long). Three separate traverses of the track (trials) were 

recorded per testing session.  The trough provided unimpeded movement with ample 

room on both sides and above the animal.  Trials were excluded and repeated if the 

animal touched the wall of the trough or if the animal turned around at any point.  

Additionally, two marks were placed 40 cm apart, centered on the trough, to ensure the 

rat footprints were not analyzed during the beginning (acceleration) or ending 

(deceleration) of the task. To insure constant velocity, the rats were timed as they passed 

from mark 1 to mark 2. If the animal failed to complete the test within 1–2 sec or paused 

while traversing the trough, the trial was excluded from analysis and repeated. Each 

animal (observer was blind to treatment conditions) performed one training session 

without paws being dipped in dye, followed by two separate baseline testing sessions on 

three consecutive days prior to surgery.  After surgery, animals were tested on day 3 and 

weekly for 4 weeks. The footprints were scanned, and digitized images were measured 
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using Photoshop version 6.0 (Adobe Systems, Ottawa, Ontario, Canada). Digit spread 

was measured as the distance between the second digit and fourth digit of the forepaw.  

Angle of forepaw rotation was measured as the angle made by the third digit, center of 

the footpad, and a line parallel to the direction of travel. Forepaw length was the distance 

from the tip of the third digit to the furthest spot on the back of the forepaw print.  Stride 

length was measured from the center of the footpad to the next footpad from the same 

forepaw.  Stance width was determined by drawing two lines connecting two consecutive 

right forepaw prints and two consecutive left forepaw prints and then measuring the 

distance between these two lines at the midpoint. To assess digit spread, the maximal 

digit spread index (DSI) was calculated according to the Brown Toe Spread Index 

formula (Brown et al., 1989): DSI = (EDS - NDS)/NDS, where EDS is experimental digit 

spread, and NDS is normal digit spread. Similar to digit spread, an index was used to 

calculate angle of forepaw rotation, forepaw length, stride length, and stance width. 

Results for each parameter are reported as a percentage of baselines.  At least three 

footprints per side were assessed to determine the value for the trial and the 3 trials were 

averaged to determine the values of each parameter assessed per session. 

 

sPLA2–III Injection 

Following behavior acquisition training and baseline behavior assessments, the 19 

trained rats were allowed ad libitum food for 48 hr to return to control weight.  Trained 

rats were randomly assigned to the following groups. Animals received either a sham 

operation (n = 3) or injection of 0.2 μl of Hank’s Balanced Salt Solution (Invitrogen 

Corp., Carlsbad, CA) containing no sPLA2-III (vehicle control), 1.5, 3, or 6 ng of sPLA2-
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III extracted from bee venom (Cayman Chemical Co., Ann Arbor, MI) unilaterally into 

the C2/C3 spinal cord (n = 4 per injection group, Table 3 “4 weeks”).  Similarly an 

additional 27 animals that did not undergo behavioral assessments were randomly 

assigned to sham, vehicle injection, or 3 ng of sPLA2-III injection groups and sacrificed 

at either 1, 2, or 3 weeks post surgery (n = 3 per group per sacrifice time; See Table 1).  

sPLA2-III, a commercially available sPLA2, was used because its enzymatic activity has 

been we characterized.  Injection doses were determined by estimating the mass of 

sPLA2-III that produced enzymatic activity equal to the increase in phospholipases 

activity seen 4 hr following contusive spinal cord injury (Liu et al., 2006).   

Surgical anesthesia was induced with sodium pentobarbital 50 mg/kg, i.p. (Henry 

Schein, Indianapolis IN).  After exposure and stabilization of the spinal column using a 

device developed at the University of Louisville, the ligament of flavum and 

intervertebral ligaments were removed between the C2 and C3 vertebrae to expose the 

dorsal spinal cord surface.  The dura was carefully opened then, using a stereotaxic 

apparatus, a beveled glass micropipette (external diameter, 10–20 μm) was lowered 1.3 

mm lateral to the midline and 0.8 mm ventral to the pial surface.  Next, 0.2 μl of vehicle 

or sPLA2-III was injected into the spinal cord by a PV800 Pneumatic Pico Pump (World 

Precision Instruments Inc., Sarasota, FA). The needle was left in place for 30 seconds to 

allow for diffusion into the surrounding tissue.   

 

Tissue Preparation 

After 1, 2, 3, or 4 weeks post-surgery, the rats underwent transcardial perfusion 

with 4% paraformaldehyde in PBS. A 2 cm cervical spinal cord segment containing the 
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injection site and a similar one from sham operation rats was cryoprotected in 30% 

sucrose, embedded, and cut transversely at 40 μm.  Eight consecutive sets were created 

with samples every 320 μm. Additionally, one animal from each group at the 4 week time 

point was processed for toluidine blue staining. 

 

Luxol Fast Blue Staining 

One complete set of slides were stained with luxol fast blue for myelin as has 

been previously reported (Liu et al., 2006).  The demyelinated area was identified as 

white in blue stained sections then measured using an Olympus BX60 microscope 

(Olympus America, Inc., Mellville, NY) equipped with a Neurolucida system 

(MicroBrightField, Colchester, VT).  The maximal cross-sectional area of demyelination 

(i.e. lesion epicenter) was determined by identifying the section with the largest area of 

demyelination within the lateral funiculus.  Lesion epicenter was additionally confirmed 

by identifying the needle tract when present. A section at a similar location was identified 

in each rat that underwent sham operation or vehicle injection and was used for these 

measurements.  

Three dimensional (3-D) reconstruction and unbiased estimation of the white and 

grey matter was calculated using Neurolucida software utilizing the Cavalieri method 

(Michel and Cruz-Orive, 1988). The total volume of spared white matter, gray matter, 

and lesion were calculated by summing their individual subvolumes (Oorschot, 1994). 

Individual subvolumes of spared tissue were calculated by multiplying the cross-sectional 

area A x d, where d represents the distance between sections (320 μm).  
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Immunostaining 

Immunostaining was performed on sections at the lesion epicenter and 320 µm 

rostral, and caudal to the epicenter of each animal. Three sections at similar locations in 

each rat that underwent sham operation or vehicle injection were used. A mixture of 

mouse anti-SMI-31 (1:1000; Covance Research Products, Berkeley, CA) and rabbit anti-

glial fibrillary acidic protein (GFAP; 1:200; Sigma, St. Louis, MO) antibodies or mouse 

anti-SMI-31 and rabbit anti-P0 (1:300; gift from Dr. J.J. Archelos) antibodies allowed 

examination of axons, astrocytes, and Schwann cells, respectively.  Paired antibody 

solutions in blocking solution were applied to the sections overnight at 4οC.  On the 

following day, the sections were incubated with secondary antibodies, goat anti-rabbit 

FITC and goat anti-mouse Texas Red (1:100; JacksonImmuno) using methodologies 

previously described (Liu et al., 2006). Hoechst 33342 (10 µg/ml; Sigma) was added to 

the mounting medium to label nuclei.  Primary antibody omission controls were used to 

evaluate non-specific binding of secondary antibodies.  Images were taken using a Nikon 

Eclipse 90i confocal microscope (Nikon Instruments; Melville, NY).  

Axons profiles and Schwann cell myelin rings were quantified within the lesion 

area of 3 ng animals and the complete DLFs of vehicle and sham operated rats using an 

Olympus BX60 microscope equipped with Stereo Investigator (MicroBrightField, 

Colchester, VT). The lesion area, defined by increased cellularity when viewing Hoechst 

staining and noticeable changes in tissue morphology, was outlined on three separate 

sections immunostained for SMI-31 and P0, at the epicenter and 320 µm rostral and 

caudal to it. A systematic random sampling grid (vehicle controls = 133 x 175 µm, 

experimental = 127 x 100 µm) yielded approximately 30 sampling sites per section.  All 
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profiles were counted under oil with a 100x optical magnification using a 10 x 10 µm 

unbiased counting square.  Axons and myelin rings were counted simultaneously by 

alternating between Texas red and FITC filters.  The number of axon profiles and myelin 

rings per spinal cord section was estimated using a fractionator probe with a resulting 

Schmitz-Hof Coefficient of Error = 0.08 and an average of 212 profiles counted per 

animal. Results are presented as number of profiles per mm2. 

Additionally sections from the lesion epicenter were incubated with mouse 

monoclonal anti-APC antibody (CC1) (1:1000; Calbiochem, San Diego, CA) overnight at 

4°C. On the second day, the sections were incubated with secondary biotinylated IgG 

antibody (1:400; Vector Laboratories, Burlingame, CA) for 1 hr at room temperature. 

The reaction product was shown by incubation for 5 minutes with 0.02% 

diaminobenzidine tetrahydrochloride (DAB) and 0.003% H2O2 in 0.05M Tris-HCl (pH 

7.6).  Non-binding IgG was used in primary antibody omission controls. 

 

Toluidine Blue Staining 

To further examine myelination (Xu et al., 1999a), spinal cord segments from one 

animal in each of the groups sacrificed at 4 weeks were fixed overnight in a solution 

containing 2% glutaraldehyde and 5% sucrose in 0.1M sodium cacodylate buffer, pH 7.4, 

followed by 1% osmium tetroxide in the same buffer for 1 hour. The tissues were 

embedded in Spurr’s epoxy resin and cured at 70°C. Transverse semi-thin sections (1 

µm) were stained with a mixture of 1% toluidine blue and 1% sodium borate. Images 

were captured with MicroFire Digital Camera (Optronics, Goleta, California) attached to 

an Olympus BX60 microscope (Olympus America, Inc., Mellville, NY). 
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Statistical Analysis 

 One-way analysis of variance (ANOVA) with post hoc Tukey’s HSD was used to 

determine significant differences in histological outcome measures between three or more 

groups. A repeated measure multiple analysis of variance (MANOVA) was used to 

analyze behavioral data, followed by Tukey’s HSD.  Chi square analysis using the 

Kaplan and Meier method was used to determine significant differences in behavior 

acquisition curves.  Pearson’s Product Moment Correlation was used to determine the 

degree of relatedness between lesion area and behavioral outcome.  Data are reported as 

mean ± SD except where noted.  A p < 0.05 was considered statistically significant.   

 

RESULTS 

sPLA2-III Creates a Consistent Demyelination and Remyelination of the Spinal Cord 

sPLA2-III was found to create a consistent and dose dependent lesion when 

injected into the cervical spinal cord.  The maximal cross-sectional area of the lateral 

white matter demyelination in luxol fast blue-stained sections significantly increased with 

the dose of sPLA2-III injected (ANOVA, F4,19 = 39.785, p < 0.001, Figs. 14A-C & Table 

4).  The lesion area created by 1.5 ng and 3 ng of sPLA2-III was significantly smaller at 4 

weeks than the lesions in 6 ng sPLA2-III animals upon post hoc analysis (Table 4, p < 

0.001). No lesions were found in vehicle or sham-operated groups.  After 3-D 

reconstruction of the lesion with Neurolucida, the lesion volume differed significantly 

among the three doses of sPLA2-III and all injury groups differed from controls 

(ANOVA, F4,19 = 126.9, p < 0.001, Figs. 14D-H & Table 4).  Animals injected with 3 ng 
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had a significantly larger lesion than animals injected with 1.5 ng (p < 0.01) and a 

significantly smaller lesion than those injected with 6 ng (p < 0.001; Fig 14 H).  

Similarly, the 1.5 and 3 ng injection groups showed a greater rostral caudal extent of their 

lesion than the controls and less than the 6 ng group (ANOVA, F4,19 = 76.6, p < 0.001).   

 

Table 4. Demyelination Parameters 

Dose 
Case 

(n) 

Lesion Volume 

(mm³) 

Max Area 

(µm²) 

Rostral Caudal 

Length (mm) 

Sham 3 0 0 0 

Vehicle 4 0 0 0 

1.5 ng 4 0.78 ± 0.23 3.02x105 ± 0.2 x105 3.04 ± 1.06 

3.0 ng 4 1.3 ± 0.09 5.32 x105 ± 0.7 x105 3.44 ± 0.31 

6.0 ng 4 2.4 ± 0.31 7.82 x105 ± 0.9 x105 5.28 ± 0.41 

Sig.  p < 0.001 p < 0.001 p < 0.001 
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Figure 14. Demyelination Occurring After Unilateral Cervical (C2/3) Spinal Cord 

Injections of sPLA2-III. 

