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ABSTRACT 

TOW ARDS A SCALABLE AND EFFICIENT DATA CLASSIFICATION 
TECHNIQUE 

Fadi Samih Omar Mehanna 

June 2,2005 

Data Classification is a task that could be found in many life activities. In general, 

the term could be used for any activity that derives some decision or forecast based on the 

currently available information. Using a more accurate definition, a classification 

procedure is the construction of some kind of a method for making judgments for a 

continuing sequence of cases, where each new case must be assigned to one of pre-

defined classes. This type of construction has been termed supervised learning, in order 

to distinguish it from unsupervised learning or clustering in which the classes are not pre-

defined but are concluded from the available data. 

This thesis is divided into five chapters, analyzing three classification techniques, 

namely nearest neighbor technique, perceptron learning algorithm and multi-layer 

perceptrons with backpropagation, based on performance and scalability issues. Chapter 

one gives an introduction to the research topic of this thesis. In addition it states the 

problem that builds the core of this thesis and predefines the objective of this study, 

namely selecting the most efficient and scalable classification algorithm that suits a given 

classification task. Chapter two explores a historical review of the literature introduced in 
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the classification domain. It focuses mainly on the topics that are related to this study and 

presents some of the new classification approaches. Chapter three introduces the way 

based on which this thesis is designed. The technical methodology used to analyze and 

investigate the three classification algorithms is clearly described. In this thesis different 

experiments are introduced to prove the findings. The datasets used here are considered 

to be real-life datasets that present sports players and cars classification tasks. 

Chapters four and five represent the main core of this thesis, as they contain the 

data analysis, main findings and conclusions that are derived from different experiments. 

The nearest neighbor classification technique is one of the lazy learners because before 

the classification process starts, it needs to store all of the training samples. But, although 

it takes more time to classify any unknown samples, it is considered the most efficient 

technique among other classification techniques. A natural and future step would be 

using the single-layer perceptron algorithm that does not need to store the data samples to 

reach an acceptable convergence rate. Alternatively, it speeds the recognition or the 

learning process, because it learns and stores only the weights of the neural network used 

Lo implement the algorithm. This algorithm has a big deficiency: it only works for the 

linearly separable data samples. So, it is now a suitable phase to start working on a more 

scalable and efficient technique. It is the multi-layer perceptrons network with 

backpropagation that has the power of solving different complex and non-linearly 

separable classification tasks. 

VI 



TABLE OF CONTENTS 

PAGE 

AKNOWLEDGEMENTS ........................................................................ iv 
ABSTRACT ............................................................................................................ ················v 

LIST OF T ABLES .................................................................................................................. ix 
LIST OF FIGURES ............................................................................................................ ··· .. x 

CHAPTER 

I. INTRODUCTION .......................................................................................... 1 

Background ............................................................................................ 1 

Problem Definition ................................................................................ 2 

Thesis Objectives ................................................................................... 3 

Thesis Methodology ............................................................................ ..4 

Thesis Structure ..................................................................................... 5 

II. LITERATURE REVIEW ............................................................................... 7 

Previous Studies in Classification ........................................................ 7 

Survey of Available Classification Techniques ................................. 23 

III. RESEARCH DESIGN AND METHODOLOGY ...................................... 32 

Rationale for the Thesis ....................................................................... 32 

Datasets and Data Collection .............................................................. 32 

Implementing Tool .............................................................................. 34 

Classification Algorithms as Input/Output Mapping. ........................ 35 

Vll 



IV. DATA ANALYSIS AND FINDINGS---------------------------------------------------------38 

Nearest Neighbor Classifiers.--------------------------------------------------------------38 

Artificial Neural Networks - Single-Layer Perceptron 
Classifiers--------------------------------------------------------------------------------------------.47 

Artificial Neural Networks - Multi-Layer Perceptron 
Classifiers---------------------------------------------------------------------------------------------61 

V. CONCLUSIONS AND FUTURE WORK-----------------------------------------------l 07 

Final Conclusion- -------- ---------- --------- ---------- --------- ---------- ---------- ------- ------1 07 

Future W ork---------------------------------------------------------------------------------------11 0 

REFERENCES-------------------------------- ____________ ------------------------------------------------------------------------111 

APPENDICES---------------------------------------------------------------------------------------------------------------------115 

CURRICULUM VITA .......................................................................... 156 

Vlll 



LIST OF TABLES 

TABLE PAGE 

1. Distances between the Unknown Sample and the Training Samples 
of the Nearest Neighbor Experiment---.. ------- .. -------------------------------------------------------44 

2. Dataset of the First Example for the Perceptron Learning Algorithm----------------56 

3. XOR Problem Truth Table------------------------------------------------------------------------------------60 

4. Truth table of the Desired Outputs for the XOR Problem-----------------------------------65 

5. Results of the First Experiment for MLP--------------------------------------------------------------81 

6. Results of the Second Experiment for MLP---------------------------------------------------------82 

7. Results of the Third Experiment for MLP------------------------------------------------------------83 

8. Results of the Fourth Experiment for MLP ----------------------------------------------------------84 

9. Results of the Fifth Experiment for MLP -------------------------------------------------------------85 

10. Results of the Sixth Experiment for MLP------------------------------------------------------------87 

11. Results of the Seventh Experiment for MLP--------------------------------------------------------88 

12. Results of the Eighth Experiment for MLP ----------------------------------------------------------89 

l3. Results of the Ninth Experiment for MLP------------------------------------------------------------90 

14. Results of Past Usage of the Isolated Spoken Letters Dataset----------------------------97 

15. Truth Table of the Outputs of the Hidden Layer------------------------------------------------l00 

16. Truth Table of the Outputs of the Output Layer-------------------------------------------------100 

IX 



LIST OF FIGURES 

FIGURE PAGE 

1. Input/Output Mapping ............................................................................................ 35 

2. Nearest Neighbor Classifier ................................................................................... 38 

3. Features Represented in a Scatter Diagram ........................................................ ..42 

4. Complex Classification Problem Using Nearest Neighbor Method .................. .45 

5. Linear Classifier .................................................................................................... .47 

6. Infinite Number of Linear Classifiers .................................................................. .49 

7. Modeling of the Linear Classifier. ......................................................................... 50 

8. Generalized Model of the Perceptron Learning Algorithm ................................. 51 

9. The Perceptron (Single-Layer Feedforward Network) ......................................... 53 

10. Activation Functions for the Perceptron Learning Algorithm ............................ 56 

11. Scatter Diagram of the First Experiment for the Perceptron 
Learning Algorithm ................................................................................................. 57 

12. Scatter Diagram of the Second Experiment for the Perceptron 
Learning Algorithm ................................................................................................ 58 

13. The Perceptron Classifies the Training Data Samples ......................................... 59 

14. The XOR Problem ................................................................................................... 60 

15. The Perceptron with Linearly and Non-Linearly Separable Data ....................... 61 

16. The Multi-Layer Perceptron Model .......................................................... · ...... ·· .. ·62 

x 



17. The Solution for the XOR Problem----------------------------------------------------------------------64 

18. XOR Problem Model with MLP ---------------------------------------------------------------------------66 

19. Activation Functions for the Multi-Layer Perceptron with 
Backpropagation------------------------------------------------------------------------------------------------------67 

20. Model of the First Experiment for the MLP with Backpropagation 
Algorithm---------------------------------------------------------- _________________________________________ -------------76 

21. Flow Chart of the First Round for the MLP ---------------------------------------------------------92 

22. Flow Chart of the Second Round for the MLP-----------------------------------------------------92 

23. Confidence Matrix of the Errors for the MLP Experiment 9 - Trial A--------------94 

24. Confidence Matrix of the Errors for the MLP Experiment 9 - Trial B---------------95 

25. Geometric Representation of MLP Networks----------------------------------------------------::.98 

26. Geometric Representation of the Input Layer for MLP Networks-------------------- 99 

27. Geometric Representation of the Final Topology for MLP Networks-------------- 101 

28. Scatter Plot of the Outputs of the Hidden Layer.------------------------------------------------ 101 

29. The Perceptron of the First Output Node------------------------------------------------------------ 102 

30. The Perceptron of the Second Output Node-------------------------------------------------------102 

3l. The Perceptron of the Third Output Node----------------------------------------------------------103 

Xl 



CHAPTER I 

INTRODUCTION 

Background 

Information is the backbone of today' s businesses. Different kinds of data, such as 

client databases, inventory databases, medical and statistical databases, support the 

evolving demands of today's economy. As the size of data increases rapidly from day to 

day, organizations must have powerful and efficient plans to manage the data. 

Understanding the value of our data is considered the core point of development in 

businesses and in scientific researches. 

Databases are full of hidden and rich information that can be used for enhancing 

the business decisions. Classification is a type of data analysis that can be used to extract 

functions describing important data classes. Data classification is the process of finding a 

set of models that distinguish and differentiate data classes, for the purpose of predicting 

the class of given data samples whose class label is unknown or for the purpose of 

checking if the pre-classified data samples have been already classified into the correct 

classes. The resulting model is based totally on the analysis of the training dataset that 

contains data samples whose class label is already known. The derived model could be 

represented in many forms, such as neural networks, mathematical formulas or decision 

trees. 
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Data classification is a process that is divided into two steps. In the first step, a 

model is derived describing predetermined set of data classes. The model is built by 

analyzing the training dataset records which in turn are described by individual attributes 

or features. Each record is assumed to belong to a predefined class; it is determined by 

the class label attribute. The samples in the training dataset are randomly selected from 

the object space. Because the class label of each training sample is already known and 

provided in the dataset, this step is also known as supervised learning. In the case of the 

class label is not provided, the step could be known as unsupervised learning or 

clustering. After building the model in the first step, the second step takes place. In the 

second step, the model is then used to start the actual classification process. This process 

is applied on the testing dataset which contains the remaining samples from the object 

space. For each test sample, the given class label which represents the desired output is 

compared with the learned output or the actual output for that sample. 

Different classification methods have been introduced by many researchers in 

various fields, such as machine learning, expert systems, statistics and medicine. Most 

classification and learning algorithms are memory resident, as they assuming a small data 

size. But recently more advanced techniques, that are considered scalable to handle large 

resident data, have been widely proposed. As the recent classification problems are 

getting more complex and are containing very large data, those new techniques playa 

very important role in building scalable and efficient classification systems. 

Problem Definition 

An important component of many data analysis techniques is finding a good and 

efficient classification algorithm; this process requires a very careful planning in order to 
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maximize the chances of success. Different criteria interfere deeply in finding which 

classification algorithm helps in solving the given classification problem. Size of data 

repositories, complexity of the given problems and, period of time needed to complete 

the learning process are some of those important criteria. Each of these classification 

algorithms may be suitable for a number of certain problems; but not all of these 

algorithms may be used to solve any classification problem. 

Intensive Investigating of pitfalls that may occur through implementing 

classification algorithms is a bottleneck in today's researches. This is critical because 

data classification is particularly useful when a certain data repository contains hidden 

information that can be used for future decision making; e.g.; for medical diagnosis, for 

scientific data analysis, or for statistical analysis. Researches have a vast range of various 

classification algorithms at their disposal, including nearest neighbor technique, decision 

tree induction, perceptron learning algorithm and error backpropagation. Over the part 

years, many updates of these algorithms have been introduced. These updates were 

targeting increasing the effectiveness of these algorithms. So, today's researches confront 

a major problem in using those algorithms, namely how one could choose the best 

algorithm to be implemented for solving a new classification problem in an efficient way. 

Thesis Objectives 

This thesis addresses the different criteria that help in selecting the best algorithm 

through practical and experimental analysis of some of the most famous and widely used 

algorithms. It also introduces a performance evaluation for each one of the used 

algorithms to help in deciding the most efficient algorithm for a specific classification 

problem. The algorithms used here are: nearest neighbor technique, single-layer 
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perceptron and multi-layer perceptron with backpropagation. The objective here is to 

progress gradually through three phases, where each algorithm is implemented separately 

in a separate phase, from the less efficient algorithm to the most powerful and scalable 

one based on different criteria, such as complexity of the classification problem and 

process or learning time. In each phase, the logic of implementing the algorithm is 

examined and investigated extensively to reach an accurate decision about its 

performance. 

At the end of each algorithm analysis, one could then decide if the algorithm 

could solve a given classification problem or not. If it could, there is no need to step 

forward and investigate the second algorithm. But if it couldn't, one could then start 

investigating the next algorithm and so on. In some cases the nearest neighbor method 

will be the most efficient technique used to solve the problem, but in other cases a more 

efficient and scalable algorithm could be then used. Knowing which algorithm is suitable 

to a certain classification problem and setting up plans to tackle different types of 

classification problems are considered main objectives of this study. 

Thesis Methodology 

The methodology for this thesis is based on investigating and analyzing three 

different classification algorithms, namely nearest neighbor method, single-layer 

perceptron and multi-layer perceptron with error backpropagation. The architecture of 

each one of these algorithms is examined intensively to build a solid base for the future 

process of choosing the most appropriate algorithm which would be used to solve some 

given classification problem. 
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The experimental part of each algorithm gives a practical and applied experience 

that helps totally in achieving the objectives of this thesis. MA TLAB is the tool that has 

been used widely to analyze and implement each algorithm. The logic behind each one of 

the implemented algorithms is coded into MATLAB M-files. In the phase of single-layer 

perceptron and the phase of MLP with error backpropagation manual computations have 

been tackled before starting the code implementation in MA TLAB environment. 

All of the experimental examples introduced in this thesis depend on previous 

prepared datasets that have been carefully selected from some of the famous object 

spaces. The dataset used for the nearest neighbor method contains information about the 

height and weights of four types of sports players. For the single-layer perceptron, the 

dataset used is a subset of the sports players' dataset but it contains only two types of 

sports players. The last and most important dataset is the one used for implementing the 

MLP with error backpropagation. The dataset describes five classes of cars. It contains 14 

features or attributes that differentiate between the five classes. 