A-C) Representative sections stained with luxol fast blue for myelin showing graded 

demyelination at the lesion epicenters 4 weeks post-sPLA2-III injections at doses of 1.5 

ng (A), 3 ng (B), or 6 ng (C).  Dotted line in A-C demarks the lesion area. Note that the 

lesion is complete within the DLF.  D-G) 3-D reconstruction of a 2 cm segment of Luxol 

Fast Blue stained spinal cords taken from vehicle (D), 1.5 ng (E), 3 ng (F), or 6 ng 

injected animals (G). H) Graphical representation of 3-D volume reconstructions (D-G) 

showing significant differences between 1.5 and 3 ng (** p < 0.01) and 3 ng and 6 ng 

groups (*** p < 0.001). Scale bar: A-C = 500 µm 
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The cell populations within the lesion decreased following spinal cord injury.  

CC1 staining indicated that there was a marked decrease in mature oligodendrocytes 

within the lesion (Figs. 15A & B).    Similar to other types of spinal cord injury, an 

astrocytic border formed at the site of sPLA2-III-induced damage.  Immunostaining with 

anti-GFAP antibody revealed a well defined border of reactive astrocytes surrounding the 

lesion area by 4 weeks with very few astrocytic somas within the lesion (Fig. 15C).    

 In toluidine blue-stained semi-thin sections, massive demyelination and 

axonopathy could be seen in the lesion area (Figs. 15D-G).  Considerably fewer 

myelinated axons existed in the lesion at 4 weeks (6 ng injection; Figs. 15F & G) than in 

the uninjured contralateral white matter (Fig. 15E).  While there was less myelin both in 

the lesion epicenter (Fig. 15F) and in the lesion periphery (Fig. 15G), compared to 

control regions, myelin was present in all parts of the lesion at 4 weeks post injection 

with increasing density further from the epicenter.  Nuclei were usually associated with 

myelin rings (arrows in Figs. 15F & G), suggesting that myelin within the lesion was 

most likely from Schwann cells and not regenerating oligodendrocytes.  Within the 

lesion, large nucleated granular cells, most likely macrophages, were prevalent (double 

arrow in Fig. 15F) and blood vessels with their endothelial lining could also be seen 

(asterisk in Fig. 15G).  
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Figure 15. Histological Results Occurring 4 Weeks After Unilateral Cervical (C2/3) 

Spinal Cord Injections of sPLA2-III. 

A) Low power image of CC1 stained section shows the lesion area within the DLF 

between the ventral horn (VH) and dorsal horn (DH)  B) The high power image shows 

the clear demarcation of the lesion boarder with a decrease of CC1-positive 

oligodendrocytes (arrows) within the lesion and a sparing of labeled mature 

oligodendrocytes outside the lesion.  C) Similar to other types of spinal cord injury, there 

is an astrocytic scar around the lesion confirmed by GFAP labeling (3 ng injury).  D-G) 

Representative toluidine blue-stained semi-thin section at the lesion epicenter of a 6 ng 

sPLA2-III injected animal.  Note that at the higher dose (D) there is damage within the 

ipsilateral dorsal horn and dorsal funiculus (arrow).  Letters on the section represent the 

approximate location of images E-G.  E) The intact contralateral lateral funiculus has 

oligodendrocyte myelinated axons.  F) At the lesion epicenter there is a prodigious loss of 

axons and remyelination of spared axons by Schwann cells (arrows). Many large granular 

cells (double arrow), most likely macrophages, were also seen.  G) At the lesion 

periphery there are many spared axons that have been almost exclusively remyelinated by 

Schwann cells (arrows).  There were also a high number of blood vessels in the lesion 

periphery (asterisks).  Scale bars: A & C-D = 500 µm, E-G = 10 µm. 
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To confirm axonal loss, sections were labeled with anti-SMI-31 (Figs. 16A & B).   

The density of axons (number per mm2) within the lesion area was then compared to that 

within the lateral funiculi of vehicle-injected rats.  Four weeks after 3 ng injections of 

sPLA2-III, there were 70-77% fewer axons per mm2 within sPLA2-III lesions (3 ng 

sPLA2-III = 30,586 ± 5,100; Fig. 16C) than in matched areas of vehicle injected controls 

(120,099 ± 22,483; ANOVA, F1, 22 = 325.1, p < 0.001; Fig. 16C).  Of note, among the 

animals that were injected with sPLA2-III, the number of axons within the lesion area did 

not significantly change during the four weeks tested (F3, 14 = 0.88, p = 0.48, Fig. 16C) 

suggesting that axons observed in the fourth week were predominantly original structures 

and not regenerated.  While there was a near significant difference in the density of axons 

within the vehicle injected animals this is most likely due to increasing total area of the 

spinal cord as the animals increased in size (F3, 14 = 3.276, p = 0.063, Fig. 16C).  



 124

 

Figure 16. Immunofluorescent labeling and quantification of axons during 4 weeks 

after unilateral cervical (C2/3) spinal cord injections of sPLA2-III. 

A, B) Representative SMI-31-immunostained sections in the lateral funiculus of a vehicle 

control rat (A) and in the lesion area of a rat that received an injection of 3 ng sPLA2-III 

(B) 4 weeks earlier. The circular spaces are most likely micro cyst-like cavities (asterisk 

in B).  C) Quantification of axon loss.  Rats that received an injection of 3 ng sPLA2-III 

had an approximately 70% decrease in the number of axons per mm2 within the lesion 

area at 1 week after injury compared to the number of axons in the lateral funiculi of 

vehicle injected rats.  Note that the number of axons within the lesion area remained 

constant over the period of the study, suggesting that these are spared axons and not 

regenerated ones.  Scale bars: A & B = 10 µm. C, mean ± SD; n = 3 animals per group at 

each time-point. 
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To confirm the source of myelin within the lesion, sections were double-labeled 

with anti-SMI-31 and anti-P0 antibodies (Figs. 17A-F).  Positive P0 staining confirmed 

that myelin within the lesion was from Schwann cells.  Confocal images from the lesion 

epicenter show P0 myelin rings wrapping around SMI-31 axon profiles (Figs. 17D-F).  

Interestingly, this remyelination was time-dependent.  No P0 staining was observed 

within the lesion area of any animal sacrificed at week 1. P0 staining was seen in only 

one of the three animals sacrificed at week 2; however, labeling was extremely weak.  

There was a dramatic increase in P0 staining within the lesion area by week 3 that 

persisted at week 4 (ANOVA, F2,11 = 17.37, p < 0.001; Fig 17G). Since P0 was only 

observed around SMI-31 labeled axons, it was estimated that by weeks 3 and 4, 72% - 

56% of axons were myelinated by Schwann cells, respectively (Fig. 17H).  
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Figure 17. Immunofluorescent double labeling shows a progressive remyelination of 

spared axons by Schwann cells over a 4 week period.   

 

A-C) Representative P0 and SMI-31-immunostained section at the lesion epicenter of a 3 

ng sPLA2-III injected animal at 4 weeks post injury.  A) P0 signaling is strong within the 

lesion area.  Note that P0’s specificity for Schwann cell myelin is confirmed by staining 

of Schwann cells in both the dorsal and ventral roots (white arrows).  B) Axons are also 

present within the lesion area.  C) The merged image of A & B shows that some P0-

immunoreactive myelin in the lesion area is associated with SMI-31-immunoreactive 

axons.  (D-F) Orthogonal views of confocal images from the 4 week old lesion area of a 3 

ng injected animal.  Note, the X/Y plane is presented in the center panel, X/Z plane is 

presented in the bottom panel, and Y/Z plane is presented in the left panel. The area of 

interest is indicated by green crosshairs in (F).  Schwann cell myelin rings, positive for 

P0 (D), can be clearly seen encircling axons (F), identified by SMI-31 immunostaining 

(E), within the lesion area.  G, H) Quantification of Schwann cell remyelination.  G) 

While no P0 myelin is seen within the lesion area at weeks 1 and 2 after injection of 3 ng 

sPLA2-III, there is a dramatic increase between weeks 2 and 3 that remains constant 

during week 4. H) The majority of spared axons are remyelinated by Schwann cells by 

weeks 3 and 4.  Scale bars: Scale bars: A-C = 500 µm; D-F = 5 µm. G & H, mean ± SD; 

n = 3 animals per group at each time-point. 
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sPLA2-III Injury Affects Behavior 

Qualitatively, differences existed between the rodents’ performance before and 

after sPLA2-III injections. The naïve (Figs. 18A-D), sham operated, and vehicle control 

rodents retrieved pellets using previously described movements (Mckenna & Whishaw, 

1999) in four stages.  First, the animals approached (Fig. 18A), then reached into the 

feeding tube grasping the pellet with extended digits (white arrow indicates pellet in Fig. 

18B).  Because of the positioning of the tube and an extension along the inner wall, a 

rodent could not use its tongue or contralateral limb or scrape the pellet into its mouth.  

Therefore, the naive rodent grasped the pellet and supinated the closed paw (Fig. 18C).  

Finally, the rodent completed supination and ate the pellet with the palm facing vertically 

(Fig. 18D).  By 1 week following injections of 1.5 and 3 ng sPLA2-III (3 ng rat shown in 

Figs. 18E-H), these rodents approached the tube (Fig. 18E) and reached (Fig. 18F) in a 

similar manner to naïve animals.  However, they were unable to open the digits, pronate 

the paw, and close their forepaw around the pellet (Fig. 18G). Upon retraction of the arm, 

the pellet was dragged from the tube and fell to the chamber floor (Fig. 18H).  Two out of 

four rodents injected with 6 ng were unable to elevate their shoulder to the level of the 

feeding tube at any time post-injection and so were given a 100% pellet drop score on 

each of the testing days.  It was found that these 6 ng animals had damage not only of the 

DLF but also extending into the ipsilateral gray matter and corticospinal tract in the 

dorsal funiculus (see arrow in Fig. 15D).  This loss of function is not surprising since 

large dose injections into the C2/3 white matter could cause death of interneurons and 

motorneurons which would correspond with control of the acromiotrapezius and levitor 

claviculae (McKenna et al., 2000).   
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Figure 18. Video captured images of pellet retrieval test performance prior to injury 

(A-D) and 1 week following 3 ng injection of sPLA2-III (E-H).   

Forelimb lift (A), reach, forepaw digits open (B), pronation, grasp, and supination (C) 

movements were required for successful pellet (white arrow in B) retrieval (D) by naïve 

rats.  The 3 ng sPLA2-III injected rats could reach into the feeding tubes (E) and open 

their digits (F) for the pellets (white arrows in F-H). However, they could not grasp them 

(G). As the pellets were dragged out of the feeding tube, they fell to the floor out of reach 

(white arrow in H).  Counts of dropped pellets were used to determine the percentage of 

pellets retrieved resulting in a quantitative and objective measure of forelimb function. I) 

Schematic showing the plunger used to deliver a pellet for a rat that is lying on the 

platform in the feeding chamber and reaching into a feeding tube.  
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Injection of sPLA2-III into the cervical spinal cord DLF had a significant 

quantitative effect on pellet retrieval performance as well (Fig. 19A).  A significant main 

effect was observed between time post-op and the percentage of pellets retrieved 

(MANOVA, F2.6,70.3 = 22.427, p < 0.001). Tukey’s HSD post hoc analysis revealed a 

significant difference from baseline pellet retrieval in all sPLA2-III injected animals.  The 

6 ng group decreased precipitously on day 3 (p < 0.001) and never returned to baseline.  