Thesis Structure 

The thesis is structured in five chapters, namely introduction, literature review, 

research design and methodology, data analysis and findings and conclusion and future 

work. The first chapter contains general information about the research topic and defines 

the technical problem for which this thesis has been created. The second chapter 

describes and introduces some of the most valuable researches that have been 

implemented in data classification techniques. In addition, it shows the most important 

results and findings of those studies. The third chapter presents the general methodology 
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which is used to design the research. It describes also the datasets used to implement the 

experiments. 

The fourth chapter is considered to be the section of data analysis and findings 

which is the core of this thesis as it goes through the main topic of the research and offers 

some detailed findings which will playa very important role in confronting the problem 

that has been defined above .. This chapter presents and examines the three algorithms on 

which this thesis depends. The fifth chapter states the final conclusions that have been 

derived totally from the findings described in the previous chapter. 
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CHAPTER II 

LITERATURE REVIEW 

This chapter introduces some of the previous valuable efforts and researches that 

have significantly contributed towards the success of data classification field in computer 

sciences. As the data classifications techniques have greatly evolved in the past few 

decades, many industries and businesses have taken the first step in using data 

classification widely to analyze their data and to grab knowledge and valuable hidden 

information from their exiting databases. The data classification is now spreading in all 

life branches, so that some of the most important problems arising in commerce, industry 

and science can be considered as classification or even decision problems using complex 

and large data. 

Previous Studies in Classification 

D. Michie, DJ. Spiegelhalter and C.C. Taylor (1994) as editors have introduced 

in their book "Machine Learning, Neural and Statistical Classification" different 

approaches that have been considered and main historical approaches of research in 

classification field, namely statistical, machine learning and neural network. They have 

shown how all the researches were attempting to derive some kind of classifiers that 

would be able to equal a human decision-maker's behavior, but in the same time are 

consistent, to handle a wide range of classification problems and to be used in real life 

situations with proven success. In the book LM.O. Mitchell has addressed the first 
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approach, namely statistical approach. He identified two main phases of work on 

classification with the statistical environment. The first, the classical phase in which 

researchers have concentrated of Fisher's early work on linear discrimination. The 

second, the modern phase, in which more flexible classification models have been 

developed. These models have provided an estimate of the joint distribution of the 

features with each class in order to develop an efficient classification rules. 

C. Feng and D. Michie have introduced the second approach, namely machine 

learning approach. He has focused totally on decision-tree approaches, in which 

classification is derived from a sequence of logical steps. He has addressed the most 

complex classification problems and proved that the decision trees could solve theses 

kinds of complex problems in the case of existing sufficient data. The major disadvantage 

specified is the large amount data that should be available for implementing this 

approach. 

R. Rohwer, M. Wynne-Jones and F. Wysotzki have addressed the third approach, 

namely neural network approach. He introduced many techniques in implementing neural 

network approaches. It was also identified how the neural network approaches combine 

the complexity of some of the statistical approaches with the machine learning objective 

of imitating human intelligence. He has also shown how this process is hidden in the 

hidden layers and how it is so difficult to let the learned weights transparent to the user. 

He has also discussed different techniques to improve all types of feed- forward networks. 

This is focused on changing the network topology as training proceeds. 

Jiawei Han and Micheline Kamber (2001) introduced in their book "Data Mining: 

Concepts and Techniques" some classification techniques that are suitable for the data 
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mining technology. They have combined the classification process and prediction process 

together to be considered as a unified process in many of today' s businesses. They have 

identified that the data classification process consists actually of two related phases, 

namely the learning phase and the testing phase. It was noticeable that they have focused 

on how to increase the efficiency of the classification process through preparing the data 

for classification in a process called data preprocessing, which in turn contains many 

methods such as data cleaning, relevance analysis and data transformation. They worked 

with different classification algorithms, but have concentrated on the decision tree and 

backpropagation algorithms. At the end they introduced some valuable techniques to 

measure the accuracy of the produced classifiers. 

Isabella Guyon and Andre Elisseeff (2003) have contributed in the data 

classification field with a very valuable study on variable and feature selection. They 

have provided a very efficient description for feature construction, for feature ranking 

and for feature validity assessment methods. They even have summarized the steps 

needed to solve a feature selection problem. Variable ranking process has taken a very 

important part in their study and they have introduced many different methods that would 

help in the process of variable ranking. In addition, different methods that facilitate the 

process of feature construction and the process of reducing the space dimensionality. In 

many applications, reducing the dimensionality of the data by selecting a subset of the 

original features may have many advantages. This is so important when minimizing the 

expenses of making, storing and processing measurements is of concern. If these factors 

are not that important, other methods of reducing the dimensionality should be tackled. 
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Janez Brank, Marko Grobelnik, Natasa Mili6-Frayling, Dunja Mladeni6 (2002) 

have proposed a new technique for feature selection based on Support Vector Machines 

(SVM) which are a set of related supervised learning algorithms, applicable to both 

classification and regression. Their experiments showed that the SVM-based feature 

selection has preserved the classification performance while dramatically reducing the 

size of the feature space and increasing the scattered data. Their strategy was first to train 

linear Support Vector Machines on a subset of training data to build initial classifiers, in 

the next step they have eliminated the features which have low weights in order to 

specify a certain level of data sparsity. They have defined sparsity in their work to be the 

average number of non-zero components in the vector representation of data. The second 

step represents the process of feature selection in their study. In the last step, they have 

created a representation of the full training dataset by using the retained features only. 

Then they have retrained the linear SVM classifier in the derived feature space and used 

the final results in the testing process. The method used in their work was designed 

totally to take advantage of the free memory that has been derived by the increased data 

sparsity. It was also designed to include large training datasets while keeping the memory 

consumption at a constant rate. 

Sheng MA and Chuanyi JI (1999) have reviewd recent enhancements in 

supervised learning with a deep focus on performance and efficiency of learning 

algorithms. They major concentration was on using a special type of adaptive learning 

systems that are based on neural network architecture. Their valuable study they 

introduce four learning approaches, namely training on individual model, combinations 

of several models that have been trained efficiently, combinations of several weak 
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models and evolutionary computation of models. In addition they have showed the 

advantages and disadvantages of these approaches. Through their study, it has been clear 

that in order to have an efficient adaptive learning machines, a good performance is 

required. The most important result of their study was about using combinations of weak 

classifiers, which use an incremental combination scheme and a randomized algorithm. 

This approach has shown the potential to achieve time efficiency and an efficient 

generalization performance. 

Sholom M. Weiss and Casimir A. Kulikowski have introduced a practical guide to 

classification learning algorithms and their applications. It was shown clearly how these 

computer systems learn from sample data and then could make prediction for new cases. 

Practical learning systems from different fields such as statistical pattern recognition, 

neural networks and machine learning have been presented. In addition, the hidden 

concepts of learning process, its strengths and weaknesses and their future performance 

have been widely discussed. Moreover, they have offered some valuable 

recommendations for selecting learning algorithms such as nearest neighbor, 

backpropagation and decision trees. In general their book gives a consistent introduction 

to many learning algorithms and covers techniques that estimate a classification model's 

accuracy. 

The nearest neighbor classification rules, which relates a new unclassified sample to 

the nearest previously classified samples, is a non parametric statistical technique, in 

which the classification processes is independent of the underlying joint distribution on 

the given data samples (T. M. Cover and P. E. Hart (1966)). They have introduced in 

their study a complete analysis of the nearest neighbor technique based on a statistical 
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point of view. A comparison between the probability of error of the nearest neighbor rule 

and the bayes probability of error, which represents the minimum probability of error 

over all decision rules taking underlying probability structure into account, showed that 

the probability of error of the nearest neighbor simple rule is less than twice the bayes 

probability of error. Even it is less than the twice the probability of error of any other 

decision rule, whether it is nonparametric or otherwise. This fact has been proved when 

using large dataset. 

C. Domeniconi, J. Peng and D. Gunopulos (2002) have proposed an adaptive 

nearest neighbor classification technique that helps greatly in minimizing estimation bias 

in high dimensions classification problems. The curse of dimensionality was the 

fundamental motive that made them work hard in this study. As a result, they have 

estimated a flexible metric for computing neighborhoods based on Chi-squared distance 

analysis. This metric depends totally on query locations in the feature space. In addition, 

the resulting neighborhoods are spread along less relevant feature dimensions and 

tightened along most powerful ones. The result was having the class conditional 

probabilities to be more homogenous and smoother in the modified neighborhoods, so 

that improved classification performance can be reached. 

Euihong (sam) Han, George Karypis, and Vipin Kumar (1999) have focused on 

text classification problems in their work. As the task of classifying different documents 

in a certain field into predefined categories or classes is challenging due to the large 

amount of documents exist and the curse of high dimensionality nature of documents 

datasets, they have started their efforts in order to develop a new algorithm that could 

help in classifying documents in a very efficient way. In addition, the problem in the 
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current widely used algorithms such as C4.5 and RIPPER, which do not work well with 

large number of features, have led them towards their valuable study. They have 

proposed a new algorithm that is based on the nearest neighbor model. The new 

developed algorithm is called weight adjusted k-nearest neighbor (W AKNN). The core of 

this algorithm is learning the importance of each word in the training document set and 

the weight vector reflecting this importance is then maintained. The nearest neighbors for 

a certain document are then computed based on the matching words and their weights. 

They have implemented many experiments on several synthetic and real life datasets, 

which showed the high performance of the algorithm compared to other algorithms. Their 

experiments with synthetic datasets proved that this algorithm is robust under certain 

emulated conditions, but the empirical results on real word documents demonstrated that 

this performance of this algorithm is better than the performance of some other 

classification algorithms such as C4.5, RIPPER and Rainbow. 

Sameer Singh, John Haddon, Markos Markou (1999) have presented a new model 

that has developed the basic definition of the standard nearest neighbor algorithm to 

include the ability to resolve conflicts when the highest number of nearest neighbors are 

found for more than class label. In addition, they have proposed a new nearest neighbor 

model that is based on finding the nearest average distance rather than nearest maximum 

number of neighbors. These two new models and their performance have been explored 

and evaluated based on image understanding data. In order to implement the first model, 

they have used two stages. In the first stage they have declared a certain given class to be 

a winner, if and only if the given class has more training data samples closer to the testing 

sample. In this case the testing sample is classified to belong to the given class. The 
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second stage, which resolves the conflict, takes place, if for more than two classes 

surrounding the testing sample, an equal number' of highest neighbors has been found. In 

this case, the winner class, whose distance from testing data averaged over all its training 

data samples, is the smallest. In the second model, they have not considered the number 

of neighbors but only the average distance of classes from testing data. The winner class 

here is the one with the smallest distance from testing data. In this case the testing sample 

is assigned to this class. When noise testing data have been used in their study, the new 

nearest neighbor models showed very efficient and promising results for further studies 

when compared with neural networks. 

Many researchers have taken place in order to develop intelligent systems based 

on different techniques and especially Von Neumann's architecture, but these tries 

haven't achieved the desired success needed. Afterwards, different studies inspired by the 

biological neural networks have been made, so that various scientific disciplines have 

implemented designs for artificial neural networks to solve a variety of problems in 

decision making, prediction and classification (Anil K. Jain, Jianchang Mao and K. 

Mohiuddin (1996)). They have introduced their work to be considered as a tutorial of 

artificial neural networks. They have also discussed the motivations that were the reason 

behind developing artificial neural networks. They have introduced great information 

about how the artificial neural networks could be implemented in supervised and 

unsupervised learning. In addition, different learning algorithms and rules have been 

tackled widely. In their work, the basic neural networks models for supervised learning, 

such as single-layer perceptron, multi-layer perceptron have been presented. On the other 

hand, they have discussed different models for the unsupervised learning, such as self 
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organizing maps. A valuable section for the applications that could be developed using 

different artificial neural networks has been introduced. 

John Moody (1994) has introduced a valuable study on artificial neural networks. 

He has totally focused on describing risk estimation and network topology selection. In 

his work, we will find that he has defined risk estimation as the expected performance of 

an estimator in predicting new observations. Risk estimation process could be used in 

estimating the quality of the predictions derived by the selected neural networks model 

and in model selection. He has also proved that these two processes are so important in 

classification problems that have limited data samples. His study has introduced two 

approaches for estimating prediction risk, namely data res amp ling algorithms such as 

general cross-validation and nonlinear cross-validation and algebraic formulae such as 

the predicted squared error and the generalized prediction error. As a result for his work, 

intensive search over the space of network architecture was showed to be 

computationally infeasible even for networks with moderate size. In the process of 

network architecture selection, he has concentrated on the methods of selecting the 

number of hidden nodes in hidden layers in the multilayer perceptron model. The 

algorithm used here is the sequential network construction which builds a sequence of 

networks. Each one of these networks is fully connected and uses all input samples. The 

only difference is the number of hidden nodes, so that not all of the networks have the 

same number of hidden nodes. 

Warren S. Sarle (1994) has proposed artificial neural networks from a different 

perspective, namely the statistical approach of implementing neural networks. He has 

also described how artificial neural networks could process vast amounts of data in such 
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accurate way as many other statistical techniques. In addition, the learning process in 

artificial neural networks is the same as in many statistical algorithms. So, if ANNs are 

intelligent, then many statistical methods must also be considered intelligent. In his work, 

Sarle showed the relationship between neural networks and statistical models such as 

generalized linear models, polynomial regression, nonparametric regression and cluster 

analysis. He also identified how the neural networks learning algorithms are inefficient 

because they have been designed to be processed on massively parallel computers but 

have been actually implemented on common serial computers such as pes. Another 

reason he has introduced as an evidence for the weak efficiency of neural networks 

algorithms is that they have been designed for systems whose data are not stored or 

whose data are transient. In statistical methods, the data are usually stored, so they are 

more efficient the neural networks algorithms. He has related the two famous neural 

networks models, namely the single-layer perceptron and multi-layer perceptron, to their 

equivalent statistical model. Sarle has also described how the neural networks and 

statistics are not competing methodologies in the data analysis field. Both methodologies 

are overlapped to some extent. Statistical methods are directly applicable to neural 

networks in a variety of ways, including estimation criteria, optimization algorithm and 

confidence intervals. As a final result, he found that a shared communication between 

neural networks and statistics would benefit both. 