The 3 ng group showed decreased pellet retrieval on day 3 (p < 0.001) but was 

statistically indistinguishable from baseline after 3 weeks (p = 0.20).  Similarly, animals 

injected with 1.5 ng of sPLA2-III decreased by day 3 (p < 0.01) but were 

indistinguishable from baseline levels by 1 week (p = 0.32) or later after injury.  No 

difference was seen in the sham (p = 0.97) or vehicle (p = 0.89) groups.  This general 

trend of improvement was confirmed by a significant time/group interaction (MANOVA, 

F10.4, 70.3 = 5.104, p < 0.001) and post hoc analysis revealing that the 3 ng group 

significantly improved from its day 3 deficit by weeks 3 and 4 (p < 0.05).  Additionally, 

at day 3 the 6 ng (p < 0.001), 3 ng (p < 0.001), and 1.5 ng (p < 0.05) rodents performed 

significantly worse than the vehicle injected animals.  Afterwards this pattern continued 

for the 6 ng and 3 ng groups with the 1.5 ng group returning to baseline by 1 week.  Most 

importantly the pellet retrieval test detected differences among the sPLA2-III injected 

animals.  For example, at day 3 there was a significant difference between the 1.5 ng 

injury group and the 6 ng (p < 0.001) and 3 ng (p < 0.05) animals a pattern which 

continue through all time points.  A difference in pellet retrieval was also seen between 

the 3 ng and 6 ng groups at week 3 (p < 0.01). Most importantly, the lesion area was 



 132

inversely correlated with the averaged pellet retrieval ability for each animal (R2 = 

0.7285; Fig. 19B).  
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Figure 19. Behavioral results occurring after unilateral cervical (C2/3) spinal cord 

injections of sPLA2-III. 

A) Only groups injected with sPLA2-III showed decreased pellet retrieval ability at 3 

days post injury.  The 6 ng rats showed a significant difference from baseline at all time 

points with 3 ng animals recovering by 3 weeks and 1.5 ng by 1 week post injection.  A 

dose-dependent decrease in pellet retrieval was also observed 3 days post-injection with 3 

ng and 6 ng animals. Pellet retrieval performance improved in all injury groups, however, 

at 4 weeks this was still significantly impaired in the 3 ng and 6 ng groups compared to 

all other groups. B)  The pellet retrieval performance decreased as the lesion area 

increased.  Therefore, this test is sensitive to graded demyelinating and axon injuries in 

the upper cervical spinal cord lateral white matter. C & D) The 6 ng sPLA2-III injected 

rodents rotated their forepaw less 3 days post-surgery.  Additionally the 6 ng rats 

maintained this lower rotation through weeks 1 and 2.  At day 3 only the 6 ng animal had 

a significantly lower angle of rotation than all other groups.  At 2 weeks the vehicle and 

sham animals were both significantly higher than the 6 ng and the 3 ng.  By 3 and 4 

weeks post-injection there was no difference among injured groups. A difference in digit 

spread was only detected on day 3, with 3 ng and 6 ng animals showing significant 

narrowing of the digits. E & F) Representative forepaw prints from either a vehicle (E) or 

3 ng (F) right side injection, 3 days post injury.  Note the difference in both paw rotation 

and digit spread.  A, C, D, mean ± SEM; n = 4 animals per group at each time-point. 
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Similarly, footprint analysis could detect behavioral changes following sPLA2-III 

injection but not as well as the pellet retrieval assessment. Of the five footprint analyses, 

forepaw length (MANOVA, F4, 54 = 2.25, p = 0.09), stance width (MANOVA, F4, 54 = 

0.639, p = 0.637), and stride length (MANOVA, F4, 54 = 0.460, p = 0.765) were not 

significantly different for any group or time point.  Forepaw rotation varied significantly 

over time (MANOVA, F14, 97 = 2.04, p < 0.05) and between groups (MANOVA, F4, 54 = 

6.11, p < 0.001; Figs. 19C, E, F).  All three injury groups were found to vary significantly 

from baseline initially but, in contrast to pellet retrieval performance, recovered to 

baseline by 3 weeks.  The 6 ng group differed significantly from baseline at 3 days (p < 

0.001), 1 week (p < 0.001), and 2 weeks (p < 0.01) post injury.  The 3 ng and 1.5 ng 

group differed from baseline only at 1 week post injury (p < 0.05).  Of note, while no 

significant difference was seen from baseline there was a significant recovery between 1 

week and 2 weeks for both sham (p < 0.05) and vehicle controls (p < 0.01).  Significant 

differences between injury groups were only detected at 3 days (p < 0.05) and 2 weeks (p 

< 0.001) post injury.  At 3 days post injury, forepaw rotation in the 6 ng group was 

significantly worse than sham operated rats (p < 0.05). At week 2, the 6 ng group was 

significantly worse than sham (p < 0.001), vehicle (p < 0.01) and 1.5 ng (p < 0.05) 

animals and the 3 ng group was significantly worse than sham (p < 0.001) and vehicle (p 

< 0.05) rats.  It is worth noting that the only detectable difference among sPLA2-III 

injected groups was at one time point (2 weeks) and between the 6 ng and 1.5 ng groups.    

There was a significant difference in the digit spread over time (MANOVA, F13.26, 

179 = 4.506, p < 0.001) and between injection groups (ANOVA, F4, 19 = 4.168, p < 0.005; 

Figs. 19D, E, F).  Further analysis of time revealed that all differences were confined to 
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day 3 (p < 0.001). At day 3, the 3 ng and 6 ng groups were both significantly different 

from baseline (p < 0.001, E, F).  A difference among groups could be seen on day 3 (p < 

0.001) and 2 weeks (p < 0.05) following injury.  At day 3, the 6 ng group was 

significantly narrower than the sham (p < 0.01), vehicle (p < 0.01), or the 1.5 ng groups 

(p < 0.05).  The 3 ng group was significantly narrower than the vehicle group only (p < 

0.05).  At two weeks, only a near significant difference existed between the 6 ng and 

vehicle control groups (p = 0.06).  As with forepaw rotation, digit spread detected a 

significant difference among sPLA2-III injected groups at day 3, but in contrast was 

unable to detect group differences at 2 weeks.   

 

DISCUSSION 

Initially, this study showed that nanograms of sPLA2-III were sufficient to 

demyelinate the normal rodent spinal cord.  Secondly, the previously observed 

axonopathy was quantified, revealing it to be more pervasive than originally thought, 

with an approximately 75% loss of axons.  Thirdly, we confirmed that oligodendrocytes 

and astrocytes die within the lesion area.  However, this conclusion is based on one two 

stains and the fate of precursor cells still remains unclear.  Most importantly, for the first 

time, we observed a prodigious remyelination of 72% of spared axons by Schwann cells 

between 2 and 3 weeks after injection of sPLA2-III.   

Schwann cells have been shown to remyelinate the spinal cord in small numbers 

following traumatic SCI in rats (Bresnahan, 1978) and humans (Bunge, 1994).  

Unfortunately, a large percentage of the spinal cord remains demyelinated after contusion 

(Cao et al., 2005) suggesting that further remyelination could be beneficial.  In previous 
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experiments we and others showed that transplanted Schwann cells increased axonal 

regeneration, were neuroprotective, and improved functional recovery following SCI in 

rats (Xia et al., 1995, Xu et al., 1995, Xu et al., 1997, Xu et al., 1999b, Takami et al., 

2002, Pearse et al., 2004).  Given the previous work showing functional recovery 

following Schwann cell transplantation and the lack of appreciable axon regeneration 

within the lesion, it is tempting to hypothesize that the observed recovery in this study 

was due to remyelination by Schwann cells.  However, Schwann cells’ exact role in 

functional recovery following sPLA2 injection remains to be investigated. 

Schwann cell immigration into the injured human and experimental animal spinal 

cord is still controversial.  Some authors suggest that Schwann cells enter from dorsal and 

ventral roots and contiguous peripheral nerves (Jasmin et al., 2000). Other groups believe 

that these cells immigrate either through porous blood vessels (Talbott et al., 2005) or 

through breaches in the dura (Guest et al., 2005).  It has also been suggested that cells 

possessing a Schwann cell-like phenotype are actually the result of altered maturation of 

endogenous oligodendrocyte precursors due to the absence of astrocytes (Talbott et al., 

2006).  The latter hypothesis is particularly intriguing since the present results show a 

lack of astrocytes within sPLA2-III-induced lesions.   

Interestingly, sPLA2-III-induced demyelination bears some striking similarities to 

other demyelination models.  Intraspinal LPC -injection, a common 

demyelination/remyelination model described by Blakemore and colleagues (Blakemore 

et al., 1977, Blakemore, 1978, Blakemore, 1982, Jeffery and Blakemore, 1995) also leads 

to loss of oligodendrocytes, astrocytes, and axons.  Moreover, LPC is a product of sPLA2  

digestion, providing a logical connection between these two models (Dutta et al., 1979).  
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However, this LPC induced remyelination occurs at 2 weeks post injection and is much 

less robust. Furthermore, when Woodruff and Franklin (1999) compared remyelination 

following injections of LPC, ethidium bromide, and anti-galactocerebroside antibody into 

the brainstem, oligodendrocytes dominated the remyelination in all cases with only 10 - 

40% attributable to Schwann cells. Further more remyelination occurred at 3.5 weeks, 

later than in the present study.  Finally, these models had greater axonal sparing than was 

observed after sPLA2-III injections.  While these differences could be due to dose 

variations, they also suggest additional molecular processes might be involved in sPLA2 

–induced injury.  

There are several advantages to using the current model of sPLA2-III induced 

demyelination over previously mentioned methods.  First, the use of phospholipases, 

which are increased in many CNS disorders, are a closer parallel to natural inflammatory 

processes than synthetic molecules such as ethidium bromide.  Second, we have shown 

that sPLA2 injections produce a highly focal and controllable lesion that can be used to 

create a graded lesion of the white matter with little grey matter damage at lower doses.  

When sPLA2 injections are used in conjunction with the pellet retrieval task one can 

produce very controlled cervical spinal cord injury model, with low mortality, and a 

functional outcome measure.  Third, previous models have shown only slight P0 

remyelination, making this a superior model for investigation of Schwann cell 

remyelination.   However, the presence of P0 remyelination could be viewed as an 

unwanted experimental artifact detracting from this models appeal.  Another 

disadvantage is that while sPLA2–III does have a potent phospholipase activity; the 

presence of this particular group has not been shown in the mammalian CNS. 
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In this study, the modified pellet retrieval task was a sensitive and quantifiable 

behavioral measure able to detect both differences in functional loss and recovery 

following graded sPLA2-III-induced cervical DLF lesions.  Previously, the “Staircase 

Test” was used to show forelimb dysfunction without significant recovery in rats 

following a single force C7 contusion injury (Onifer et al., 1997). Similarly, Schrimsher 

and Reier (Schrimsher and Reier, 1993) found that following a C4 laceration of the dorsal 

column, dorsolateral funiculus, or ventrolateral funiculus a similar pellet retrieval task 

was able to detect deficits only after DLF laceration without any notable recovery after 4 

weeks.  We believe that this report is the first record of a reaching task being able to 

discriminate between various grades of cervical white matter damage and the first to 

show significant recovery following injury.  The modified pellet retrieval test also was 

more sensitive than the more commonly used footprint analysis.  While the footprint 

analysis revealed sPLA2-III-induced forelimb dysfunction during locomotion, this 

assessment was largely unable to discriminate between injection groups and behavioral 

deficits were only observed in 2 of 5 measures.  This finding emphasizes the need to 

perform multiple assessments when examining dysfunctions of the nervous system and 

evaluating repair strategies.   

The greatest drawback of the modified pellet retrieval test is an inability to assess 

severe cervical SCI.  In our device some of the 6 ng sPLA2-III-injected animals were not 

able to reach into the feeding tubes and perform the task.  This could have been a result 

of lesion encroachment on the corticospinal tract (Fig. 15D) or undetected destruction of 

motor neurons and interneurons within the C2/3 gray matter.  The latter is more likely 

since injections into the C2/3 interface would correspond with motor neurons controlling 



 140

the acromiotrapezius and levitor claviculae, which would greatly compromise shoulder 

elevation (McKenna, 2000).  Also, as stated above, only laceration of the dorsolateral 

funiculus and not the corticospinal tract effected the retrieval ability in the “Staircase 

Test” (Schrimsher and Reier, 1993).  Following severe contusions the original “Staircase 

Test” may be more useful.  However, it must be noted that the 6 ng animals showed some 

improvement at 4 weeks and the possibility of further improvements beyond 4 weeks 

could not be eliminated.  While there was no expansion of the lesion area beyond the 

DLF in both 1.5 and 3 ng injuries, there was a significant difference in behavioral 

measures.  This could be explained by partial destruction of the rubrospinal tract in the 3 

ng group with sparing of some fibers in the 1.5 ng animals.  While the lesions may appear 

homogenous, the loss of axons increased from the periphery to the center with the sparing 

of some axons seen in the center of the 1.5 ng group. 