Joseph Reisinger, Kenneth O. Stanley and Risto Miikkulainen (2004) have 

worked on a very promising neural networks approach that automatically evolves 

network topology and weights. This approach has been shown to be powerful in 

nonlinear optimization classification problems. Because the curse of dimensionality has 
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been currently tackled and has become widely spread, they have introduced this approach 

to address this problem. The dimensionality curse is identified in their work by two 

factors: the number of inputs and outputs a network has and the architecture complexity 

of that network such as the amount of hidden nodes in the hidden layers. They have also 

proved that the object space may be too large to be searched efficiently, if the input, 

output or network topologies are high dimensional. They have identified a valuable 

method for tackling the dimensionality curse by breaking the classification problem down 

into simpler sub-problems to be solved in parallel. In this case the evolution process 

could be implemented more efficiently. A new method, called NeuroEvolution of 

Augmenting Topologies (Modular NEAT), has been developed to automatically perform 

this decomposition during the evolution process. 

Marvin L. Minsky and Seymour A. Papert (1969) published their work in a very 

decent book that analyzes the perceptron theory in details. Before their work the neural 

networks field was in frustration phase, as the basic perceptron theory was a new concept. 

Minsky and Papert summed up this general feeling by the representational limitations of 

perceptron theory. Their arguments were very influential in the field and accepted by 

most without further analysis. They introduced the XOR problem which delayed any 

further studies in the neural network field for about ten years. Minsky and Papert's book 

was the first example of a mathematical analysis carried far enough to show the exact 

limitations of a class of computing machines that could seriously be considered as models 

of the brain. They focused on the problems of learning. They showed that as various 

predicates scale, the sizes of coefficients can grow exponentially, thus leading to systems 

which need unlimited cycles of a convergence process. 
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Steven L. Salzberg (1997) introduced a comparative study for some classification 

techniques. He concentrated on the quality of experimental designs and how it could 

result in statistically invalid conclusion, if the required experiments have not been 

designed very carefully. This problem is clear when using very large datasets. In his 

work, Salzberg has described several incidents that can invalidate an experimental 

comparison, if they are ignored. In addition, he has also proved that these incidents and 

their conclusions apply to classification and also to computational experiments in the 

classification fields. He has also described how comparative studies are very important 

when evaluating some types of algorithms is needed and presented some solutions about 

how to avoid drawbacks of implementing different experimental studies. He tackled a 

very serious problem, namely how could one select which algorithm to use for solving a 

new classification problem? In his study, Salzberg has addressed the methodology that 

could be used to answer this question and discussed how this problem was tackled in the 

classification field. The target of his work was not to discourage comparative analysis, 

but the target was to help researchers focus clearly in designing a comparative study. 

W. Schiffmann, M. Joost and R. Werner (1992) have identified how most 

artificial neural networks are not structured. Their architecture depends totally on the 

human designer's insight or vision. This designer decides how many neurons should be 

used in each layer of the layers that construct the network topology. Actually, they have 

added a new definition for the neural network architecture, namely directed graph. The 

neurons could be considered as the nodes and the connections which have the weights 

could be then considered as the edges of this directed graph. So, finding problem­

adapted architecture is equivalent to optimizing the topology of the underlying graph. In 
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their work, they have presented many approaches for automatic topology optimization of 

MLP with backpropagation neural networks that could be adapted automatically 

depending on the classification task complexity. In addition, they have presented the 

benefits of working with adapted network architecture for software simulations and for 

the hardware implementation of artificial neural networks. The most important benefit is 

the enhancement in the learning process as it becomes accelerated because fewer 

connections must be trained per epoch. In general, they have considered the process of 

optimizing network architecture is as well important as developing a new learning 

algorithm. 

Kenji Fukumizu (2000) has tackled the problem of active learning in multilayer 

perceptrons as the neural networks performance would be significantly improved if the 

training data are selected actively. He has introduced a way to prepare a probability 

distribution using the proposed method of active learning. As a result, he has then 

obtained training data samples from the distribution specified. The core of this 

methodology was to develop an information-matrix-based criterion. The most critical 

problem he faced is that the required inverse of an information matrix may not exist. His 

proposed method is applicable to three-layer perceptrons. The proposed active learning 

technique has a method for reducing the hidden neurons in the hidden layers. The 

reduction procedure used eliminates redundant hidden nodes during the learning process 

and keeps the information matrix nonsingular. In his method, he considered the reduction 

criterion is so important, because extreme elimination of hidden nodes may degrade the 

approximation capacity and increase the mean squared error. 
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Alan F. Murray and Peter J. Edwards (1993) have analyzed the effects of analog 

noise on the synaptic weights during the learning process in the multilayer perceptron 

networks. This analysis showed by mathematical expansion and by simulation that 

injecting random noise to network weights during learning process improves fault 

tolerance without additional supervision. They have also showed that the states of hidden 

nodes and the learning path have been adjusted in a way that enhances the learning 

quality and performance and the time required for completing the training process. They 

have used the intermediary influence of noise to distribute the information optimally 

across the weights. Their implemented technique has generated more robust internal 

representations which in turn have resulted in better generalization to the small 

differences in the characteristics of the testing data samples. In previous studies, it was 

known that any inaccuracy during training process is unfavorable and harmful to the 

learning process in multilayer perceptrons networks. They have proved in the study that 

the analog or continuously changing inaccuracy is not that harmful. The final results of 

their experiments proved to be efficiently general for all training datasets where weights 

are updated incrementally. 

Martin Riedmiller (1994) has introduced the concept of supervised learning in 

multilayer perceptrons based on the technique of gradient descent, on which the 

backpropagation algorithm was built. He discussed some of the important pitfalls and 

problems of the backpropagation learning algorithm. In addition, Riedmiller has focused 

on adaptive learning methodologies with a clear description of some of the most popular 

learning algorithms according to their classification in terms of global and local 

adaptation strategies. For the global adaptive techniques, he introduced some algorithms 
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such as Steepest Descent and Conjugate Gradient Descent. On the other hand, he 

introduced some algorithm such as the Delta-Bar-Delta Rule, SuperSAB, Rprop and 

Quickprop. In general, he introduced an overview over past and recent milestones in 

developing supervised learning algorithms for the classification techniques based on 

MLP. Many of the proposed techniques, especially the global adaptive techniques, are 

based on schemes taken from many dimensional optimization theories which in turn need 

complex computations. Using some experiments, he proved that the local adaptive 

algorithms, such as Quickprop and Rprop, have a significantly faster convergence rate 

than the ordinary gradient descent algorithm. 

Devin McAuley (1997) and Simon Dennis (1999) introduced a very valuable 

tutorial about the backpropagation algorithm. They have tackled this algorithm because 

they have considered it to be the most appropriate method for classifying predicting 

reasonable information from scattered, noisy or incomplete data. They have described the 

topology for the neural networks that implement the backpropagation algorithm and in 

addition they have discussed the architecture of the algorithm itself with a big focus on 

step that should be followed to run the algorithm. They have then identified the learning 

process in the backpropagation algorithm in two steps. First each data sample is presented 

fed into the network and propagated forward to the output layer. Second, a method called 

gradient descent is used to minimize the total error in the training dataset. A very 

important and valuable part in their study is the methods introduced to help in selecting 

the initial weights and in when to update the weights during the learning process. 

Mohd Yusoff Mashor (2000) has introduced an important comparison between 

backpropgation, recursive prediction error and modified recursive prediction error 
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algorithms for training multilayer perceptrons networks. In his study, he has investigated 

the performance of these algorithms and implemented real life experiments using real life 

data to prove his findings. Training MLP networks with backpropagation algorithm could 

provide satisfactory results. However this technique is considered to be the basis to the 

neural networks researches. He identified the backpropagation algorithm to belong to the 

steepest descent type algorithm. This fact made the backpropagation algorithm to suffer 

from a slow convergence rate. On the other side, the recursive prediction error and its 

modified version are a Gauss-Newton type algorithm that has a better convergence rate 

than the steepest descent type algorithm. His study proved that the neural network trained 

using the backpropagation algorithm did not have good generalization. This is because 

the prediction process in the testing dataset is not as good as in the training dataset. 

Scott E. Fahlman (1988) has described the results derived during the first six 

months of his study. He has introduced a systematic and empirical study of learning 

speed in backpropgation networks. He measured the algorithms used against some of 

benchmark problems in order to develop faster learning algorithms with high 

performance rate and to contribute in developing a methodology that will be of a great 

benefit to future studies in this field. The study resulted in having a new learning 

algorithm, which is considis faster than standard backpropagation by an order of 

magnitude or mered to be a combination of several ideas. The new algorithm ore and 

appears to scale up much better than standard backpropagation algorithm as the size and 

complexity of the learning task grows. This result is encouraging, but is not conclusive 

because Fahlman has only tested the new techniques against a very small set of 

benchmark problems. 
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Survey of Available Classification Techniques 

As the data analysis field is evolving to a large extent, many classification 

techniques have been developed to help in improving efficiency and scalability. In this 

section we try to introduce a strategic survey on different classification techniques in 

order to achieve the objectives of this study. In this survey we will be focusing on the 

following criteria which will help us evaluating each technique: 

• Predictive Accuracy: This refers to the ability of technique to correctly predict the 

class of a new data sample. 

• Speed: This refers to the computation costs need when implementing the 

technique 

• Scalability: This refers to the ability of the technique to classify the samples 

correctly and efficiently when using large and complex datasets. 

• Robustness: This refers to the ability of the technique to correctly predict new 

samples when using noisy data. 

Classification by Decision Tree 

Decision tree is a form of flow diagram in which a series of selection criteria classify 

the data into subcategories. In order to classify an unknown sample, the feature values 

are tested against the decision tree, and then a path is traced starting from the root to a 

certain leaf node that predicts the class label for that sample. Decision trees can be 

easily converted to classification rules. 

ID3 algorithm and its extension C4.S algorithm are well-known decision tree 

induction algorithms which are considered to be greedy algorithms. Using these 

algorithms, the tree starts as a single node which represents the training samples. This 
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node becomes a leaf, if all the samples belong to the same class. Otherwise, the 

algorithm uses the information gain measure to select the test attribute at each node. 

This test attribute will be used to split the tree into individual classes. Then, a branch 

is created for each known value of the test attribute and the data samples are 

organized accordingly. The algorithm implements the same process repeatedly to 

build a decision tree. In ID3 all the attributes should be categorical or discrete-valued 

and continuous-valued attribute should be discretized. In C4.5 this has been solved as 

one can use continues-valued attributes without discretization. 

In the process of building a decision tree, many of the branches will reflect 

irregularities in the training data due to noise or outliers. This fact decreases the 

efficiency of the decision tree. Tree pruning techniques can help in solving this 

problem which could be called as overfitting in the data. Such techniques are 

considered to be statistical methods that remove the least reliable branches in order to 

improve the classification performance and to make the classification process faster. 

During the process of repeatedly splitting the data into smaller and smaller 

categories, classification by decision tree induction faces three important problems, 

namely fragmentation, repetition and replication, which can minimize the scalability 

and the efficiency of the classification process. In fragmentation the number of data 

samples at a given branch becomes so small that these data samples are statistically 

insignificant. Repetition occurs when an attribute is repeatedly tested along a given 

branch of the tree. In replication, duplicate subtrees exist within the tree. All these 

problems can decrease the scalability and the performance of the resulting tree. Many 
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methods have been introduced to solve these problems, but they require more 

computations and more time to be implemented. So it may slow the speed of training. 

It has been proved that the currently existing decision tree algorithms, such as ID3 

and CA5, are only efficient and scalable when using small datasets. But when using 

very large real-world datasets these algorithms might face deficiency in scalability. 

Most of these algorithms must store all of the training samples before the 

classification process starts. This fact limits the scalability of such algorithms, as the 

building the decision tree could become inefficient because of the swapping of the 

training samples in and out of main and cache memories. Many recent algorithms, 

such as SLIQ and Sprint, have been proposed to address the scalability issue. 

Although these algorithms handle disk-resident datasets that are too large to fit in the 

memory, SLIQ uses its memory-resident data structure, so that its scalability becomes 

limited. SPRINT has the power to remove all memory restrictions and then requires 

the use of a hash tree matching the size of the training dataset. But if the size of the 

training dataset grows, the process will experience expensive computation costs that 

will decrease the performance of the classification. 

Bayesian Classification 

Bayesian classifiers are statistical classifiers. They can predict the probability that 

a given data sample belongs to a certain class. This type of classification is based on the 

Bayes theorem. In Bayesian classification, two types have been introduced, namely naive 

bayesian classification and bayesian belief networks. 

A naive bayesian classifier, known as Idiot's Bayes, is a very simple probabilistic 

classifier. It is totally based on probability models that contain strong independence 
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assumption. In general, it assumes that the impact of a feature value on a given class is 

independent of the values of the other features. This assumption called class conditional 

independence. It has been developed to simplify the computations involved in the 

classification process. 

The bayesian belief networks specify joint conditional probability distributions 

for all features in the given dataset. Actually, they define class conditional 

independencies between subsets of the features. In addition, they provide a graphical 

model of casual relationships, which can be used in the learning process. Many methods 

can be used to train a Bayesian belief network: the network architecture can be given in 

advance or they can be derived from the given data samples. The network attributes or 

features could be observable or hidden in all or some of the training data samples. Hidden 

data can also be considered as missing data. In the case of knowing the architecture and 

of having observable attributes, the network is trained simply and straightforward. When 

the architecture of the network is given in advance and some of the attributes are hidden, 

then a method of gradient descent may be used to process the learning, it is like training 

an artificial neural network. So the objective here is to find the most accurate weights that 

will help in classifying the data correctly. 

Theoretically, Bayesian classifiers have the least error rate when compared to all 

other classification techniques. However practically, this is not always the fact because of 

the inaccuracies in the assumptions derived by them. Many studies have found that this 

type of classification is comparable to decision tree and neural network classifiers in 

some domains. Although bayesian classification introduced high accuracy and speed 

when implemented using large datasets, it is not an accurate technique in some critical 
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classification tasks, such as medical analysis as this field can't be studied based on 

assumptions like the ones made by Bayesian classifiers. In addition, bayesian classifiers 

are more difficult to tune because they need more storage and expensive computation 

costs. They are considered to be parametric classifiers, so that they are valid only in 

normal data distributions as the nearest neighbor technique. 

Case-Based Reasoning 

It is known that the nearest neighbor technique stores all the training samples 

before building a classifier. But case-based reasoning technique stores training samples 

which are complex symbolic descriptions, so it is considered to be a lazy learner that 

needs to store all the cases before building a classifier. CBR has been applied to many 

areas, such as engineering, where cases are technical designs, and law, where cases are 

legal rules. 

A case-based reasoner checks first if an identical training case exists, when a new 

case needs to be classified. If one exists, the related solution to that case is returned. But 

if no case exists, the CBR searches for training cases similar to the new case. These 

training cases could be considered as neighbors of the new case. Then the CBR tries to 

combine the solutions of these neighbors to formulate a final resolution for the new case. 

So, it is clear that CBR needs to have background knowledge and strategies for solving 

problems in order to introduce an efficient solution for the new case. It is more like an 

expert abstract technique that need intensive studies to improve its process. 

Decision tree induction and case-based reasoning are complementary approaches, 

as induction compiles training data samples into general knowledge, where CBR directly 

interprets those training samples. So, both techniques compliment each other. A 
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combination of both techniques may be used to achieve an efficient and accurate 

classification process. 

Genetic Algorithms 

Genetic algorithms are built by a process of natural evolution, which imitates the 

development of biological systems. The genetic algorithms work as follows: 

• 

• 

• 

• 

Create an initial population of solutions or rules coded as artificial chromosomes. 

Select the best solutions for recombination of the mating chromosomes. 

Perform mutation and other variation operators on the chromosomes. 

Use these offspring to replace poorer solutions 

It has been proved theoretically and empirically that genetic algorithms lead to 

improved solutions in different domains. The most important part here is designing a 

genetic model that helps in solving complex classification tasks. Genetic algorithms 

can be combined with neural network techniques to solve more complicated 

problems. They can be used to evaluate the efficiency of other classification 

techniques. 

Rough Set Approach 

Rough set theory depends on the formation of equivalence classes in the given 

training dataset. All the data samples establishing an equivalence class are identical with 

respect to their attributes. Rough sets can be used to roughly specify classes that can't be 

distinguished in terms of the available attributes. A rough set definition for a given class 

P is approximated and specified by two sets, namely the lower approximation of P and 

the upper approximation of P. The lower set consists of all of the data samples that 
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certainly belong to P without ambiguity. The upper set consists of data samples that can't 

be identified as not belonging to P. 

Rough set theory can be used in classification processes to help in discovering 

structural equivalences with some given noisy data. It works properly when using 

discrete-valued attributes. Continuous-valued attributes must be first discretized before 

implementing. It also can be used in feature reduction, where the attributes that have the 

least significant contribution towards the classification of the given training samples can 

be identified and removed. This theory can also be used for relevance analysis, where 

contribution of each attribute is evaluated and measured with respect to the classification 

process. 

Rough sets have an advantage over bayesian classifiers: no assumption about the 

independence of the attributes is important nor is any background know ledge about the 

data. In real world classification tasks, the given datasets are usually uncertain and 

complete. So, two approximations as proposed by rough set theory won't be sufficient to 

identify the information hidden in the datasets. As a result, the theory has been adjusted 

to deal with the complex datasets. This change has made rough sets to lose their original 

features and to be more like fuzzy sets. 

Fuzzy Logic 

Rule-based approaches for classification are so strict and sharp in applying the 

rules. For example, if we have a rule that says: customers who have had a job for two or 

more years and whose salaries are $50K or more can apply for a credit card. So, if there 

is a customer who has had a job for more than two years, but his/her salary is $49.5K, 

then this customer won't be able to get a credit card. This is totally unfair. Actually, 
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The other two techniques, namely single-layer perceptron and multi-layer 

perceptron, are artificial neural networks techniques. Neural network are tolerant to noisy 

data and they have the power to classify patterns on which they have not been trained. So 

theoretically, neural networks are the best classification technique, but practically no one 

can guarantee the efficiency before empirically implementing the technique. The single­

layer perceptron and the multi-layer perceptron technique do not require storing the 

training samples; instead they learn the weights of the network architecture and then use 

them to classify the testing samples. This approach speeds the recognition time. The 

multi-layer perceptron is a very efficient and scalable technique that can classify complex 

data samples which are not linearly separable. In general, with some more studies, neural 

networks can be one of the best techniques in data classification. 
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CHAPTER III 

RESEARCH DESIGN AND METHODOLOGY 

The methodology applied in this thesis is based on analyzing some techniques for 

data classification focusing on performance issues and conclusions derived from various 

experiments which implement each technique. 

Rationale for the Thesis 

A systematic approach is implemented in order to present each classification 

technique in this thesis: first, the architecture and concept behind each classification 

technique is investigated widely. Second, the algorithm for each technique is presented in 

a logically organized way. Third, a real life classification problem is examined in order to 

reach the best solution that will be used to classify the given data samples and the new 

data samples properly and efficiently. Fourth, a final discussion about performance of 

each technique is presented according to the results obtained from the experiments. The 

rationale for this study is to find the efficient ways that would help in selecting the best 

classification technique in relation to the introduced task. 

Datasets and Data Collection 

In this thesis, three datasets have been used to implement the experiments. The 

datasets have been previously prepared to reflect the nature of each classification 

technique used in this thesis. The first dataset, which has been used for the nearest 

neighbor technique, represents four sports players' classes: judo players, jockeys, basket 
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ball players and rugby player. This dataset contains three columns: the first column 

represents the weights of the sports players, the second column represents the heights of 

the players and the last column represents the class labels which will be the differentiator 

between the four classes. Each record in the dataset represents one sport player who 

belongs to one of the four classes. If the player is identified by class label I, then this 

player belongs to the jockeys' class. If the player is identified by class label 2, then this 

player belongs to the basket ball players' class. If the player is identified by class label 3, 

then this player belongs to the rugby players' class. If the player is identified by class 

label 4, then this player belongs to the judo players' class. This dataset contains 112 

records. 

The second dataset, which has been used for the perceptron technique, represents 

two sports players' classes: jockeys and rugby players. This dataset is the same as the 

first dataset but with only two classes. So the first column is the weight column and the 

second column is the height column. The third column is the class label. The jockeys are 

identified by class label -1 and the rugby players are identified by class label + 1. This 

dataset contains 56 records. 

The third dataset, which has been used for the multilayer perceptrons technique, is 

actually divided into two separate datasets, namely the training dataset and the testing 

dataset. These dataset represent five classes of cars, namely small cars, midsize cars, 

compact cars, large cars and sport cars. Each one of these dataset has 250 records and 15 

columns. The first 14 columns represent some information that helps in differentiating 

the cars from each other. These 14 columns are: Price, City MPG, High Way MPG, # 

Cylinders, Engine Size, Horse Power, RPM at max HP, Revs/min, Fuel Tank Capacity, 
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Passenger Capacity, Length, Width, Wheel Base, and Weight. The 15th column is the 

class label. The class of small cars is identified by class labell, the class of midsize cars 

is identified by class label 2, the class of compact cars is identified by the class label 3, 

the class of large cars is identified by class label 4 and the class of sport cars is identified 

by class label 5. 

After finishing the analysis of each algorithm, we start to test the efficiency and 

scalability of the multi-layer perceptrons technique by using a very large and complex 

dataset that consists of 617 features and 26 classes. This dataset contains information 

about isolated spoken letters that need to be classified into 26 classes (one per letter). 

Implementing Tool 

MatLab has been used intensively to implement the three algorithms used in the 

experiments. As the most important techniques in this thesis are the single-layer 

perceptron and the multi-layer perceptron, MatLab environment has dedicated 

components which facilitate the process of implementing artificial neural networks 

without the need for developing a black box which constructs the network. Based on only 

few lines of code MatLab has the power to train any artificial neural network with any 

topology required. Once the network is trained the optimum weights have been learnt, we 

can then execute a certain code on the testing dataset and obtain the final accuracy for the 

testing process. For the first technique, namely the nearest neighbor technique, we have 

developed a program based on MatLab' s syntax that facilitates the implementing of the 

nearest neighbor method. Once we run the code against the new unknown data sample, 

we obtain the class label, to which this unknown sample belongs. In general the MatLab 

environment is very efficient when working on such experiments, because of the easy-

34 



handled keywords that contain very concentrated logic implemented properly to solve 

very complex classification problem. 

Classification algorithms as Input/Output Mapping 

In order to be able to classify data based on different techniques we have to 

introduce and define some concepts that have been fully integrated in the process of 

supervised learning (see figure 1). 
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Object Space represents the general field that needs to be processed to classify its given 

members, for instance; in the cars object space each single car represents an object with 

some identifying attributes (features) that distinguish a certain car from others, such as: 

model, manufacturer, year of production, length, width, height, color, wheelbase, kerb 

weight, fuel system, displacement, horse power and many others. So, the object space of 

cars contains many different and similar cars. Before anyone can classify a data, he/she 

should first specify the object space to be able to proceed to the feature selection process. 
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Without specifying an object space there will no be a base to launch the classification 

process. 

Feature is any distinctive aspect, quality or characteristics that distinguish objects in the 

same object space. A feature may be symbolic (i.e. color) or numeric (i.e. length) 

Feature Extraction/Selection is the process of identifying the most qualitative attributes of 

the objects that helps to solve the targeted classification problem. It has been known that 

extracting the relevant attributes for decision making is considered as one of most 

important problems that may face data classification. In addition it has been proved that 

minimizing the dimensionality of the pattern representation through reducing features and 

removing redundant and irrelevant measurement improves the performance of supervised 

learning and as a result the data classification process will be significantly faster [11]. 

In the cars object space, if we are trying to classify some cars to be in five classes 

such as: small, med size, compact, large and sporty, the color and the production year 

will hardly help in resolving the problem. But other attributes such as: length, height, 

weight, horse power and wheelbase may be of a great impact to solve the given 

classification problem. Feature selection needs solid experience, many different 

mathematical functions and different probability theories to identify the most qualitative 

feature space. In many classification problems a trial and error technique may lead to the 

best features selected. The process of feature selection reflects many potential benefits 

that will help in solving the classification problem in a more reliable way. Some of these 

benefits could be: facilitating data visualization, reducing the measurements and storage 

requirements, minimizing training and utilization time. So, the process of feature 

selection plays a very important role to solve any classification problem. The more 
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relevant the selected features are, the faster and the more efficient the given classification 

problem is. 

FeaturelInput Vector is the combination of n features represented as an n- dimensional 

column vector. After the process of feature extraction the produced and identified 

features represent a feature vector that will act as the input data for the classification 

algorithms (the black box). The feature vector defines the n-dimensional space known as 

feature space. In simple classification problems that have only two-dimension feature 

vector the objects could be represented in the feature space. This representation is known 

as a scatter plot. 

Output Vector is the combination of n desired output values (class labels) represented as 

an n-dimensional column vector. The output vector define~ the n-dimensional space 

known as output space. The output vector is the target of any classification problem. The 

classification algorithm processes the given inputs internally and produces the actual 

output that might be far of the desired output. In this case new process is started until 

reaching the desired output. 
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CHAPTER IV 

DATA ANALYSIS AND FINDINGS 

Nearest Neighbor Classifiers 

As we introduce some data classification techniques using different algorithms in 

this thesis, we prefer to start the technical cycle with the simplest algorithm, that is, 

Nearest Neighbor classifier. This algorithm is used widely in most simple classification 

problems where it is required to classify unknown samples based on historical known 

samples (see figure 2). 
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o 
o 
o 
o 

Sample n 

~
.~~ .. ~~~.-. -.~. ~ 

Unknown Sample 
.---~--- --

'j--------, 

Figure 2. Nearest Neighbor Classifier 
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Architecture of the Nearest Neighbor Classifier 

The Nearest Neighbor algorithm is based totally on supervised learning by 

similarity. The core motivation behind the Nearest Neighbor classification technique was 

based on the idea: "things that look alike must be alike". The Nearest Neighbor known as 

k-NN is a technique that classifies each unknown sample in a given dataset based on the 

class labels of the historical known k sample(s) most analogical to it In any classification 

problem we may face there are two boundaries that must be possessed during the 

classification process. These two boundaries are: The person who is in charge has a 

complete knowledge about the underlying joint distribution between the observations 

(data samples) and the desired output categories (class labels), or he/she may have no 

knowledge about this underlying distribution except what can be assumed from the 

samples themselves. The Nearest Neighbor classifier is based totally on the second 

boundary as it is a nonparametric classifier. 

As we cannot ensure the type of the distribution, it is acceptable to assume that 

the data samples which are close to each other belong to one class or category. So, in 

order to determine which data samples are grouped together in one category, we can use 

the simplest way of measuring the distance between the unknown sample and it's near 

historical data samples known as k. 