In conclusion, injection of at least one type of sPLA2 into the cervical white 

matter seems to have a bimodal effect on tissue and function.  Initially normal tissue 

architecture is destroyed followed by the immigration of what is typically characterized 

as a beneficial cell type leading to remyelination.  Similarly, our modified pellet retrieval 

device detected an initial dose-responsive dysfunction followed by recover between 2 and 

3 weeks post injury.  It is tempting to hypothesize what factors produced each facet of 

this bimodal response.  With the knowledge that phospholipases are increased following 

CNS injury, current investigations in our lab are attempting to block the destructiveness 

of sPLA2 while harnessing the beneficial effects of increased Schwann cell immigration 

and remyelination.   
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CHAPTER IV 

sPLA2 INHIBITION PRIOR TO SPINAL CORD INJURY RESULTS IN 

FUNCTIONAL AND HISTOLOGICAL SPARING 

 

INTRODUCTION 

In the previous chapters we have shown that many of the sPLA2 isoforms are 

present in the naïve spinal cord and within oligodendrocytes.  We next showed that 

following spinal cord injury groups IIA and IIE increase by several fold and that sPLA2-

IIA similarly increases within oligodendrocytes following two models of in vitro injury.  

We also showed that exogenously added recombinant human sPLA2-IIA is cytotoxic to 

both oligodendrocyte cultures and to naïve rodent spinal cords.  Finally we demonstrated 

that blockade of sPLA2-IIA by pharmacological inhibition partially ameliorated the 

deleterious effects of TNFα and IL-1β or H2O2 in oligodendrocyte cultures.  What 

remains to be seen is whether blockade of sPLA2 can create tissue and functional sparing 

following SCI in vivo.   

Several inhibitors of sPLA2 have shown in vivo efficacy in rodent models of 

neuropathology.  Indoxam, a specific sPLA2 inhibitor, was shown to offer protection 

against cerebral ischemia (Yagami et al., 2002b).  Similarly, CDP-choline significantly 

restores phosphatidylcholine levels by differentially affecting sPLA2 and phosphocholine 

cytidylyltransferase after stroke (Adibhatla et al., 2006).  Quinacrine / mepacrine, a non-
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specific inhibitor of PLA2 activity and anti-malarial drug, also showed sparing of 

hippocampal neurons (Phillis, 1996) and reduced infarct size following transient focal 

ischemia (Estevez and Phillis, 1997) and showed sparing of hippocampal neurons 

following kainite-injection (Ong et al., 2003).  Finally membrane bound inhibitors of 

sPLA2 showed decreased inflammation in experimental autoimmune encephalomyelitis, a 

rodent model of multiple sclerosis (Pinto et al., 2003).  Similarly, the small (487.63 MW) 

lipophilic molecule S3319 has been shown to be both a potent inhibitor of sPLA2-IIA 

with an IC50 = 0.029 μm (Church et al., 2001, Hansford et al., 2003) and orally active 

against infiltrating neutrophils following reperfusion injury in mice (Arumugam et al., 

2003).  However, this final compound has not been tested against CNS pathologies nor 

has any sPLA2-IIA inhibitor ever been assessed following neurotrauma either in the brain 

or spinal cord.     

The results presented here show that inhibition of sPLA2 activity prior to 

traumatic SCI results in increased oligodendrocyte survival, increased sparing of white 

matter, increased axons at the lesion epicenter.  Accordingly, sPLA2 inhibition also 

decreased the lesion size and number of infiltrating cells migrating into the lesion.  

Finally, sPLA2 inhibition increased voluntary locomotion and accelerated recovery of 

voluntary bladder function.  

  

MARTERIALS AND METHODS 

Animals 

A total of 20 female BALB/c mice (Charles River, Wilmington, MA) and 10 

female 129/sv mice (Taconic, Germantown, NY) 6-8 weeks old, were used in this study. 
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All surgical interventions and postoperative animal care were performed in accordance 

with the Guide for the Care and Use of Laboratory Animals (National Research Council, 

National Academy Press, Washington, D.C., 1996) and the Guidelines of the University 

of Louisville Institutional Animal Care and Use Committee.   

 

Experimental groups and dosing 

It has been previously determined that certain mouse strains have a natural 

disruption of the sPLA2-IIA gene (e.g. 129/sv) (Kennedy et al., 1995).  Mice were 

divided into 5 groups (see Table 5) based on sPLA2-IIA expression, the state of spinal 

cord injury, and pharmacological inhibition of sPLA2-IIA.  Beginning two days prior to 

surgery and for 2 weeks afterwards animals were give either S3319 (10 mg/kg i.p.; 

Sigma-Aldrich, St. Louis, MO), a potent sPLA2-IIA enzymatic inhibitor (Hansford et al., 

2003), or vehicle (70% DMSO) mixed fresh daily.  The dose was reduced to 5 mg/kg 

during the second week post injury.  This dose was selected based on previous in vivo 

efficacy and physiologically activity (Arumugam et al., 2003).   
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Table 5.  Experimental Groups 

Group # Strain sPLA2-IIA gene Injection SCI n 

1 BALB/c +/+ S3319 0.45 mm 8 

2 BALB/c +/+ Veh 0.45 mm 8 

3 BALB/c +/+ Veh Sham 4 

4 129/sv -/- Veh 0.45 mm 8 

5 129/sv -/- Veh Sham 4 

  

 

Contusive spinal cord injury 

 Mice were injected with ketamine and xylazine (90 + 10 mg/kg, i.p., Lloyd 

Laboratories, Shenandoah, IA), 1 ml of normal saline (s.c.), and placed on a 

homeothermic blanket.  The back was shaved and skin was cleansed with betadine.  Skin 

was incised and the underlying muscles were dissected to expose the dorsal halves of the 

T7-T13 vertebrae.  The exposed vertebral column was stabilized using bilateral 

transverse supports placed underneath the spinal column which were developed at the 

University of Louisville (Zhang et al., 2004, Cao et al., 2005, Onifer et al., 2005, Iannotti 

et al., 2006, Liu et al., 2007, Onifer et al., 2007). A dorsal laminectomy was performed at 

the T8-11 level to expose the spinal cord and bleeding was controlled. The body was 

immobilized with a horizontal brace gently secured over the middle of the back to 

prevent it from moving upward during the SCI.  Rats received either a 0.45 mm 

displacement injury between the 9th and 10th thoracic vertebra, inflicted via the Louisville 

Imapct System Aparatus (LISA) or sham laminectomy as previously published by our 
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center.  After the injury, displacements were recorded and compared to insure lesion 

uniformity.  Post-operative care followed those described previously (Iannotti et al., 

2004) 

 

Behavioral assessments 

During the week prior to baseline recordings mice were gentled and then 

acclimated to all devices.  Voluntary over ground locomotion was assessed by the Basso 

Mouse Scale for locomotion (BMS) as previously described (Basso et al., 2006).  The test 

was performed by two blinded scorers on day 3 and weeks 1 through 9 post surgery.    

 As is common following severe spinal cord injury, bladder function was lost in all 

injured animals for at least one day following injury.  Bladders were manually expressed 

twice daily and the volume of expelled urine recorded.  When expressing bladders, an 

experienced handler gave each mouse a bladder score determined by size and outflow.  A 

void bladder received a score of 0, small = 1, medium = 2, large = 3, and very large = 4.  

Scores were summed over 48 hrs to eliminate feeding variability. 

 

Tissue preparation 

After week nine assessment all mice were given a lethal dose of ketamine (180 

mg/kg) and xylazine (20 mg/kg) and then transcardially perfused with 5 ml of 4 ºC PBS 

followed by 20 ml 4 % PFA.  A 2 cm section of spinal cord containing the injury 

epicenter was removed and samples were post fixed for 3 hrs in 4 % PFA and transferred 

to 30 % sucrose for 3 days.   The spinal cords were then embedded in tissue freezing 
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medium and sliced transversly at 40 μM to create eight consecutive sets with sections in 

each set separated by 320 μm.   

 

Luxol fast blue staining 

To determine the area of spared white matter, one complete set of slides was 

stained with luxol fast blue for myelin as has been previously reported (Liu et al., 2006, 

Titsworth et al., 2007).  Briefly, sections were dehydrated through 95% ethanol and then 

submerged in Luxol Fast blue solution (0.1% luxol fast blue, 0.05% acetic acid, in 95% 

ethanol) at 65ºC for 2 hr.  Slides were then differentiated in 0.05% lithium carbonate 

solution and 70% ethanol.  Sections were dehydrated through graded ethanol, rinsed with 

xylene, and mounted. 

 

Cresyl Echt Violet-Eosin staining 

 A second set was stained as previously reported (Liu et al., 2006).  Briefly, 

sections were stained with 0.5% cresyl echt violet (Sigma, St. Louis) in 20% ethanol for 8 

min followed by eosin solution (25% eosin, 70% ethanol, 0.5% acetic acid) for 20 sec.  

Sections were then dehydrated, rinsed with xylene, and mounted.   

 

Immunofluorescence double labeling 

Immunofluorescence double labeling at the injury epicenter was performed on 

different tissue sets using previously described methodologies (Liu et al., 2004b). In 

brief, various combinations of antibodies were used (see Table 6). The paired antibody 

solutions were applied to the sections overnight at 4°C. The following day, sections were 
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incubated with fluorescein-conjugated goat anti–mouse (1:100; Jackson Immunoresearch, 

West Grove, PA) and Texas red-conjugated goat anti–rabbit (1:100; Jackson 

Immunoresearch) antibodies. Primary antibody omission controls and normal mouse, 

rabbit, and goat serum controls were used to further confirm the specificity of the 

immunofluorescence double labeling. Images were taken using a Nikon Eclipse 90i 

confocal microscopy (Nikon Instruments; Melville, NY). 

 

Table 6. Antibodies Used 

Antibody Clone Source Working Dilution Vendor/lot No. Reference 

anti-sPLA2-IIA Rabbit 1:100 Cayman Chemical (Moses et al., 2006) 

anti-SMI-31 Mouse 1:1000 Covance (Liu et al., 2006) 

anti-GFAP Rabbit 1:300 Sigma (Liu et al., 2006) 

anit-Olig1 Mouse 1:200 Millipore (Arnett et al., 2004) 

 

 

Volume calculations 

 Three-dimensional (3-D) reconstruction and unbiased estimation of tissue 

volumes were calculated using the Cavalieri method (Michel and Cruz-Orive, 1988) on 

an Olympus BX60 microscope (Olympus America, Inc., Mellville, NY) equipped with a 

Neurolucida system (MicroBrightField, Colchester, VT).  Areas were calculated by 

drawing contours to define regions of interest on each section.  Individual subvolumes of 

spared tissue were calculated by multiplying the cross-sectional area A×d, where d 

represents the distance between sections (either 320 μm or 960 μm). The volume of total 
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of tissue was calculated by summing their individual subvolumes of each section 

measured.   

In luxol fast blue stained sections the area of spared white matter in each section 

was determined by subtracting the unstained region of each spinal cord section from the 

total spinal cord area.  The percentage of spared tissue was calculated by dividing the 

total volume of spared white matter in experimental animals to that on controls 

(Oorschot, 1994).  Similarly, the lesion volume was defined as the GFAP negative area 

within the lesion core.  The lesion epicenter for each animal was defined as the spinal 

section in each animal with the least amount of spared myelin or the greatest percentage 

of GFAP negative area.   

 

Stereology 

 Unbiased stereological counts were made using the probes in Stereo Investigator 

(MicroBrightField, Colchester, VT).  SMI-31 positive axons passing through the lesion 

epicenter were counted as well as oligodendrocytes and infiltrating nuclei within a 4 mm 

section of cord centered on the lesion epicenter (Table 7).  In brief, a systematic random 

sampling grid was overlaid on a traced spinal section yielding approximately 5 - 20 

sampling sites per section.  Next, profiles were counted within either an unbiased 

counting square or cube under 100× oil immersed optical magnification.  In the optical 

fractionator probe the height was 20 μm with at least a 5 % guard zone.  The resulting 

Schmitz-Hof Coefficient of Error was < 0.1 with an average of 212 profiles counted per 

animal. 
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Table 7. Stereology Parameters 

Object of interest Stain Probe SRS grid (μm) Dissector (μm) 

Axons SMI-31 IF Fractionator 
Cnt = 305 x 274 

Exp = 195 x 162 

15 x 15 

15 x 15 

Oligodendrocytes Olig-1 IF 
Optical 

Fractionator 

Cnt = 325 x 330 

Exp = 226 x 195 

60 x 60 

95 x 95 

Inflilt. Nuclei Cresyl Eosin 
Optical 

Fractionator 

Cnt = 305 x 274 

Exp = 195 x 162 

60 x 60 

15 x 15 

 

Statistical Analysis 

One-way analysis of variance (ANOVA) with post hoc Tukey’s HSD was used to 

determine statistical significance of three or more groups. A multiple analysis of variance 

(MANOVA) with post hoc Tukey’s HSD was used to determine statistical significance of 

three or more groups when repeated measures were taken from each animal overtime or 

space.  A p < 0.05 was considered statistically significant.   

 

RESULTS 

Inhibition of sPLA2 Increases Behavioral Recovery Following SCI. 

Overgrown locomotion as assessed by the BMS showed a significant difference 

among experimental groups (MANOVA F4, 349 = 1769, p<0.0001) and over time 

(MANOVA F10, 349 = 113, p<0.0001; Fig. 20).  Post hoc analysis revealed that 129svj 

mice receiving a spinal cord injury (sPLA2-/-  SCI) did significantly better than their wild 

type counterparts BALB/c (Veh SCI) at week 5 (p<0.05), week 7 (p<0.001), week 8 

(p<0.001), and week 9 (p<0.05).  Similarly, inhibition of sPLA2 with S3319 in contused 

BALB/c mice resulted in significantly improved BMS scores over vehicle controls at 
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week 7 (p<0.05), week 8 (p<0.001), and week 9 (p<0.01).  At week 9 the BMS scores for 

sPLA2-/- and S3319 treated mice receiving a spinal cord injury was 2.58±0.51 and 

2.66±0.78 respectively, while among vehicle control mice receiving a spinal cord injury 

the week 9 score was 1.43±0.85.  Within the BMS a score of 1 given for slight ankle 

movement, a score of 2 correlates to extensive ankle movement, and a score of 3 

corresponds to plantar placing of the paw or dorsal stepping.  At week 9 all animals 

within the S3319 group scored were able to plantar place at least one paw except for one 

animal.  While only two animals in the vehicle treated control plantar place at least one 

paw.  Interestingly the sPLA2-/- mice were each able to place one paw, with the 

exception of one who could place both.  However, their stepping ability seemed relatively 

intact indicating that their low scores were more a function of severe scoliosis that 

developed in this group resulting in a defined foot preference.   

Bladder dysfunction has consistently been ranked as one of the top concerns 

among paraplegics and quadriplegics, usually of higher importance than the loss of 

locomotion (Benevento and Sipski, 2002, Anderson, 2004).  In this study bladder 

function following SCI also showed significant difference among experimental groups 

(MANOVA F4, 388 = 97.74, p<0.0001) and over time (MANOVA F15, 388 = 8.095, 

p<0.0001; Fig. 20).  Post hoc analysis revealed that contused 129svj (sPLA2-/- SCI) mice 

had a significantly lower bladder volume than untreated BALB/c mice expressing sPLA2-

IIA (Veh SCI), between days 3 (p<0.001) and day 25 (p<0.001).  Similarly, 

pharmacological inhibition of sPLA2 by S3319 resulted in significantly lower bladder 

volumes at days 19 (p<0.05) through 25 (p<0.001) when compared to vehicle control 

BALB/c mice receiving contusion.  Stated differently, the bladder volumes of contused 
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129svj (-/-) mice became statistically similar to sham animals at day 7 post injury 

(p>0.05).  With S3319 the bladder function returned on day 13.  However, bladder 

function in the vehicle controls did not mirror sham animals until day 31. This suggests 

that both the pharmacological and genetic manipulation of sPLA2 following severe SCI 

resulted in a return of bladder function between two and three weeks earlier than controls.  

Since this experiment utilized a thoracic lesion, far above the sacral micturition center 

(S2-4), any improvement suggests an increased signaling from the higher centers passing 

through the lesion epicenter.   
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Figure 20. sPLA2 Inhibition Increases Functional Recovery Following Severe Spinal 

Cord Injury. 

In the top graph sPLA2 inhibition by i.p. injection with S3319 prior to injury results in 

significantly improved voluntary over ground locomotion at weeks 7, 8, and 9 (+ - +++).  

Similarly, a frame shift mutation in the sPLA2-IIA gene (sPLA2 -/-) results in statistically 

significant increases in locomotion at weeks 5, 7, 8, and 9 (* - ***).  The bottom graph 

shows the average voiding volume of urine.  Mice lacking the sPLA2 gene returned to 

baseline volumes on day 7.  Mice injected with S3319 returned to baseline by day 13.  

While vehicle control mice only returned to baseline on day 31. Graphs are presented as 

x ± SE.  Between comparisons of injured animals at a single time point, “+ or *” = 

p<0.05, “++ or **” = p<0.01, “+++ or ***” = p<0.001. 
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Inhibition of sPLA2 Increases Histological Recovery Following SCI. 

 To confirm the observed behavioral improvements have a histological correlate, 

mice were sacrificed and tissue was sectioned.  First luxol fast blue and cresyl eosin 

staining was performed as a general measure of white matter sparing and inflammation 

respectively.  At 9 weeks post injury, significant differences existed among groups with 

respect to total volume of shared myelin within an 16 mm section of cord centering on 

the epicenter (Fig. 21 top right; ANOVA F4, 35 = 91.44, p<0.0001).  Both the 129svj mice 

lacking sPLA2 expression (sPLA2-/- SCI; p<0.001) and the S3319 treated BALB/c mice 

(S3319 SCI; p<0.05) showed significantly more spared myelinated tissue than the vehicle 

treated BALB/c mice.  Furthermore the area of spared myelin was calculated at each 0.96 

mm interval rostral and caudal from the lesion (Fig. 21 bottom right).  Again this showed 

significant differences among the injury groups (MANOVA F4, 595 = 488.7, p<0.0001) 

and among distances from epicenter (MANOVA F16, 595 = 116.8, p<0.0001).  Post hoc 

analysis revealed that 129svj mice (sPLA2-/- SCI) were significantly different from 

vehicle treated BALB/c mice (Veh SCI) at all points rostral (varying significance from 

p<0.001 to p<0.05) and at -0.96 mm caudal (p<0.001) and -1.92 mm caudal (p<0.01) to 

the lesion epicenter.  In contrast differences in the sparing of myelinated tissue was only 

seen between S3319 treated BALB/c mice (S3319 SCI) and vehicle treated controls (Veh 

SCI) at 1.92 mm (p<0.05) and 0.96 mm (p<0.001) rostral to the injury epicenter. Sparing 

of white matter rostral to the lesion epicenter has also been seen in other treatments for 

spinal cord injury such as bFGF (Rabchevsky et al., 1999, Rabchevsky et al., 2000) and 

implantation of FGF2 secreting cells (Zai et al., 2005).   
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 Interesting pronounced demyelination was noted to extend rostrally much further 

in the dorsal columns of the untreated animals (Fig. 21 graph bottom right). Pictured is 

demyelination of the dorsal column 10 mm rostral to the lesion epicenter (Fig. 21 arrow 

in right composite).  Similarly differences in white matter sparing were observed in 

various mice strains following SCI and was attributed to longer lesion extension observed 

in the dorsal columns (Kigerl et al., 2006).   Not surprisingly the areas of demyelination 

correlated strongly with those areas expressing increased sPLA2-IIA at 9 weeks (Fig. 22). 
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Figure 21. sPLA2 Inhibition Increases Myelin Sparing 

A composite (A) of a representative animal from each group showing consecutive luxol 

fast blue stained sections at epicenter and various distances rostral to the epicenter.  Note 

the greater spared myelin in the S3319 treated and sPLA2-/- mice as compared to the 

vehicle control with SCI.  Note that demyelination of the dorsal columns extends rostrally 

at least 10mm (arrow). Quantification of the total volume of spared white matter (B) in a 

16 mm section of spinal cord centering on the epicenter and a graph of the subvolumes 

(C) confirm the observed demyelination.  Note the decreased sparing of white matter 

present in the rostral but not the caudal direction.  sPLA2-/- mice show significant white 

matter sparing at all points rostral to the epicenter measured (C; +) while mice injected 

with S3319 only show increased sparing at 0.96 mm and 1.92 mm rostral to the epicenter 

(*).   
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Figure 22.  sPLA2-IIA Immunoreactivity Co-localizes with Demyelinated Tissue 

Sections from different tissue sets stained for either sPLA2-IIA immunoreactivity (A & 

D) or luxol fast blue stain for myelin (B & E).  Images are from two different S3319 

animals either 1.6 mm rostral (A-C) or 1.28 mm rostral (D-F) to the lesion epicenter. 

Note that in D-F the three distinct areas of demyelination in the dorsal columns and both 

lateral funiculi correlated with that of demyelination with very little immunoreactivity in 

the dorsal horns.   
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Following spinal cord injury there is a migration of millions of small infiltrating 

cells into the lesion area that are easily seen in CE stained sections.  The infiltration of 

inflammatory cells whose nuclei is dark blue corresponds nicely with the areas of 

demyelination seen in luxol fast blue stained sections (Compare Fig 21A & Fig 23A).  

Also similar to a LFB stained section, increased inflammation is again seen in the dorsal 

columns rostral to the lesion epicenter (arrow in Fig 23A & B).  Stereological 

quantification of these cell’s nuclei allow for a rough approximation of how different 

conditions affect inflammation.  At 9 weeks post injury, significant differences existed 

among groups with respect to number of infiltrating nuclei within a 4 mm section of 

spinal cord centering on the epicenter (Fig. 23C; ANOVA F4, 25 = 137.8, p<0.0001).  

There was virtually no infiltrating nuclei seen in either of the sham conditions however 

1.25x106 ± 203,000 cells were counted in the vehicle control mice while only 0.82x106 ± 

157,000 cells (S3319; p<0.001) and 0.93x106 ± 70,000 cells (sPLA2-/-; p<0.001)  were 

seen in the treated conditions.  This signifies a 34% and 25% decrease inflammation in 

the S3319 and sPLA2-/- groups respectively.  Suggesting that as was seen in other in vivo 

injury models, that S3319 has an anti-infiltrating effect that carries over to 

neuroinflammation.  
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 Figure 23. sPLA2 Inhibition Results in Decreased Inflammation Following SCI 

A composite (A) of the same representative animal from each group that is shown in Fig. 

21, showing sections at epicenter and various distances rostral to the epicenter stained 

with cresyl eosin stain.  Note the decreased infiltration of infiltrating cells in the S3319 

and sPLA2-/- mice as compared to the vehicle control with SCI.  Note that similar to the 

demyelination, inflammation extends 10 mm rostrally in the dorsal columns of the 

vehicle control animal (arrow).  3-D reconstructions (B) of the same cords in A.  

Quantification of the infiltrating cell nuclei (C) in the spinal cord centering on the 

epicenter shows that inhibition of sPLA2 results in decreased infiltration of small 

infiltrating nuclei.   
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 To measure the volume of a lesion we used GFAP stained sections and measured 

the area within the reactive glial border which was the spinal cord lesion epicenter.  The 

GFAP- lesion area was quantified at 320 µm intervals as a percentage of total spinal cord 

area.  Again, there was significant differences existed among groups (Fig. 25A-C & J; 

MANOVA F2, 273 = 43.09, p<0.0001) and with respect to distance from the lesion 

epicenter (MANOVA F12, 273 = 86.37, p<0.0001).  Mice lacking sPLA2-IIA expression 

showed significantly smaller lesions at 1.28 mm (p<0.001), 0.96 mm (p<0.001), 0.64 mm 

(p<0.001), 0.32 mm rostral (p<0.001) and at 0.32 mm caudal (p<0.05) to the lesion.  