Because the Nearest Neighbor classifier depends on computing the distance 

between the unknown samples and the historical samples, we have to assure that all the 

samples are numeric and not categorical or symbolic. The historical data samples are 

identified by n-dimensional numeric features. So, each historical sample is stored in an n-
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dimensional feature space in the form of {x,a}; where x represents the feature vector and 

Q represents the pattern class. 

When a new unknown sample is needed to be classified towards the existing class 

labels, the k-NN searches the feature space for the k historical data samples that are 

closest to the unknown sample. Each historical sample and each unknown sample is 

represented as feature vector where the feature vector of the unknown sample is X and the 

feature vector of the historical sample is X and the number of features is 11 as shown here 

below 

Yl 

Y2 

y= Y3 

~.J 
The distance between the two vectors could be measured using the Euclidean distance as 

shown in the following equation: 

n 

D(X ,Y) = (II Xi - Yi 12)112 

i=l 

The distance between the two vectors could also be measured using the Manhattan 

distance (City Block) as shown in the following equation: 

n 

D(X,Y) = eII Xi - Yi I) 
i=! 

At this point we can say that the Nearest Neighbor classifier is a very simple and 

straight forward classifier that can be widely used in different classification problems. 
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Practical Experiment: MATLAB Code 

In our given classification problem the target is to classify a new unknown sample 

against number of training samples in a dataset that have been historically classified into 

four categories: judo players, jockeys, basket ball players and rugby players. Each of 

these categories is a pattern class that is represented by n-dimensional numeric attributes. 

Each training sample in the historical dataset is represented as a feature vector which is 

identified by the height and weight features. The first column in the dataset is the weight 

feature, the second one is the height feature and the third one is the class label which 

represents the output vector. The jockeys' category is identified by the class labell, the 

basket ball players' category is identified by the class label 2, the rugby players' category 

is identified by the class label 3 and the judo players' category is identified by the class 

label 4. This dataset could be found in "Appendix A". 

As the introduced classification problem 1S represented by two features only, the 

problem is a two-dimension classification problem that could be represented in a scatter 

diagram (see figure 3). The scatter diagram is only available in the 2-D classification 

problems. In case of having a multi-dimensions classification problems the visualization 

techniques will not be available easily, so that an eye assumption will be hard to be 

implemented. In our sports players' problem we can assume the class label of the 

unknown sample using the scatter diagram based on our eyes. For some multi-dimensions 

classification problems visualization by a sphere could be implemented. But the more 

dimensions the classification problem has, the harder the visualization is. Although this 

topic is beyond the scope of this thesis, it could be a base for future work. 
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Now if we havc the weight and height of a new sports player, we will be able to 

classify him to belong to onc ofthe prede li ncd classes we have in the datasct. Wc 

suppose that the new fcature vector is identified as the fo ll owing: 

[
X, ] [ 70 ] 

X = x , = 175 

where x, is the wcight feature and x , is the height featurc. I I' we plot the new sample in 

the scatter diagram, we will noti ce that it is morc close to the rugby and basket bails 

catcgories . BUllhi s assumption is not enough so we havc to measure the distance 

betwcen the unknown sample and allthc tra ining samplcs in order to search l'o r the k 
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training samples that are closest to the unknown sample. In this thesis MATLAB is used 

to implement the logic of tins classification problem as found in "Appendix B". 

After running the code, we find in the workspace of MA TLAB the variable 

"minDistance" which represents the minimum distance between the unknown sample and 

the closest training sample in the historical dataset. In Addition, we find the variable 

"classLabel" which represents the class label to which the unknown sample belongs. In 

our case the variable "minDistance" will have the value" 17.4" and the variable 

"classLabel" will have the value "3". So, the new unknown sample belongs to the rugby 

category (see table 1). 
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TABLE 1 

Distances between the unknown sample and the training sample 

Nearest Neighbor Experiment 

Jockey Basket Ball Rugby Judo 
-r """ 73.78 29.l6 \.u 4rV 51.43 --

66.11 49.83 42.64 50.50 
52.10 33.51 22.99 61.26 
56.89 31.85 39.61 53.53 
65.96 25.53 49.21 61.74 

-
65.30 40.29 26.99 65.49 
60.90 27.91 38.21 45.81 
75.25 30.93 44.17 66.37 
66.34 38.68 45.90 65.02 
77.20 3L05 51.51 66.83 
71.70 37.93 48.45 74.17 
66.44 48.80 32.86 67.15 
74.50 26.52 48.56 51.14 
72.22 45.41 37.73 64.72 
70.14 37.80 39.58 62.59 
75.64 31.17 32.84 59.97 
46.54 45.22 21.39 73.86 
67.91 40.31 47.91 56.79 
66.94 33.00 31.83 63.23 
77.83 49.59 43.37 64.19 
57.86 44.64 46.87 65.85 
60.40 40.59 17.41 73.58 
75.81 43.89 53.96 45.32 
64.62 38.13 47.46 51.96 
79.33 52.94 42.65 71.80 
56.52 44.47 26.42 68.04 
66.82 47.43 48.93 55.03 
63.11 47.70 41.34 54.21 

Performance Evaluation 

In any classification problem the quality of the training samples playa very 

important role in evaluating the performance of the classifier used to solve the problem. 

So, if we want to have a better performance we have to undergo some preprocessing steps 
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that may be applied to the data in the dataset in order to help in improving the accuracy, 

efti ciency and scalabili ty of the classitication process. The importance of data 

preprocessing will be clearly identi li ed in the following sections ofthis thesis where I 

will present the neural networks techniques. What is important in this phase where 1 have 

applied the Nearest Neighbor technique is the distribution of the training samples. If the 

training samples are clearly separable, the Nearest Neighbor classifier will match the 

unknown samples to their closest class in an efficient way. Where if the training samples 

are nor clearly separable and tbe classification problem is complicated, the Nearest 

Neighbor classilier will face hard times to classify the new unknown samples (see fig ure 

4) 

7 

,- -
7 1-o 

1.-. ___ -'--._~,-_~_~' __ ~_ 

1 7 3 4 :. 6 8 
FEATURE 1 

Figure 4 . Complex Classification Problem Using the Nearest Neighbor Method 

In ti gure 4 we can see that the problem is complicated where the samples of both 

classes (the red and the blue) are mixcd up . So the unknown sample could have two 

training samples that have the same di stance between each one o f them and the unknown 

sample. But what if we have more than 2 class labels and the same problem occurs? As 

most of the real life classification problems are complicated and the samples are mi xed 
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up, we should have some sort oflogic that will solve the problem in case of using the 

Nearest Neighbor classifier. This could be through setting a rule while applying the 

algorithm, that is, if such a case occurs, we can classify the unknown sample to anyone 

of the available classes. 

The Nearest Neighbor classifier is considered as a lazy learner because it needs to 

store all of the training samples and does not build a classifier until a new unknown 

sample is available for classification. With each new unknown sample the Nearest 

Neighbor classifier is measuring the distance between the unknown samples and all of the 

training samples, so that this technique is slowing the speed of recognition or learning. In 

much complex classification problems we will notice that the performance of the process 

is very slow. The Nearest Neighbor technique can experience expensive computational 

costs in the case of having a great number of historical data samples with which we need 

to compare an unknown sample. In addition, the Nearest Neighbor classifier assign 

equals weight to each feature in the dataset in that this may cause confusion in the case of 

having some redundancy or irrelevant features. So, the more efficient data preprocessing 

is the more accurate the classification result is. 

Despite of the disadvantages of the Nearest Neighbor technique mentioned above, 

it has been already tested that this technique is the most accurate classifier among all 

other techniques. As the core logic in the Nearest Neighhor technique is measuring the 

distance between the unknown sample and all of the training samples, it results in at least 

one minimum distance. So, the probability of error in the Nearest Neighbor technique is 

less than the probability of error of any other classification technique. 
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Artillcial Neural Networks - Sin gle-Layer PerceptIon Classitiers 

We have seen in the previous chapter that although the Nearest Neighbor 

technique produccs accura te classification rcsults, it has some di sadvantages that have led 

to the fact that the Nearesl Neighbor technique is not the perfect solution ror all 

ciassilication problems. So, we have to ask: is there a better way to classify data? 

Introduction to r ,inear Class i lI er 

In order to prove that there is a better way tilr solving classification problems I 

introduce here a supposed 2-D problem that has only lWO features (weight & height) as 

the input vector. A linear classifier is uscd to classify lhc data samples in to two classes 

(jockcys & rugby players) (see II gurc 5). 

u; 
E 
~ -'" C> •• x 

, , 
250.00' 

200.00 

150.00 

100.00 

50.00 

" , , , -, , , , , , 
~ "'" -I I va lues 

, 

- va lues 

, , 
, , , , , , , , , , , , , 

0.00 +----~----~--~--~, 

0.00 50.00 100.00 150.00 200.00 ' , 

Weight (Kgs) 

Fi gure 5. Linear Classiller 

" 

So, by using tigure 5 we can simply say that on one side we have jockeys where 

on the other side we have rugby players. The classificr we have here is a straight line that 

can be obtained using the mathematical equitation of the straight line as fo llows: 
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y = mx + c (where m is the slop and c is the part cut from the y axis) 

y = -(250/ 200)x + 250 

y = -1.25x + 250 

Y + 1.25x- 250 = 0 

As a standard notation: y could be mapped to x2 and x could be mapped to xl, where xl 

and X2 represent the features in the feature vector K.. So, the general form of the linear 

classifier is represented in the following function: 

I(:!) = I(x] ,x2 ) = w]x] + W 2X 2 + Wo = 0 

By using the general equation of the straight line we can get wQ, W 1 and w2 

Wo = -250, w] = 1.25, w2 = 1 

The function's result will be zero, if we use any point that is located exactly on the line. 

In addition the function will have a positive value on one side and a negative value on the 

other side. So in order to prove this we need to use three samples to classify them: 

(80,150), (100,150) and (50,100) 

I (:!) = I (x] , x2 ) = (1.25 * 80) + 150 - 250 = 0 

I(:!) = I(x] ,x2 ) = (1.25 *100) + 150- 250 = 25 

f(~J = f(x], x2 ) = (1.25 * 50) + 100 - 250 = -87.5 

From the results calculated above we can see that the first sample (80, 150) is a 

neutral sample as it is located exactly on the straight line. It could be classified as a rugby 

player or as a jockey. The second sample (100, 150) has a positive value, so that it is 

classified as a rugby player, whereas the third sample (50, 100) is classified as a jockey 

48 



because it results in a negati ve va lue. So, as a general logic I could say that all the 

pos iti ve va lues are class ified as rugby players and all negati ve va lues are classified as 

jockeys. I also could say that the negati ve values are rugby players and the positi ve 

va lues are jockeys in multiply in minus values in the above three equations as follows: 

I (;!) = l(x] ,x, ) = - (1 .25 *80) - 150 + 250 = 0 

I(;!) = f(x ] , x , ) = - (1 .25 * I (0) - 150+ 250 = - 25 

I(;!) = l (x ] , x , ) = - (1 .25 * 50) - I 00 + 250 = 87.5 

But is there onl y one classifier that could so lve the problem we have? Actually 

there is infinite number of class ifiers which can so lve the given problem (see fi gure 6). 

Each one of these class i fi ers has its own weights. 
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Figure 6. Infinite number of Linear Class ifie rs 

Modeling of the Linea r Classifier 
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The simple classification problem presented in the previous section can be 

modeled using a neural network technique that reflects the way in which the real neuron 

in the human brain operates (see figure 7). 

x=[;:] 

! 
1 

Jockeys (-1) Rugby Players (+ 1 ) 

activation function 

~@ 

Figure 7. Modeling of the Linear Classifier 

Y = -1 nr +1 

..... 

So, we can say that the linear classifier could be modeled by a simple artificial 

neuron. I will discuss this model in details in later in this thesis when reaching the single-

layer perceptron and the multi-layer perceptron algorithms. 
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Architecture of the Single-Layer Perceptron 

The linear classifier discussed in the previous 2 sections was the backbone of the 

perceptron classifier which represents the first-working artificial neural networks 

technique. In 1958 Rosenblatt invented the perceptron algorithm to be a simplified model 

of the biological neuron system. This algorithm is about learning the weights 

automatically from the given training data samples. By using figure 7 in the previous 

section we can now generalize the model to be suitable for classification problems that 

have n number of inputs or features (see figure 8). 

Xl 

activation function 
X,2 i 

~ 
Y 

Xj 

• • • • 
Xn 

Figure 8. Generalized Model of the Perceptron Learning Algorithm 

In figure 8 xl, x2, x 3, ... ,xn are the n inputs to the artificial neuron, where wI, W2, 

W3, ... ,wn· 

As the biological neuron in the human brain receives all inputs and signals 

through dendrites, sums them and produces an output only in the case when the sum is 

greater than a threshold value, the input signals are passed on to the cell body through the 

synapses. The synapses could accelerate or hold back any signal. The process of 

acceleration of holding back the arriving input signals is the process that is modeled by 
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the weights in the perceptron technique. The stronger the synapses are, the larger weights 

they have and vise versa. So, this could be reflected in the perceptron algorithm: the more 

important and relevant the features are, the larger weights they have in the training 

process, 

In real life classification problems the perceptron is modeled as a single-layer 

feedforward networks that consists of many artificial neurons which is modeled in figure 

8. In this type of networks there are two layers, namely the input layer and the output 

layer. The neurons of the input layer receive the input values whereas the output layer 

produces the output values. The input layer represents the feature space which contains 

the feature vector and the output layer represents the output space. Each input neuron in 

the input layer is connected to each output neuron in the output layer through the synaptic 

links which hold the weights. In any neural networks technique the input layer is not 

counted towards the total number of layers in the architecture. So as in the perceptron 

networks the architecture has an input layer and an output layer, the network is termed 

single-layer since it is the output layer (see figure 9). 