Similarly, pharmacological inhibition of sPLA2-IIA by S3319 resulted in significant 

sparing rostral to lesion at 1.28 mm (p<0.001) and 0.96 mm (p<0.001).  It is interesting to 

note that once again there appears to be a preferential sparing of tissue rostral but not 

caudal to the lesion epicenter.  Quantification and analysis of tissue area showing 

astrogliosis yielded virtually identical significance.   

However the decrease in lesion size and white matter sparing is superfluous in a 

thoracic lesion if the number axons traversing the lesion epicenter is unaltered.  

Therefore, the number of axons found in the lesion epicenter was quantified using 

unbiased stereology with a fractionator probe revealing a significant difference among 

injury groups at 9 wks post injury (Fig. 25G-I & K; ANOVA F2,15=6.198, p<0.01).  

Almost double the number of axon profiles were counted at the lesion epicenter in both 

Balb/c mice treated with the sPLA2 inhibitor S3319 ( x = 11,285 ± 2880) and 129svj mice 

lacking sPLA2-IIA expression (sPLA2 -/- SCI; x = 11,450 ± 3817) when compared to 

vehicle controls receiving spinal cord injury ( x = 6,206 ± 1713) (p<0.05).  However 
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neither of the treated animals achieved 10% of axon counts in the uninjured control 

animals (Balb/c = 121,830 ± 1,053; 129svj = 128,039 ± 7,398).   
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Figure 24.  sPLA2 Effect on Glial Lesion and Axons Within the Epicenter 

A-C) Low power images taken from 960 μm rostral from the lesion epicenter showing 

decrease in lesion size after sPLA2 inhibition.  D-F) low power images of the lesion 

epicenter showing no difference in lesion size.  White boxes indicate areas from which 

the high power images G-L were taken.  Images G-I show double labeling of GFAP (red) 

and SMI-31 (green) at the lesion epicenter.  J-L) Single labeled images showing an 

increase in SMI-31 labeled axons in both the S3319 group (K) and the sPLA2-/- animals 

(L).  M) Quantification of GFAP negative lesion area over a 4 mm section centered on 

the epicenter.  Note the significantly smaller lesion size between sPLA2-/- mice at 1.28 

mm, 0.96 mm, 0.64 mm, and 0.32 mm rostral as well as 0.32 mm caudal to the lesion.  

Similarly, mice injected with S3319 show smaller lesion size rostral to lesion at 1.28 mm 

and 0.96 mm.  N) Quantification of the axon profiles at the lesion epicenter revealed 

almost twice as many spared axons at the lesion epicenter in both treated condition than 

in the vehicle control (p < 0.05).  Scale bar = 300 mm A-B;  200 mm C-D;  50 mm E-H.   

p<0.05 *, p<0.001 *** 
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Since there seemed to is preservation of Luxol fast blue staining in the rostral 

dorsal columns in both the S3319 treated and 129svj mice (arrow in Fig. 21), we next 

need to determine if axons were present in these areas.  Three consecutive sections, 8 mm 

rostral to the lesion epicenter, were stained in each animal.  The first was LFB strained 

for myelin (Fig. 25 A-C), the second was CE stained (Fig. 25 D-F), and the third was 

GFAP/SMI-31/Hoechst triple labeling (Fig. 25 G-U).  First, this comparison revealed that 

the lesion area took up less of the dorsal column in both the S3319 and 129svj groups.  

Secondly, axons were present both the S3319 treated and 129svj animals (Fig. 25 Q, R, 

T, & U), when the lesion was defined as the area with increased gliosis.  Suggesting that 

treatment with S3319 resulted in at least partial sparing of both white matter and axons 

rostral to the lesion epicenter.  However, the LFB sapring appeared to be much greater, 

suggesting that some axons were lost while their myelin sheaths were spared.  An 

alternative hypothesis that has been proposed by some authors is that all axons were 

initially destroyed and what is seen are regenerating fibers though spared myelin sheaths 

(Raisman, 2004).
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Figure 25. Dorsal Column Injury 

A-F are from different sections stained with luxol fast blue (A-C) and crestyl eosin (D-F).  

G-R are triple immuno-labeled with anti-SMI-31 (green), anti-GFAP (red), and hoechst 

(blue),  All sections are from 8 mm rostral to injury epicenter.  Scale bar in R = 100 μm.   
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 In previous work we noted that injections of sPLA2 at the grey and white matter 

interface had a greater impact on white matter injury.  Additionally, we showed that 

inhibition of sPLA2 by S3319 was able to partially protect differentiated oligodendrocyte 

precursor cells in vitro in two injury models.  Therefore we first used 

immunohistochemistry to confirm that sPLA2-IIA was in fact present in oligodendrocytes 

(Fig. 26A-C).  We next used unbiased stereological measurement to count the number of 

spared oligodendrocytes within a 2 mm section of spinal cord centering on the lesion 

center.  Since Olig1+ stains the entire cell body sections were counter stained with 

Hoechst to prevent over counting.  There was a significant difference in the number of 

oligodendrocytes at 9 weeks post injury (ANOVA F2,15=17.67, p<0.0001; Fig. 26D).  

Post hoc analysis revealed that among the injured animals, S3319 ( x = 14,200 ± 3,536) 

and sPLA2-/- ( x = 24,200 ± 7,181) animals had a significantly higher number of Olig1+ 

oligodendrocytes than vehicle controls ( x = 6,360 ± 4,179).  This suggests that as was 

seen in vitro, inhibition of sPLA2 could result in partial sparing of oligodendrocytes 

following injury.  However, it remains to be seen if this results from prevention of 

apoptosis or rather a decrease in inflammation resulting in a more permissive 

environment.     
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Figure 26.  sPLA2 Inhibition Increases Oligodendrocytes Numbers Following SCI. 

A-C) Confocal images showing oligodendrocytes (A; Olig1+) co localized with sPLA2-

IIA (B) in the ventral white matter.  D) Mice with decreased sPLA2 activity either by 

S3319 inhibition or by a frame shift mutation (sPLA2-/-) have significantly more Olig1+ 

oligodendrocytes within a 4 mm section of cord centering on the epicenter at 9 weeks 

post injury.   
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Finally, the week 9 BMS scores and the date of voluntary bladder control were 

collected for each animal and normalized.  Then the normalized scores were averaged to 

produce an average behavior score for each animal at week 9.  Then each histological 

outcome measured in this study was compared to the behavior score to insure that there 

were no outliers or non-responders, to confirm the precision of the injury device, and to 

assess the amount of correlation between the outcomes and behavioral improvement.  

The presence of SMI-31 positive axons at the lesion epicenter (r(23) = 0.87, p<0.0001), 

the amount of spared white matter (LFB; r(23) = 0.95, p<0.0001), the number of Olig1+ 

oligodendrocytes (r(22) = 0.90, p<0.0001) all correlated highly with behavioral outcomes 

at nine weeks.  Accordingly the size of the GFAP negative lesion area showed a similarly 

strong negative correlation with behavioral function at 9 weeks (r(23) = -0.90, p<0.0001).  

Since the inclusion of normal controls in Pearson product moment correlation can 

artificially inflate significance the analysis was repeated with non-injured animals 

removed and again each histological outcome highly correlated with behavioral outcomes 

at nine weeks (SMI-31, r(16) = 0.70, p<0.01; LFB, r(16) = 0.87, p<0.0001; Olig1+, r(16) 

= 0.72, p<0.01; GFAP, r(16) = -0.75, p<0.001).  While all measures demonstrated a high 

significance the amount of spared myelin showed the highest level of correlation with 

behavior function at 9 weeks.  Additionally, despite the high severity of the injury, which 

most likely muted recovery, the high correlations testify to the precision of both the 

histological quantification and the method of injury.   
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Figure 27.  Comparison of Histological Outcomes to Behavioral Function 

Each of the histological measures used in this study showed a high level of correlation 

with the behavioral outcomes at nine weeks.  Histological measures are reported as the 

average normalized percentage.  A) Normalized volume of spared white matter in an 8 

mm segment of cord.  B) shows the normalized volume of GFAP negative lesion within a 

4 mm segment.  C) Normalized number of SMI-31+ axons at the lesion epicenter.  D) An 

enlargement of the dotted box in C that truncates the graph to remove non-injured 

animals presenting a more accurate representation.  E) Number of Olig1+ 

oligodendrocytes in a 4 mm segment of cord.  Note the relatively tight correlation present 

in each graph.  Note only 6 animals are shown for the S3319 group because the two 

highest functioning animal were lost after sacrifice due to tissue damage during slicing.   
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DISCUSSION 

Previously we have shown that sPLA2-IIA and IIE are increased following SCI 

and that direct injection of nanogram doses of sPLA2 results in demyelination and loss of 

oligodendrocytes within the white matter.  However, a gain of function had yet to be 

demonstrated following the inhibition of sPLA2.  In this study we were the first to show 

that inhibition of sPLA2-IIA prior to severe neurotrauma results in moderate but 

significant sparing of behavioral function and histology.  Inhibition resulted in 

significantly improved overground locomotion after pharmacological inhibition by the 

small molecule S3319.  Additionally, those mice with muted sPLA2 activity showed on 

onset of a neurogenic bladder 2-4 weeks before vehicle control mice although it is 

unclear if this result is due to systemic effect of sPLA2 inhibition.  

The most important finding of this study was the significant functional recovery 

observed after S3319 inhibition.  Moreover this recovery correlated highly with tissue 

sparing.  Upon histological examination, significant differences were found in white 

matter sparing rostral to the lesion, increased sparing of axons at the lesion epicenter, 

decreased size of lesion volume, and increased number of spared oligodendrocytes within 

the lesion.  The high correlation between behavioral and histological measures served 

two purposes.  First it supports the behavioral observations by external validation and 

secondly it suggests that the mechanism of functional recovery might be through either 

direct neuroprotection or tissue repair.  Two factors point to the possibility that S3319 

might facilitate regeneration.  First, the severe spinal cord injury model used in this 

experiment would lead one to believe that most axons were destroyed by mechanical 

trauma and therefore these axons would not be candidates for neuroprotection.  However, 
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S3319 treatment resulted in a doubling of axon profiles within the lesion epicenter.  This 

is exciting since many other authors have found that only modest improvements in axons 

passing through the lesion can result in significant motor gains.  The circuitous nature of 

these axons and the relative distribution of these fibers throughout the entire spinal cord 

suggest regenerating fibers.  Secondly, the gradual increase of function over 9 weeks and 

the lack of any significant gains until weeks 7 through 9 suggests a regenerating process 

rather than a neuroprotection which would show a dramatic increase following recovery 

from spinal shock and a leveling off of gains after week 3.  However, treatment with 

S3319 could have protected only a ring of spared axons along the ventral periphery of the 

spinal cord.  More conclusive methods such as axonal tracing following contusion would 

be required to determine if the observed recovery is from regeneration or 

neuroprotection.  See Chapter V for a more rigorous discussion of regeration.  

One limitation of the current study is that we pretreated the animals with S3319.  

In the present study we utilized pretreatment with S3319 rather than post treatment to 

seek a “proof of principle” for sPLA2 inhibition in SCI.  Further studies will be conducted 

to test its efficacy and optimal time window for post-injury treatment.  Our work does 

indicate a possible window of efficacy though.  In the initial studies of sPLA2 expression 

(See study #1; chapter 2), rats showed peak expression at 4 hr post injury with levels 

returning to baseline at 1 week.  While this allows a short window of efficacy, this is not 

beyond the realm of current clinical protocols.  For example, the standard protocol in 

most certified stroke centers for patients with ischemic stroke is reperfusion within 3 hr 

of onset with intravenous recombinant tissue plasminogen activator (TPA; alteplase), 0.9 

mg/kg over 1hr which has been shown to reduce death and dependency (odds ratio 0.64, 
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95%CI 0.5-0.8) (Hankey, 2007b, Hankey, 2007a).  In contrast, sPLA2-IIA levels, which 

peak at 4 hrs, do not return to baseline levels until one week after injury, suggesting an 

even longer window of opportunity if inhibition of this enzyme is deemed effective.  One 

possible merit of S3319 in a clinical setting is its oral activity, suggesting that the average 

time to treatment initiation could be shortened even more than TPA drugs which require 

intravenous administration by a specialist in a controlled setting. 

Whether S3319 penetrates into the CNS in sufficient quantities to decrease sPLA2 

activity still remains an important control to perform.  However, it is likely that S3319 

will be present in sufficient doses.  First, S3319 has been shown to be an extremely 

potent inhibitor of recombinant human sPLA2-IIA with an IC50 = 0.029 μm (Hansford et 

al., 2003).  Additionally S3319 has been shown to be orally active and efficacious in the 

treatment of reperfusion injuries in vivo (Arumugam et al., 2003).  Finally, the small 

molecular weight (487.63) and extreme lipophilic nature of S3319 should facilitate its 

passage across the blood brain barrier.  However, what remains to be conclusively proven 

is whether the given dose in this study results in decreased sPLA2 activity within the 

injury site following SCI.  This can be achieved by assessing the sPLA2 activity present 

in homogenized spinal tissues by a chromatic assay similar to that which was used in our 

lab to assess total PLA2 activity (Liu et al., 2006).  The study in question is currently 

underway.   

An alternate explanation for the effects of S3319 in these animals is an inhibition 

of systemic inflammation rather than as a centrally acting agent.  For example, the delay 

in initiation of neurogenic bladders in the injured animals treated with vehicle could be 

explained by increased inflammation within the bladders.  Bladder inflammation 
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following SCI is common secondary to infections due to loss of bladder function.  In a 

study of human SCI patients, bladder biopsies revealed that 91.5% of patients had 

inflammation of the bladder wall with 67% showing chronic inflammation hallmarks 

(Janzen et al., 2001).  This inflammation could then prevent bladder emptying or inhibit 

the bladder emptying reflex thus resulting in larger voiding volumes when bladders are 

emptied in comparison to the S3319 treated animals.  Muting of systemic inflammation 

could possible explain the BMS scores as well, in that animals treated with S3319 could 

have lower inflammation of the extremities and thus more movement following SCI.  

This explanation is less likely since no evidence has been found that SCI increases joint 

inflammation of the extremities in either humans or animals.  While osteopenia and 

osteoporosis are common problems in SCI (Jiang et al., 2006, Maimoun et al., 2006) 

there is no reason to assume that S3319 would of altered bone densities of calcium 

handling in the body.  A possible method for excluding these possibilities would be to 

only administer S3319 through an intrathecal pump thus limiting its systemic effects. 

   The beneficial effects of sPLA2-/- data come with one major caveat.  During the 

initial characterization of the Basso Mouse Scale, it was noted that different strains of 

mice performed significantly better following a standard contusion.  Interestingly, in their 

original study 3 of the 4 sPLA2 -/- mice strains scored significantly better than the only 

sPLA2 +/+ strain (Basso et al., 2006).  However, the fact that differing strains 

demonstrated various recoveries following moderate SCI suggests that the differences 

observed in this study could be due to the sPLA2 gene or any other genetic difference 

between the two strains of mice used.  While the data presented here does support our 

hypothesis it does not conclusively demonstrates a role for sPLA2-IIA in spinal cord 
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injury.  Therefore future studies should use solid genetic techniques to conclusively 

determine whether sPLA2-IIA is specifically responsible for the observed effects.    

 Another question that was beyond the scope of this study was the mechanisms 

behind the functional gains associated with sPLA2-IIA inhibition.  It is currently 

unknown whether the gain of function resulted from the prevention of direct cytotoxicity 

on cells such as oligodendrocytes, a more general suppression of the immune response, or 

from a facilitation of axonal sprouting through the lesion epicenter.  These questions will 

remain for future studies and must be at least partially addressed in an immunosuppressed 

mouse model.  None the less, the use of a sPLA2 inhibitor did result in at least partial 

sparing of the secondary injury following spinal cord injury and merits further 

investigation. 
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CHAPTER V 

DISCUSSION 

Review of Findings 

This research began with a simple question posed to me. “What is the brain made 

of?”  Fat is the answer.  The CNS is roughly 60% fat and has a disproportionately high 

concentration of lipids compared to other tissues of the body and 44% of those lipids are 

phospholipids (Morell, 1984).  Therefore any destruction of the CNS would require in 

part the destruction of lipids in general and phospholipids in particular.  Many 

experiments have proven this to be true.  Following severe SCI biphasic increases in free 

fatty acid levels is seen, with levels peaking at 15 min and 24 hr post-trauma before 

declining over the next 6 days (Demediuk et al., 1989).  Even within the first few minutes 

after SCI, free fatty acids have increased in the grey matter and later increase within the 

white matter (Demediuk et al., 1985, Faden et al., 1987, Demediuk et al., 1989).  These 

findings suggested that acute PLA2 activity may be present following SCI.   

Aside from the obvious effects of phospholipases activity on membrane 

breakdown, PLA2 presents a tantalizing therapeutic target since its metabolites are also 

neurotoxins.  PLA2 hydrolyze the ester bond at the sn-2 position of membrane 

phospholipids producing a free fatty acid, such as arachidonic acid (AA), and a lyso-

phospholipid, such as lysolechithin (a.k.a. lysophosphatidyl choline, L-PC).  AA has been 

shown to damage cultured oligodendrocytes and neurons (Wang et al., 2004)  and LPC 
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can induce demyelination of the CNS and PNS (Blakemore et al., 1977) and act as a 

macrophage chemoattractant (Lauber et al., 2003).  Therefore, our lab investigated the 

role of phospholipases A2 following SCI.  First the total phospholipase activity was 

shown to increase following SCI and peak at four hours post injury.  It was next 

determined that the well know cytosolic PLA2 (cPLA2) increased following SCI but 

cPLA2 protein expression did not peak until 7 days post injury, well after total PLA2 

activity crested.  This paradox led us to believe that another PLA2 isozyme was most 

likely responsible for the majority of phospholipase A2 activity seen following injury.  

Therefore we began to investigate the sPLA2 subfamily of enzymes. 

We first showed that sPLA2 mRNAs and proteins were present in the mammalian 

nervous system and increased following neurotrauma and cytotoxic injury.  While others 

have demonstrated the presence of selected sPLA2 mRNAs in the brain (Molloy et al., 

1998, Kolko et al., 2005, Kolko et al., 2006) our study was the first demonstration that 

several sPLA2 isoforms are present in oligodendrocytes at low levels in the naïve 

mammalian spinal cord.  Additionally, this was the first study to identify increases in 

sPLA2 protein synthesis and expression following neurotrauma.  Interestingly, only group 

II mRNA and protein levels show an increase following SCI.  Most importantly, sPLA2-

IIA protein peaked at 4 hr post injury in conjunction with the peak of total phospholipase 

activity suggesting that it might be the phospholipases responsible for a majority of 

activity increase following neurotrauma.  Similarly, the induction of sPLA2 synthesis 

following nervous system injury was confirmed in vitro.  We showed that cultured spinal 

oligodendrocytes increase sPLA2-IIA expression when challenged with proinflammatory 

molecules present in spinal cord injury such as TNFα and IL-1β or H2O2. While other 
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authors have shown an increase in AA production following H2O2 injury in other cell 

lines (Han et al., 2003), this was the first study to directly link free radical injury to 

sPLA2-IIA production.  Other authors had already confirmed that sPLA2-IIA present in 

μM levels could trigger apoptosis in cultured neurons (Yagami et al., 2002b) and we 

showed that exogenously adding sPLA2 triggered a loss of oligodendrocyte process 

extensions at low doses and death at μM levels as well.  Most importantly, 

pharmacological inhibition of sPLA2 appears to partially ameliorate oligodendrocyte 

death following challenge with TNFα and IL-1β or H2O2 suggesting a critical role for 

sPLA2 in the convergence of injurious signals. 

After confirming the upregulation of sPLA2 following SCI and cell culture, we 

next determined that increases in sPLA2 resulted in a loss of function.  To this end we 

showed that direct injections of nanogram doses of sPLA2 into the naïve spinal cord 

resulted in extensive demyelination, axonopathy, oligodendrocyte death, and immune cell 

infiltration. Not surprisingly the tissue damage correlated with a behavioral loss of 

function in both the pellet reaching behavior and footprint analysis.  Interestingly, the 

observed damage remained predominantly within the white matter when injected at the 

grey and white matter intersection.  This led us to believe that blockade of sPLA2 

following SCI could partially ameliorate the spreading white matter degeneration 

observed with secondary spinal cord degeneration. 

 Finally, we needed to determine if inhibition of sPLA2 in conjunction with SCI 

resulted in an observable gain of function.  While sPLA2 inhibition had shown 

neuroprotective effects following a stroke model in rodents (Adibhatla et al., 2006), this 

was the first study to demonstrate its efficacy following neurotrauma in general and the 
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first demonstration of  S3319’s efficacy in the CNS.  In our final set of studies, we 

showed that pharmacological inhibition of sPLA2 decreased inflammation and GFAP 

negative lesion cavity, as well as increased white matter sparing, oligodendrocyte 

survival, and axons coursing through the lesion epicenter.  Additionally, we showed that 

inhibition of sPLA2 resulted in a very small but statistically significant gain of function in 

voluntary over ground locomotion and an increase in bladder voiding volumes 2 – 4 

weeks earlier than controls.   

Another interesting observation is the apparent specificity of sPLA2’s action in 

the CNS to post mitotic cells.  Previous work by other authors demonstrated sPLA2-IIA 

expression in neurons and its ability to trigger apoptosis in the μM range (Yagami et al., 

2002b).  In study #1 (chapter 2) we demonstrated that oligodendrocytes express sPLA2-

IIA when injured and that it can induce cytotoxicity at levels identical to those seen in 

other studies utilizing neurons.  Interestingly, astrocytes and Schwann cells show no 

increase in LDH or decrease in MTT production following injury with 2 μM of sPLA2-

IIA.  This indicates that inhibition of sPLA2 following injury could be specific to neurons 

and oligodendrocytes and could explain why lesioning of the spinal cord with injections 

of sPLA2 results in a death of oligodendrocytes but a gliosis and remyelination with 

Schwann cells (see study #2; chapter 3).  Within study #3 (chapter 4), this idea is 

supported by the increased number of oligodendrocytes and axon profiles seen after 

S3319 treatment.  However exact quantification of neurons within the lesion needs to be 

performed.    

 

Limitations of Current Findings 
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The first study simply designed and executed; however some comments must be 

made about the specificity of our sPLA2-IIA inhibitor, S3319.  S3319 was specifically 

developed as a highly potent inhibitor of sPLA2-IIA.  This was done by designing a 

theoretical back bone that would intercalate into the group IIA enzymatic site.  Then the 

side chain structures were varied to empirically determine the compound with the highest 

affinity and lowest Kd.  In the orinal publication detailing this molecule it was stated that 

a 2.2Å crystal structure of the resulting structure shows … 

“… an inhibitor that is bound in the active site of the enzyme, 

chelated to a Ca2+ ion through coarboxylate and amide oxygen 

atoms, H-bonded through an amide NH group to His48, with 

multiple hydrophobic contacts, and a T-shaped aromatic – His6 

interaction.” (Hansford et al., 2003) 

While the highly specified binding site and 3-D structure analysis suggest a 

selective inhibition of IIA over other sPLA2s, S3319’s activity against other isoforms has 

not been directly assessed.  In general the use of pharmacological agents in studies 

introduces the possibility that said agent can have unintended activities on other 

molecules, often times wholly unrelated to the target of inhibition.  Consequently these 

unintended interactions are the result of the observed effects.  However, the high potency 

of S3319, low concentrations used, and its unique development suggest that the observed 

effects were from sPLA2-IIA inhibition.  However, future studies should confirm the 

above observations either through knock down or knock out studies such as was shown 

by Han et al., (2003).  
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In the second study, sPLA2-III was used to assess the effects of sPLA2 activity on 

the naïve central nervous system.  sPLA2-III extracted from bee venom and was selected 

because its enzymatic activity is well characterised and quantified and therefore could be 

used to reproduce the total phospholipase activity that was calculated in earlier studies 

(Liu et al., 2006).  However, in the first study one can note that sPLA2-III was not found 

in the rat CNS and to date a mammalian group III has only been confirmed in humans 

(Valentin et al., 2000a).  Interestingly both human group III (Masuda et al., 2008) and 

group X sPLA2 (Ikeno et al., 2005) have been shown to increase neurite outgrowth in 

cultured PC12 cells at very low doses.  These finds further complicate the generalizability 

of sPLA2 inhibition following SCI, especially if S3319 or any other sPLA2 inhibitor is 

found to have non-specific inhibition.  However, the fact that histological changes were 

seen in the third study following S3319 treatment in SCI suggests that either the drug is 

specific for sPLA2-IIA or that the detrimental effects of IIA outweigh the neurogenic 

properties of groups III and X.  None the less it will be crucial to evaluate the specificity 

of an inhibitor on sPLA2 isoforms before studies are performed in higher animals.  The 

cross inhibition of various inhibitors could help to explain the mixed success of previous 

sPLA2-IIA inhibitors in clinical trials (Reid, 2005).   