The algorithm of the perceptron belongs to the supervised learning classifiers 

because the output classes are known and the weights are adjusted to minimize error 

whenever the actual output does not match the desired output. In the unsupervised 

learning the target output is not known, so the algorithm learns of its own by discovering 

the distribution of the features in the feature space. The unsupervised learning is beyond 

the scope of this thesis. 
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Figure 9. The Perceptron (Single-Layer Feedforward Network) 

The Perceptron Algorithm 

The perceptron algorithm aims to find the equation of the straight line that 

Layer 

classifies the given data samples in the dataset. Once the slop and the part cut from the y 

axis is computed, the weights could be computed automatically. The following steps 

clarify the process of the perceptron algorithm: 

• Given a dataset that contains the features (inputs) and a column for outputs 

• Create a perceptron with (n+ 1) input neurons that are represented as a feature 

vector:! { xQ, x 1, x2, x 3, ... ,xn } where n is the number of inputs and xQ is the bias 

input for each training data sample. 

• Initialize the weight vector W {wQ, w 1, w2, w3, . ",wn } randomly . 
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• Iterate through the inputs of each data sample using their dedicated weights from 

the weight vector W in order to compute the weighted sum of the inputs for each 

data sample using the following equation: 

n 

(wo + LwixJ 
i=1 

• Compute the actual output fa using the activation function: 

n 

Ya = g(f) = g(wo + L Wi Xi ) 

i=1 

• Compare the actual output fa with the desired output f d for each data sample 

using the following equation: 

This equation computes the error initiated between the actual output and the 

desired output 

• If all the data samples have been classified correctly where the actual output 

equals the desired output, output the weights and exit 

• Otherwise, update the weights using the following equations: 

LlW; = pox; (Where p is the learning rate and is a constant) 

• Start again from step four with the new weights. 

From the steps mentioned above we can figure out that by updating the weights on 

the links between the neurons of both layers, namely the input and output layers, the 

output values could be trained to match a desired output. Training is accomplished by 
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sending a given set of inputs through the network and comparing the results with a set of 

target outputs. If the computed actual output does not match the desired output, the 

weights are adjusted to produce the closest output values. The updated weights are 

identified by adding an error correction value to the old weight. The training process is 

repeated until the performance of the network reaches the maximum rate of improvement 

(convergence). In this case the network is converged and the accurate weights are learned 

successfully. Then new testing data samples could be passed on to the network to be 

classified correctly. 

During the training process the perceptron algorithm computes the actual output 

Ya by using an activation function to be compared with the desired output Yd. There are 

four types of the activation functions: hard-limit transfer function, symmetric hard-limit 

transfer function, log-sigmoid transfer function and tan-sigmoid transfer function. It is 

commonly known that the perceptron uses the hard-limit transfer function or the 

symmetric hard-limit transfer function. In hard-limit transfer function if the computed 

value is greater than 0, then the actual output Ya is 1 else it is O. In the symmetric hard-

limit transfer function if the computed value is positive, then the actual output Ya + 1. But 

if it is negative, then the actual output Ya is -1 (see figure 10). 

The most widely process in applying the perceptron algorithm is to run the 

algorithm repeatedly through the training dataset until it finds a prediction vector (linear 

classifier) which classifies all of the training data samples correctly. This prediction rule 

is then used for classifying the testing dataset. 
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Figure 10. Activation Functions for the Perceptron Learning Algorithm 

Practical Experiments 

In this section I will introduce two examples: the first one will be a very simple 

example with computations by hand and the second one is implemented in MATLAB. I 

have decided to follow this way in order to make the process of the perceptron clear and 

directly to the point. 

Case Study: Computations by Hand 

The classification problem that needs to be solved in this example is represented 

in the following table (see table 2): 

TABLE 2 

Dataset for the First Example for the Perceptron Algorithm 

Feature 1 (x 1) Feature 2 (x2) Class Label Desired Output 

1 2 A +1 
-1 2 B -1 
0 -1 B -1 

We need to find the right perceptron that will classify the given samples into different 

classes, namely class A and class B. So, I will start with a random classifier by which I 

can then compute the initially random weights, then the process should continue until 
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reaching the convergence phase (sec figure 11). In addition I will set the learning rate to 

befJ = 0.2 

3 

• 2 • 
1 

+ Class A 

-2 -1 1 2 
_Class B 

-1 

-2 

-3 

Figure 11. Scatter Diagram of the First Experiment for the Perceptron Algorithm 

To show the target of this example I use here two iterations only as found in. "Appendix 

C". The computations in the previous example should be repeated until the function (0 = 

Y d - Ya) evaluates to 0 for each given samples in the same iteration. We have also to 

note that I have used the symmetric hard-limit transfer function as the activation function 

because the desired output is + 1 or -1. 

Practical Experiment: MA TLAB Code 

In our example, the target is to find the suitable perceptron that will classify the 

given training data samples. This classification problem is similar to the one solved in the 

nearest neighbor classifier chapter, but this has only two class labels: jockeys and rugby 

players. Each training sample in the historical dataset is represented as a feature vector 

which is identified by the height and weight features. The first column in the dataset is 

the weight feature, the second one is the height feature and the third one is the class label 

which represents the output vector. The jockeys' category is identified by the class label -
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I whereas the rugby players' category is identified by the class label + I. This dataset 

could be found in the "Appendix D" of thi s thesis. 

We could see that the output values are 1- 1 and -I, so the symmetric hard-limit 

transfer function will be used as an acti vation fun ction during applying the perceptron 

algorithm to solve this classifica tion problem. Irthe desired outputs were I and 0, we can 

then use the hard-limit transfer function instead. As the intTOduced problem has only two 

input features, it is identified as a 2-D prohlem that could be represented in a scatter 

diagram (see figure 12). This example we have is just a simple classification problem that 

will refl ect the way the perceptron algorithm could be implemented. [n complex 

problems we will need to implement a more reliable so lution. 
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Figure 12. Scatter Diagram of the Second Experiment for the Perceptron Learning 
Algorithm 

The introduced problem seems to be a linearly separable. So in thi s case the 

perceptron algorithm will make a finite number of mistakes and will converge to a 
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straight line which correctly classifies all of the training samples. The MATLAB code 

shows this fac t as found in "Appendix En. 

Once the code is run , MATLAB plots the data samples and the perceptron which 

classifies the training data samples correctly (see figure 13). The convergence of the 

perceptron happens a fter ti nite numbers of errors. 
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Figure 13. The Perceptron Classilies the Tra ining Data Samples 

Performance Evaluation 

We have seen in the previous sections how the perceptron technique is better than 

the nearest neighbor technique. We have also seen that the perceptron converges with 

finite number of errors. But the question that shoul d ari se here: does it converge in all 

classification problems? 

Actually to answer thi s questi on we have to use various classificati on problems. 

We suppose that we have the foll owing classificati on problem (see figure 14). 
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The problem has two classes, namely x and o. This problem is called XOR problem in 

field of data classification. It could be described by its truth table presented in (Table 3). 

We need to classify the inputs into two different classes: + 1 and -1. The perceptron drawn 

in figure 14 could not solve the problem at all. 

TABLE 3 

XOR Problem Truth Table 

Xl X2 Output 

0 0 -1 (class 0) 
1 1 -1 (class 0) 
0 1 + 1 (class x) 
1 0 + 1 (class x) 

So solving this problem by using a single perceptron is impossible. The XOR problem 

delayed research in the artificial neural networks field for about ten years, because it 

destroyed the perceptron technique invented by Rosenblatt. This failure was the motive 

for finding a better solution to reach to a standard in solving classification problems using 

neural networks. As a result, the XOR problem could be solved by using two perceptrons. 

After extensive experiments, the perceptron convergence theorem was introduced: 

the process which uses the perceptron algorithm will only make a finite number of errors, 
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if and only if all training samples are linearly separable. This theorem could be proved by 

measuring the distance between the currently maintained weight vector and the target 

weight vector. When the distance becomes smaller after updating the weights, it proves 

the convergence theorem of the perceptron algorithm. 

This means that the perceptron can't find weights for classification problems that 

are not linearly separable (see figure 15). In real life classification problems we can't 

know whether the training samples are linearly separable or not. As a result it was 

discovered that the single-layer perceptron is not an efficient technique for classification . 
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Figure 15. The Perceptron with Linearly and Non-Linearly Separable Data 

The researches were targeting to find a more efficient classification technique that 

could solve the complex problems in the real world. In the next chapter I introduce the 

most important technique that has played a very efficient role in the field of neural 

networks and that has helped in solving complex classification problems: the multi-layer 

perceptron technique. 

Artificial Neural Networks - Multi-Layer Perceptron Classifiers 

In the single-layer perceptron we have seen that there are only two layers, namely 

the input layer and the output layer. In this chapter I discuss the most well-known and 

efficient neural networks architecture for classification which consists of more than one 

layer. The new layers added to this network architecture are hidden layers that reside in 
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the intermediary section between the input layer and the output layer. This architecture is 

a generic neural network framework that could be applied in all supervised learning 

problems. 

Architecture of the Multi-Layer Perceptron 

The multi-layer perceptron is called multi-layer feedforward network, because it 

is made up of multiple layers, namely the input layer, the output layer and the hidden 

layers (see figure 16). The hidden layer helps in processing useful intermediary 

computations before outputting the final result. The input layer neurons are connected to 

the hidden layer neurons and the weights of the perceptrons linking the input layer and 

the hidden layer are referred to as input-hidden layer weights. On the other hand, the 

hidden layer neurons are connected to the output layer neurons and the weights both 

layers are referred to as hidden-output layer weights. In some networks there could be 

more than one hidden layer. It depends totally on the complexity of the given 

classification problem. After deep studies in this field it has been proven that two hidden 

layers with large numbers of neurons are sufficient to solve any classification problem. 
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Figure 16. The Multi-Layer Perceptron Model 
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The architecture of the multi-layer perceptron is some how similar to the 

architecture of the single-layer perceptron. The inputs represent the features measured for 

each training sample and are fed concurrently into the input neurons of the input layer. 

The computed outputs of these neurons are, in turn, fed concurrently into the neurons of a 

second layer, known as a hidden layer. The computed outputs of the hidden layer could 

be treated as the inputs for another hidden layer and so on. The computed outputs of the 

last hidden layer are then fed simultaneously to the neurons of the output layer, which 

compute the final actual outputs for the given samples. 

Designing a Multi-Layer Perceptron Network Topology 

When constructing a network that is based on multi-layer perceptron architecture, 

we should first decide on the network topology by determining the number of neurons in 

the input layer, the number of hidden layers, the number of neurons in each hidden layer 

and the number of neurons in the output layer. The number of input neurons represents 

the number of features in the training dataset, whereas the number of the input neurons 

represents the number of class labels defined as the desired output in the training dataset. 

The network design is a trial-and error process and may have a great influence on 

the accuracy rate of the trained results. The randomly initialized weights and the bias 

values for each neuron may also affect the resulting accuracy. If the resulting accuracy is 

not acceptable, it is common to repeat the training process with different weights or/and 

different topology in order to reach the desired output values. 

The XOR Problem with Multi-Layer Perceptron 

I have introduced the XOR problem in section 3.6 with an initial approach to 

solve this linearly inseparable problem. This approach was about having more than one 
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perceptron; each one classifies small linearly separable sections of the training inputs. 

The next step is to combine their computed output into a new perceptron which will 

results in a final classification technique that identifies the class to which each input 

belongs (see figure 17). 
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Figure 17. The Solution for the XOR Problem 

I assume here that the perceptron PI cuts the x 1 axis at the point 0.5 and cuts the 

x2 axis at the point -0.5. The perceptron P2 cuts the x2 axis at the point 0.5 and cuts the 

xl axis at the points -0.5. As we have known how to get the weights for any perceptron, 

we can get the weights for PI and P2 as follows: 

Weights for PI: 

y=mx+c 

y = (0.5/ 0.5)x + (-0.5) 

y = lx-0.5 

y-lx+0.5 =0 
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Weights for P2: 

y=mx+c 

y = (0.5/ 0.5)x + 0.5 

y = lx+0.5 

y-lx-0.5 = 0 

The weights for perceptron PI are: wO =- 0.5, wI = 1, w2 = -1. 

The weights for perceptron P2 are: wo = -0.5, wI = -1, w2 = 1. 

Please note that I have multiplied the equation for the perceptron P2 in -1 to get the 

correct output values. We can then use the computed weights to get three results (see 

table 4): 

Result 1: PI is positive and P2 is negative 

Result2: PI is negative and P2 is positive 

Result3: PI is negative and P2 is negative 

TABLE 4 

Truth table of the Desired Outputs for the XOR Problem 

PI P2 Computed Output 

+1 -1 + 1 (class x) 
-1 +1 +1 (class x) 
-1 -1 -1 (class 0) 
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The first two results classify the data samples into the class label + 1 and the third 

result classifies the data samples into the class label -1. The XOR problem could be 

modeled using a neural network topology that consists of an input layer, a hidden layer 

and an output layer (see figure 18). For the perceptron of the hidden layer, the inputs 

come from the features of the XOR problem. But for the perceptron of the output layer, 

the inputs are the outputs of the hidden layer. The values specified in table 4 represent the 

outputs from the input neurons and in the same time represent the input for the output 

neuron. The weights of the perceptron resulted from combining the perceptron PI and the 

perceptron P2 are as follows: 

wo = 1, W 1 = 1, w2 = 1. 