In the third study there are several matters of extreme concern that limit the 

inclusion of any of the 129svj (sPLA2-/-) mice in future publications resulting from this 

work.  First any comparison of sPLA2-/- mice to those possessing the sPLA2-IIA gene 

must be called into question because no proper control was included for the sPLA2-/- 

mice.  Therefore any differences observed between the SCI groups could be attributable 

to either sPLA2-IIA or any of the thousands of other genetic variations between these 
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species.  Secondly, due to the poor design of this experiment, we elected not confirm the 

absence of sPLA2-IIA activity or expression of the truncated protein and absence of the 

full length protein in these animals.   

In a broader sense the lack of any developmental defects in 129svj mice suggests 

that sPLA2-IIA may not play a crucial role in the CNS.  However, I would argue that this 

is not true.  If, as we suggest here, that sPLA2-IIA is primarily an initiator and/or 

propagator of inflammation, than one would expect to see few defects in a normally 

reared animal without pathology.  To this end, I feel that any constitutive KO animal is a 

poor model for SCI investigation.  It makes little since to deprive an animal of a gene for 

its entire development when one is interest in an acute event such as SCI or stroke.  

Following injury if a difference is detected it is unclear whether this observation is due to 

loss of function during the time of injury (and therefore a suitable therapeutic target) or 

rather a result of altered development (and of less utility).  In my opinion it is of greater 

value to utilize one of the inducible KO systems such as utilizing doxycycline in a “Tet-

Off” system to inhibit sPLA2-IIA expression just prior to SCI (Kistner et al., 1996).  

Unfortunately this strain has yet to be developed. 

In any paper showing functional improvements the likelihood of regeneration 

should be rigorously addressed.  An article by Steward, Zheng, and Tessier-Lavigne 

(2003) laid out criteria for distinguishing regenerated axons from spared axons in the 

central nervous system.  They are as follows; 

(I) The axon extends from the CNS into a non-CNS environment, 

specifically, the tissue environment of the scar that develops at the 

injury site. 



 186

(II) The axon extends from the host CNS into a nonhost graft or 

transplant. 

(III) The axon originates at or near a site of amputation. 

(IV) The axon takes an unusual course through the tissue 

environment of the CNS. 

(V) The axon extends no further than could be accounted for by 

plausible regeneration rates. 

(VI) The axon is tipped with a growth cone. 

(VII) The axon has a morphology that is not characteristic of 

normal axons of its type (for example exhibiting unusual branching 

patterns).  (Steward et al., 2003) 

Since axons were seen evenly spaced throughout the lesion epicenter, GFAP- 

core, and axons are present in what should be both grey and white mater criteria I and IV 

are met suggesting regeneration.  Secondly, since histological samples were not made 

until 9 weeks post injury and since behavioral recovery was not seen until weeks 7 - 9, it 

can be assumed that if regeneration occurred and it is playing a role in any observed 

functional increases, it did so at plausible growth rate (criteria V).  However, since the 

injury model was a contusion and not hemisection and no graft tissue was placed in the 

lesion site, criteria II and III are irrelevant.  Finally, the presence of growth cones and the 

branching patterns were not investigated due to the age of the lesion and that no tracing 

was performed in this study leaving criteria VI and VII unknown.  Taken in total 

increased regeneration could have happened in the S3319 treated animals, but there is 

simply insufficient evidence to suggest that it occurred based on the data presented here. 
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Application of Findings to Future sPLA2 Research: 

It must be noted that sPLA2 does not function as a phospholipase in isolation.  

Rather than focusing on sPLA2 in CNS injury, current literature has focused on role of 

cPLA2 in ischemia/stroke (Bonventre et al., 1997, Saluja et al., 1997, Arai et al., 2001, 

Tabuchi et al., 2003), multiple sclerosis, and  the mouse correlate experimental 

autoimmune encephalomyelitis (Kalyvas and David, 2004, Marusic et al., 2005).  

However, there appears to be a reciprocal accentuation of activity among the PLA2s 

(Murakami et al., 1998, Han et al., 2003).  This suggests that inhibition of sPLA2, cPLA2, 

and possibly even iPLA2 in unison could result in a synergistic increase in neurological 

sparing which merits further study.  Additionally, variations in the biological functions 

and species specificities of various sPLA2 isoforms complicate the issue further 

(Cupillard et al., 1999, Kudo and Murakami, 2002).    

For example, the rabbit sPLA2-R is very promiscuous, binding to almost all 

sPLA2 tested to date.  The mouse sPLA2-R on the other hand binds only IB, IIA, and X, 

while the rat sPLA2-R only binds sPLA2-IB (Cupillard et al., 1999).  Likewise sPLA2-IIA 

does not seem to bind to the sPLA2-R in humans (Cupillard et al., 1999).  What seems to 

be important is that within each species at least one isoform of sPLA2 plays an important 

role in inflammation.  In mice that lack sPLA2-IIA activity, sPLA2-V takes it place in the 

propagation of the immune response to infection (Kudo and Murakami, 2002).  However, 

any further work in SCI would need cautious experimentation up the phylogenetic tree 

before experiments in humans could be initiated.   
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Unpublished work from our lab has confirmed that sPLA2-IIA is at least present 

in the human CNS after SCI.  However, any findings found in sub-human species will 

need to be interpreted conservatively when applied to preclinical research.   

 

Future Directions 

sPLA2, particularly group IIA, shows promise as a therapeutic target.  It has been 

strongly associated with many types of inflammation and disease states in various 

species(Kudo and Murakami, 2002).  These studies indicate that sPLA2-IIA might play a 

role in SCI and that its inhibition could result in some histological and functional sparing.  

However work still remains in unlocking the mechanism of action and pushing sPLA2 

inhibition from the bench to the bedside.   

First sPLA2-IIA action needs to be confirmed by genetic manipulation with a 

controllable down regulation.  This will involve not only measuring the expression of 

sPLA2-IIA protein but the enzymatic function of sPLA2 following knock down.  The 

latter experiment will aid in determining group IIA’s role in total sPLA2 and total PLA2 

activity.  Secondly, this will remove any ambiguity that results from use of a 

pharmacological agent and its possible actions on other PLA2s or unrelated molecules. 

Secondly, the pharmacological effects of S3319 in the CNS will need to be 

investigated further.  While protein expression suggests at least a 4 hr window, S3319 

will need to be administered at different time points after SCI to determine if a 

therapeutic window does exist and how long it takes S3319 to buildup to adequate levels 

in brain tissue.  Additionally, while the serum half-life of sPLA2 is rather short (12 - 

24hr); investigating the half life of S3319 enzymatic inhibition in the CNS could easily 
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yield a lower optimal dose.  It is easy to imagine that the lipophilic nature of S3319 could 

result in build up in fatty tissues.    

Third, the mechanism of S3319 inhibition in SCI should be investigated further.  

In general three mechanisms of action could be envisioned with the data available; 

observable gains following sPLA2-IIA inhibition could result from 1) decreased 

inflammation, 2) increased axon regeneration across the lesion site, or 3) inhibition of 

direct cytotoxicity to neurons and/or oligodendroglia.   

While the current study showed increased axons at the lesion epicenter, it is 

unknown whether these axons are regenerative and whether these axons contribute to 

functional recovery.  The most crucial study will be to compare the retrograde labeled 

axons in a more controlled lesion.  For example counting the number of anterograde 

labeled axons coursing through a lesion and the number of retrograde labeled neurons in 

central nuclei following selective tract lesioning in either treated or vehicle animals.  This 

study could additionally be augmented with a relesioning group to demonstrate a return 

to baseline of any observable gains. 

Given sPLA2-IIA’s role in inflammation and S3319’s previously observed anti-

inflammatory effects its role in inflammation should be further investigated.  First, simple 

quantification of OX-42 positive macrophages and microglia in the current tissue sections 

should be assessed if adequate samples remain.  Additionally, replication of this study in 

immunologically suppressed animals would help elucidate what role the anti-

inflammatory effects of S3319 play in the observed histological changes.  Similar studies 

have already been performed in SCI using either administration of immunosuppressant 

(Rabchevsky et al., 2001, Nottingham et al., 2002) or depletion of peripheral immune 
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cells (Popovich et al., 1999).  These experiments would better determine the contribution 

of sPLA2-IIA in the mobilization of the immune response.  Of course the possibility 

exists that all of the aforementioned mechanisms or some combination therein, contribute 

to the observed behaviors in which case testing of each mechanism will show partial 

involvement.   

In the third study it was noticed post hoc that the animals given S3319 showed 

subjectively smaller bladder volumes on twice daily voiding.  While the effect was 

dramatic, it needs to be repeated and more rigorously studied.  Evaluation of lower 

urinary tract function by urodynamic cystometry would allow for measures of contraction 

amplitudes and duration, intercontraction interval, voiding pressure, while use of a 

Ballman cage would allow rigorous quantification of voided volumes and residual 

bladder volumes and would more readily confirm the above observation (Leung et al., 

2007).  Also histological sampling of the bladder wall could show that S3319, 

systemically administered medication, could have simply reduced cystitis and thus 

facilitated the neurogenic bladders.   

Finally, the intracellular mechanisms utilized by oxidative stressors and cytokines 

to upregulate sPLA2 after SCI remain obscure.  In several cell types, sPLA2-IIA 

expression is dependent on prior activation of cPLA2-α, where certain products generated 

by the cPLA2α-12/15-lipoxygenase pathway may play a critical role (Kuwata et al., 1998, 

Couturier et al., 1999, Kuwata et al., 2000).  It has been demonstrated in murine 

mesangial cells that H2O2 injury upregulates MEK-1 and ERK 1/2 that in turn stimulates 

cPLA2-α production. cPLA2-α was subsequently shown to increase sPLA2-IIA 

expression via the 12/15 lipoxygenase pathway and form a positive feedback loop 
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through PKC (Han et al., 2003).  The regulatory mechanisms for sPLA2-IIA induction by 

cytokines differ according to cell type.  For example, the activation of NF-κB, C/EBPβ 

and C/EBPδ, and STAT3 are necessary for sPLA2-IIA induction in rat mesangial cells, 

rabbit chondrocytes, and human arterial smooth muscle cells respectively (Kennedy et al., 

1995, Massaad et al., 2000).  Therefore further studies will need to assess the exact 

mechanism of sPLA2 mediated CNS injury to determine if it is a common convergence 

mechanism.   

 

Conclusions 

James W. Fawcett, Ph.D. closed his recent seminar at the University of Louisville 

with a picture of the profoundly complex control panel of the supersonic Concorde Jet.  

He then explained that current SCI research is equivalent to flipping one switch while the 

Concorde is flying at top speed.  The switch could lower the landing gear which would 

inadvertently slow the airplane.  However, the purpose of the landing gear is not to slow 

the plane but rather allowing it to land safely.  Within this work we hypothesized that the 

purpose of sPLA2-IIA was to increase inflammation and degrade neural tissue following 

SCI, which we have shown that it can do.  However, whether this is the end all purpose 

of this molecule remains for further study but what is assured is that the results presented 

here show a histological and possible behavioral change that merits further study and 

consideration.   

 

Quod erat demonstrandum 

Soli Deo gloria 
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