Figure 18. XOR Problem Model with MLP 

actual 
output 

So, the neurons in the output layer does not know the actual input values because 

of the hidden layer which acts as a masking layer between the input layer and the output 

layer. In the single-layer perceptron technique we could use the hard-limit transfer 

function or the symmetric hard-limit transfer function as an activation function while 

running the perceptron algorithm. In the XOR problem which represents the multi-layer 
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perceptron technique, these transfer functions won't give us any indication of the scale by 

which the weights of the net work could be adjusted. So, the other two types of the 

activation function should be used here in order to smooth the results. These new 

activation functions are: the log-sigmoid transfer function and the tan-sigmoid transfer 

function (see figure 19). The sigmoid function is non-linear and helps in modeling 

linearly inseparable classification problems. This function is very useful when using the 

backpropagation algorithm. 
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Figure 19. Activation Functions for the Multi-Layer Perceptron with Backpropagation 

Backpropagation Concept 

By using the multi-layer perceptron networks the weights that connect the last 

hidden layer and the output layer are the first weights that are updated. Because the multi-

layer perceptron technique contains hidden layers between the input layer and the output 

layer, all the weights that connects the input layer and the hidden layer needs to be 

updated, if the weights does not converge during the first epoch. The backpropagation 

technique is then used to perform this updating process. 

The backpropagation network is a multi-layer perceptron network that consists of 

an input layer, one or more hidden layer and an output layer. The neurons in the network 

architecture are connected in a feed-forward way with input neurons connected to hidden 
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neurons and hidden neurons connected to output neurons. When a backpropagation 

network is cycled, an input pattern is propagated forward to the output neurons through 

the intermediary neurons of the hidden layer(s). 

The learning process in the backpropagation networks happens by processing the 

training data samples repeatedly and comparing the actual computed output for each 

sample with the desired output or the class label. If the computed output does not match 

with the actual output, an error signal is identified and is then propagated in the 

backwards direction from the output layer through the hidden layer(s) down to the input 

layer in order to update and adjust the weights in each layer of the network. From this 

process in the backwards direction, the name "backpropagation" has been developed. 

After finite number of iterations or epochs the network will converge, if and only if the 

training samples are processed to be clean, relevant to the classification problem and 

normalized. 

Backpropagation Algorithm 

The following steps illustrate the how the backpropagation algorithm, which is 

proposed by Rummelhart and McClelland, works: 

• Normalize the inputs and outputs. Normalizing is about scaling the values for a 

given feature so that they fall within a small specified range, such as -1.0 to 1.0, 

or 0.0 to 1.0 

• Assume the number of hidden layers and the number of hidden neurons 
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• Initialize the weights and the biases to small random numbers, usually ranging 

from -1.0 to 1.0 or from -0.5 to 0.5. 

• Propagate the inputs forward by the following steps: 

• feeding the training sample to the input layer 

• Compute the inputs to each neuron in the first hidden layer as a liner combination 

n 

using the function (wo + I Wi Xi ) as done in the single-layer perceptron. These 
i=l 

inputs represent the outputs of the neurons of the input layer. 

• Compute the inputs to each neuron in the second hidden layer as specified in the 

previous step and so on till completing all the hidden layers specified in the 

second step. 

• Evaluate the output of each neuron in the hidden layer by using the sigmoid 

function as an activation function. Two types of sigmoid functions could be used 

here, namely the log-sigmoid transfer function or the tan-sigmoid transfer 

function. The result of the sigmoid function represents the output of each neuron 

in the hidden layer. 

• Compute the inputs to the output layer as specified in the hidden layer. 

• Evaluate the output of each output neuron using the sigmoid function. 

• Calculate the error and the difference between the actual output Ya and the 

desired output Y d for each output neuron by using the function 50 = Y d - Yo 

• If the actual output matches with the desired output, repeat the steps with the next 

inputs in the training dataset. If the actual output does not match the desired 

output, backpropagate the error by the following steps: 

69 



• Calculate the error for all weights of each neuron in the output layer using the 

delta rule: ~Wi = /38(Ya (1- Ya ))Xi (where /3 is the learning rate and Xi is the input 

for the output neuron calculated by the sigmoid function) 

• Compute the new weights in the output layer using the function: 

• Compute the error for each neuron in the last hidden layer using the function: 

n 

8h = (2: Wi (new)8()) (where n is the number of weights for each hidden neuron 
i=l 

and So is error of the output neuron connected to the hidden neuron through the 

weighted link Wi (new)) 

• Calculate the error for each weight in the last hidden layer that represents the 

weights between the last hidden layer and the previous hidden layer using the 

delta rule. 

• Calculate the new weights that connect the last hidden layer and the previous 

hidden layer. 

• Repeat the three previous steps to get the new updated weights for all assumed 

hidden layers and for the input layer. 

• Repeat the process starting from the fourth step until the convergence in the error 

is less than the tolerance value. 

When the network converges, the learning process is finished and we start working on 

the testing process. 
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The Effect of the Learning Rate f3 

The backpropagation learning algorithm aims to collapsing the network's 

structure to a single vector of weights, namely a single perceptron. During the process 

many factors affect the performance of the learning and the convergence rate. The 

learning rate is one of these factors. The learning rate determines the size of the weight 

updates during each iteration. Wrong choice of the learning rate can have a negative 

impact on the final result. 

If the learning rate is lowered, the iterations needed to solve the problems will be 

increased and the time of convergence will be increased too. This will result in a slower 

learning process. But on the other hand if the learning rate is increased, the needed 

iterations will be decreased significantly, thus resulting in a faster learning process. As 

the learning rate is used in the delta rule, the weights will be affected by changing it. If 

we use a very low rate, the weights will be very small, but the in this case we will assure 

to reach to convergence even after spending a lot of time. In the case of using a very big 

rate, the weights become very big. This could result in a failure in the convergence. 

So, the choice of the learning rate is a very tricky task in backpropagation algorithm. The 

range of learning rate that produces a faster training depends totally of the criteria of 

selecting the features and their number. Eaton and Oliver (1992) have suggested an 

empirical formula to select learning rate as follows: 

where Nt is the number of patterns of type I, N 2 is the number of patterns of type 2 

and m is the number of different pattern types. 
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The researches for improving the learning performance of the backpropagation 

algorithm focus mainly on the gradient-based algorithms with adaptive learning rate. 

There are many strategies that help in selecting the best learning rate. The following are 

some of them: 

• 

• 

• 

• 

• 

Start with a small learning rate and increase it, if successive iterations decrease 

the error rate, or decrease it, the error rate increases significantly. 

Start with a small learning rate and increase it, if successive iterations keep the 

gradient direction fairly constant, or decrease it, if the gradient direction varies 

during each iteration significantly. 

Set a unique learning rate for each weight. It should be increased, if the weights 

are changing successively in the same direction. 

Use a formula to calculate the learning rate, such as the one mentioned above 

which introduced by Eaton and Oliver (1992). 

Set a learning rate to lit, where t is the number of iterations through the training 

set so far. 

The aim of all of the above-mentioned strategies is to decrease the convergence error 

during iterations, to secure the ideal convergence for the training algorithm, and to avoid 

getting stuck at a point where the weights appear to converge, but are not the ideal 

solution. 

If we have more efficient information about the input patterns, this could lead to a 

better selection of the learning rate. If the learning rate is small, that is, less than 0.2, the 

weights are adjusted in small increments. In this case the network converges more slowly 

but with little oscillations because the step length will be short. On the other hand if the 
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learning rate is large, that is, greater than 0.5, the weights are adjusted radically, thus, 

resulting in missing the optimum combination of weights and in large oscillations as the 

step length will be longer. So the learning rate should be selected as large as possible in 

order to allow fast learning without oscillations. 

There is no any empirical method that helps in selecting the best learning rate, but 

a trial-and-error process may lead to the best optimum value of learning rate. The 

learning rate varies depending upon the input patterns of the classification problem and 

the complexity of the problem. I could say that if the input patterns are mixed up in a 

drastically way, this may lead to a lower selection of the learning rate and vise-versa. But 

in classification problems that are represented by multi-dimensional input vectors, it 

could be difficult to identify the complexity of the problem. In most multi-dimensions 

cases the complexity rate is high, thus, resulting into more efforts to select the optimum 

value of the learning rate. 

As the learning rate impacts the position of the weight vector, it can't be negative 

because this would make the weight vector to move away from the ideal one during the 

learning process. In addition, if the learning rate is zero, the learning process won't take 

place at all. As a result, the learning rate should always be positive. If the learning rate is 

equal to two then the network becomes unstable and if the learning rate is greater than 

one, the computed weight vector will move away from its optimum position, thus 

resulting in oscillation. So, the learning rate must be between zero and one. So the 

selection of the learning rate has a very big impact on the general performance of the 

learning process. 
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The Effect of the Hidden Nodes 

The given classification problem decides the number of nodes in the input layer 

and in the output layer. The number of features is the same number of the input neurons, 

whereas the number of class labels represents the number of the output neurons. But how 

could we decide the number of hidden neurons?! In general there is no an empirical 

criterion about deciding the hidden neurons. As a starting guide, we can start with the 

minimum number of the hidden neurons. This would help in keeping the memory 

demand for storing the weights to the minimum. Then we may start to increase the 

number of the hidden neurons until to reach the desired convergence. 

Mirchandani and Cao (1989) have found a relation between the number of hidden 

neurons in the backpropagation networks and the separable regions in the input space. 

They have proved this by the following function: H = M - 1, where M is the number of 

separable regions in the input space and H is the number of hidden neurons. Huang and 

Huang (1991) have introduced another way to decide the hidden neurons based on the 

number of elements in the training dataset. They have proved argued that the optimal 

number of hidden neurons is empirically found out to be H = K - J, where K is the 

number of elements in the training dataset. For them this is the least upper bound on the 

number of hidden neurons needed to realize an arbitrary real valued function defined by 

set with K elements. So, many trials have been made to reach to kernel point, from which 

we can select the number of hidden nodes. 

It has been experimentally proved that the learning process could be significantly 

faster when the number of the hidden neurons is equal to the number of input patterns. In 

this case the weight vectors related to each input and output pair can be combined. In the 
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next section I will introduce a practical example that shows how the number of the 

hidden layers and the number of the hidden nodes has a great impact on the convergence 

rate and on the total performance of the network. 

In general, the trial-and-error method is considered the better solution for 

selecting the number of hidden neurons. Depending on the complexity of the 

classification problem, we can then try different network topologies in order to reach to 

the most optimum network architecture. In most cases, increasing the number of the 

hidden neurons could improve the performance of the network on the training dataset, but 

not necessarily on testing dataset. If we add enough hidden units, then the network 

performance will be greatly improved, because it will have enough weights to exactly 

represent all the training patterns. This may result in creating a very poor network with a 

very slow convergence rate and with a little ability to generalize or classify the input 

patterns on the testing process. 

The most powerful method, that helps in assessing the effect of the number of 

hidden neurons on any classification problem, is measure the performance and the 

convergence rate on the testing dataset. When the total number of the hidden neurons is 

increased, the network performance on the testing dataset improves significantly. This is 

because each new hidden unit will represent one of the input features. But we have to be 

aware of the most optimum number of the hidden neurons, as increasing the number to a 

large value will cause a decrease in the network performance and the network will lose 

the power of generalization which helps a lot in the case of high complexity. In this case 

the network starts to learn the noisy data in the dataset. I will discuss this in the next 

section when working on a practical example. 
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Practical Experiments 

In this section I will introduce two examples: the first one will be a very simple 

example with computations by hand and the second one is implemented in MATLAB. I 

have decided to follow this way in order to make the process of the multi-layer 

perceptron with backpropagation clear and directly to the point. 

Case Study: Computations by Hand 

In this example I discuss here a simple classification problem that is represented 

in figure 20. 
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Figure 20. Model of the First Experiment for the MLP with Backpropagation Algorithm 

The problem has two input neurons, two hidden neurons and two output neurons. 

The hidden neurons are represented in one hidden layer that is the intermediary layer 

between the input layer and the output layer. I aim here to show how the backpropagation 

algorithm operates in the case of multi-layer perceptron network. So, the target of the 

problem is to calculate some computations for the error in the output layer, the 
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backpropagated error in the hidden layer and then the new adjusted weights for one 

iteration and for one input pattern only, as I don't target the convergence here. 

The input values are: 

The initial weights are: 

• VlJ = 1 

• V12 = 0.5 

• V02 = -1.5 

• V21 = -1 

• V22 = -0.5 

• Wo1= 0 

• WlJ=2 
• W12 = 1.5 

• Wo2= -1.5 

• W21= 1 

• W22= -1 

• W03 =0 

• Wo4 = -0.5 

The desired outputs are: 

• Y1 = 0.8 

• Y2 = 0.2 

The learning rate is: 

• /3= 0.3 

The required computations are: 

• Find the new adjusted weights Vll ,v12 ,V21 ,v22 ,Wll ,WJ2 ,W21 ,W22 
• Find the backpropagated errors 03 at node Zj and (54 at node Z2 

The solution could be found in "Appendix F". 
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These computations implemented in the example belong to the first epoch only. 

So, in order to reach to the convergence, I should continue with more epochs. In each 

epoch, I should follow the same logic as I did in the first one. The target is to adjust the 

weights until reaching the optimum weight vector which classifies the input data into two 

separate classes. 

Practical Experiment: MA TLAB Code 

In this classification problem, the target is to find the optimum weight vectors that 

classify the given samples into five classes. There are two datasets available for this 

example, namely the training dataset and the testing dataset, could be found in "Appendix 

G". The major logic of the multi-layer perceptron technique with backpropagation will be 

implemented on the training dataset to let the system learn the optimum weights. Once 

the correct weights are learnt, the testing dataset will be processed to measure the 

performance of the computed weights. 

The problem is about classifying all the samples in the dataset into five classes of 

cars, namely small cars, midsize cars, compact cars, large cars and sport cars. Each of the 

training dataset and the testing dataset contains 250 data samples and 15 columns. The 

first 14 columns are the input features which are already normalized. The given input 

features are: Price, City MPG, High Way MPG, # Cylinders, Engine Size, Horse Power, 

RPM at max HP, Revs/min, Fuel Tank Capacity, Passenger Capacity, Length, Width, 

Wheel Base, and Weight. All of these features describe the type of each car. The last 

column in the training dataset represents the class labels as follows: the small cars class is 

identified by the class labell, the midsize cars class is identified by the class label 2, the 

compact cars class is identified by the class label 3, the large cars class is identified by 
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the class label 4 and the sport cars class is identified by the class label 5. The class label 

column represents the desired output for each given data sample in the training dataset. 

In the MATLAB code created for this problem a binary code has been used to 

represent the output classes as follows: 

1. Small = [00001] 

2. Midsize = [000 1 0] 

3. Compact = [00 1 00] 

4. Large = [0 1 000] 

5. Sporty = [10000] 

This binary code represents the desired output identified in the 15th column in the training 

dataset. The actual outputs for each data sample will be compared against its binary code. 

If they are equal to the binary code or close to it by a certain degree, the data sample will 

identified as a correct classified sample. On contrary, if the actual outputs are not close to 

the binary code, an error is then occurred and added to the error function that sums all the 

errors occurred during running the process. 

As this problem has a multi-dimensions input vector and five class labels, it is most 

probably that the problem is non-separable and complex, that's why the MLP technique 

is used here. In this case the MLP with backpropagation algorithm may not make a finite 

number of errors. So, it is a must to create stopping criteria that would let the system 

stops processing, as in most of complex problems a hundred percent effective 

convergence is not guaranteed at all. Some commonly used stopping criteria are: 

• stop after a certain number of runs through all the training data (each run 

through all the training data is called an epoch); 
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• stop when the tot::ll.;:nm of the error reaches some low level. 

Both approaches will be shown by the code created in MATLAB. 

As the best network topology that would classify the given data samples correctly 

is not known, the solution of this problem will be starting from a single-layer, namely the 

output layer. If the error rate is above the accepted value, the topology will be adjusted to 

add a new hidden layer. And if the error rate is still high, the hidden nodes in the hidden 

layer will increased. The topology will be then adjusted to have two hidden layers, if the 

error rate is not lower than the tolerance value. It is like an adaptive neural network 

solution which is adjusted until finding the optimum weight vectors. 

The solution of this problem will be implemented in different experiments. Each 

one of them represents a suggested network topology. In order to get the optimum 

topology, we have introduced some sort of logic in the MATLAB code which measures 

the error rate at the end of running the code, that is, after finishing the specified epochs. 

This logic is implemented by a function which compares the desired output with the 

actual output and calculates the error for each data sample in the training dataset. As this 

function will be implemented on the training dataset and on the testing dataset, it also 

gets the percentage of each dataset's accuracy. In all experiments we will run the same 

code more than once, as the weights are initialized randomly. This means that the 

learning accuracy may change at each time when we run the code. It is not guaranteed at 

all to have a high testing accuracy, if the training accuracy is already high. So, the best 

topology will be the one that achieves a high training and testing accuracy. 
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Experiment Sets 

Experiment 1: 

The network topology introduced in this experiment consists of the input layer 

and the output layer. As the training dataset and the testing dataset contain 14 input 

features for each, the input layer will always have 14 input neurons. In addition, the 

output layer will always have five output neurons, because the data samples are required 

to be classified into five classes of cars as mentioned above. This topology is the base 

that will be used in building other topologies in the coming experiments. 

Results: 

The code has been run twice for each dataset. The training and testing accuracy 

and the number of errors for each trial were computed as in the following table. 

TABLE 5 

Results of the first experiment for MLP 

Training Accuracy Testing Accuracy 
Trial A Trial B Trial A Trial B 

Accurac # of Accuracy #of Accuracy #of Accuracy #of 
y Rate Errors Rate Errors Rate Errors Rate Errors 
83.6% 41 84.4% 39 64% 90 64.8% 88 

It is obvious that there is a slight difference.in the accuracy between both tnals. 

The most important observation in this experiment is the accuracy of the testing dataset. 

In both trials it was 64% and 64.8% respectively. This accuracy by any means is not 

acceptable at all. So the main core of solving this classification problem is to have a 

higher testing accuracy with lower number of errors. The number of errors occurred 

represents the number of data samples that are not correctly classified in respect to their 

desired outputs. It i~ noticeable during running the code that the learning process is quick 
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enough, this because the network topology is not complex at all, as it is considered as a 

single-layer perceptron. 

Experiment 2: 

In this experiment the network topology will be based on the main topology that 

was created in the first experiment, but a new hidden layer will be added between the 

input layer and the output layer. The hidden layer will contain five hidden nodes. 

Results: 

The code has been run twice for each dataset. The training and testing accuracy 

and the number of errors for each trial were computed as follows: 

TABLE 6 

Results of the second experiment for MLP 

Training Accuracy Testing Accuracy 
Trial A Trial B Trial A Trial B 

Accuracy #of Accuracy #of Accuracy # of Accuracy # of 
Rate Errors Rate Errors Rate Errors Rate Errors 

85.6% 36 84% 40 66% 85 64% 90 

It is clear that there is a small difference in the training accuracy for both trials. It 

is also noticeable that the testing accuracy is still not acceptable. To accept the testing 

accuracy, it should have a value near to the value of the training accuracy. During 

running the code, the learning process is a little bit slow, this is because the network 

topology is getting complex, as it consists now of two layers, namely the hidden layer 

and the output layer. In this topology the number of weights is distributed as follows: 70 

weights that connect the input layer with the hidden layer with additional five biased 

weights for the five hidden nodes and 25 weights that connect the hidden layer with the 

output layer with additional five biased weights for the five output nodes. So the total 
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number of weights is 105. The more weights the MLP network has, the more time it takes 

to learn the optimum weights. This fact will be very clear in the next experiments. 

Experiment 3: 

In this experiment the network topology will be the same as the one created in the 

second experiment, but a more five hidden nodes will be added in the hidden layer that is 

the intermediary between the input layer and the output layer. So, the hidden layer will 

contain ten hidden nodes instead of five hidden nodes that were specified in the second 

experiment. 

Results: 

The code has been run twice for each dataset. The training and testing accuracy 

and the number of errors for each trial were computed as in the following table: 

TABLE 7 

Results of the third experiment for MLP 

Training Accuracy Testing Accuracy 
Trial A Trial B Trial A Trial B 

Accuracy #of Accuracy #of Accuracy #of Accuracy #of 
Rate Errors Rate Errors Rate Errors Rate Errors 
98% 5 88% 30 84.8% 38 69.6% 76 

The results of this experiment were totally astonishing. There was a big difference 

between the two trials of the training dataset: the training accuracy for the first trial was 

98% and the number of error was only five data samples, but in the second trial the 

training accuracy was 88% and the number of errors was 30 data samples. This result 

proves that the weights, which are initialized randomly, playa very important role in 

determining the accuracy of the learning process. So, the testing accuracy in the second 
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trial was also lower than in the first trial. In general there is still a big difference between 

the training accuracy and the testing accuracy. In this topology the number of weights is 

distributed as follows: 140 weights that connect the input layer with the hidden layer with 

additional ten biased weights for the ten hidden nodes and 50 weights that connect the 

hidden layer with the output layer with additional five biased weights for the five output 

nodes. The total number of weights is 2] 0, so that the learning process takes more time 

and gets slower. 

Experiment 4: 

In this experiment the network topology will be the same as the one created in the 

third experiment, but a more five hidden nodes will be added in the hidden layer that is 

the intermediary between the input layer and the output layer. So, the hidden layer will 

contain 15 hidden nodes instead of ten hidden nodes that were specified in the third 

experiment. 

Results: 

The code has been run twice for each dataset. The training and testing accuracy 

and the number of errors for each trial were computed as in the following table: 

TABLE 8 

Results of the fourth experiment for MLP 

Training Accuracy Testing Accuracy 
Trial A Trial B Trial A Trial B 

Accuracy #of Accuracy #of Accuracy # of Accuracy #of 
Rate Errors Rate Errors Rate Errors Rate Errors 
90% 24 91.2% 22 73.2% 67 74.8% 63 

The results of this experiment are some how better than the results of the third 

experiment. The training accuracy in both trials is very close and could be considered as 
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high accuracy. On the other side, the testing accuracy is still low and there is a big gap 

between the training accuracy and the testing accuracy. It was obvious during running the 

code that the learning process is getting more slower, because of adding more nodes in 

the hidden nodes. So, the number of weights increases. It is also noticeable that the 

training accuracy in this experiment is lower than in the third experiment. So, increasing 

the number of nodes does not guarantee the correct convergence. 

In this topology the number of weights is distributed as follows: 210 weights that 

connect the input layer with the hidden layer with additional 15 biased weights for the 15 

hidden nodes and 75 weights that connect the hidden layer with the output layer with 

additional five biased weights for the five output nodes. The total number of weights is 

305, so that the learning process takes more time and gets slower than what it takes in the 

third experiment. 

Experiment 5: 

In this experiment the network topology will be significantly changed, as a new 

hidden layer will be added. In this topology the first hidden layer will contain five nodes 

and the second hidden node will contain also five nodes. 

Results: 

The code has been run twice for each dataset. The training and testing accuracy 

and the number of errors for each trial were computed as in the following table: 
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TABLE 9 

Results of the fifth experiment for MLP 

Training Accuracy Testing Accuracy 
Trial A Trial B Trial A Trial B 

Accuracy #of Accuracy # of Accuracy # of Accuracy # of 
Rate Errors Rate Errors Rate Errors Rate Errors 

89.2% 27 93.2% 17 76% 60 83.6% 41 

It is noticeable that the results of this experiment are completely better than the 

results from the fourth experiment. The training accuracy in both trials is close to each 

other and the gap between the training accuracy and the testing accuracy is getting closer. 

But in general, the testing accuracy is still at a low rate. The second trial is considered the 

best result until now. It was obvious during running the code that the learning process is 

getting more slower, because of adding a new hidden layer to the topology. So, the 

number of weights increases. In this topology the number of weights is distributed as 

follows: 70 weights that connect the input layer with the first hidden layer with additional 

five biased weights for the five hidden nodes of the first hidden layer, 25 weights that 

connect the first hidden layer with the second hidden layer with additional five biased 

weights for the five hidden nodes of the second hidden layer and 25 weights that connect 

the second hidden layer with the output layer with additional five biased weights for the 

five output nodes. The total number of weights is 135. 

Experiment 6: 

In this experiment the network topology will be based on the topology created in 

the fifth experiment but the first hidden layer will contain ten hidden nodes. The second 

hidden layer will be the same with five hidden nodes. 
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Results: 

The code has been run twice for each dataset. The training and testing accuracy 

and the number of en"ors for each trial were computed as in the following table: 

TABLE 10 

Results of the sixth experiment for MLlP 

Training Accuracy Testing Accuracy 
Trial A Trial B Trial A Trial B 

Accuracy # of Accuracy # of Accuracy #of Accuracy # of 
Rate Errors Rate Errors Rate Errors Rate Errors 
94% 15 94.4% 14 80.4% 49 80.8% 48 

The training accuracy is getting increased. But the most important observation 

from this experiment is the stability in the training accuracy and in the testing accuracy 

between the two trials. This could mean that the topology is approaching the 

convergence. The gap between the training accuracy and the testing accuracy is still high. 

The topology is now considered a complex one that takes more time to learn the weights. 

In this topology the number of weights is distributed as follows: 140 weights that connect 

the input layer with the first hidden layer with additional ten biased weights for the ten 

hidden nodes of the first hidden layer, 50 weights that connect the first hidden layer with 

the second hidden layer with additional five biased weights for the five hidden nodes of 

the second hidden layer and 25 weights that connect the second hidden layer with the 

output layer with additional five biased weights for the five output nodes. The total 

number of weights is 235. 
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Experiment 7: 

In this experiment the network topology will be based on the topology created in 

the sixth experiment but the first hidden layer will contain 15 hidden nodes. The second 

hidden layer will be the same with five hidden nodes. 

Results: 

The code has been run twice for each dataset. The training and testing accuracy 

and the number of errors for each trial were computed as in the following table: 

TABLE 11 

Results of the seventh experiment for MLP 

Training Accuracy Testing Accuracy 
Trial A Trial B Trial A Trial B 

Accuracy #of Accuracy #of Accuracy #of Accuracy #of 
Rate Errors Rate Errors Rate Errors Rate Errors 

92.8% 18 87.2% 32 82% 45 72.8% 68 

The results of this experiment are frustrating to some extent. After reaching some 

close accuracy rates between the training dataset and the testing dataset, the current result 

takes us backwards. The training accuracy and the testing accuracy are lower than in the 

previous experiment. But, there is one observation that could give us some hope, that is, 

the gap between the training accuracy and the testing accuracy is about 10% which is 

better than in the previous experiment. In this topology the number of weights is 

distributed as follows: 210 weights that connect the input layer with the first hidden layer 

with additional 15 biased weights for the 15 hidden nodes of the first hidden layer, 75 

weights that connect the first hidden layer with the second hidden layer with additional 

five biased weights for the five hidden nodes of the second hidden layer and 25 weights 
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that connect the second hidden layer with the output layer with additional five biased 

weights for the five output nodes. The total number of weights is 335. 

Experiment 8: 

In this experiment the network topology will be based on the topology created in 

the seventh experiment but the second hidden layer will contain ten hidden nodes. The 

first hidden layer will be the same with 15 hidden nodes. 

Results: 

The code has been run twice for each dataset. The training and testing accuracy 

and the number of errors for each trial were computed as in the following table: 

TABLE 12 

Results of the eighth experiment for MLP 

Training Accuracy Testing Accuracy 
Trial A Trial B Trial A Trial B 

Accuracy #of Accuracy #of Accuracy #of Accuracy #of 
Rate Errors Rate Errors Rate Errors Rate Errors 

99.6% 1 93.2% 17 98% 5 86% 35 

The results of this experiment are completely encouraging. The training accuracy 

in the first trial reached to 99.6% which is the higher rate till now. There was only one 

data sample that was not classified correctly. On the other hand, the testing accuracy for 

the first trial was 98% which is considered the best result we got. In the second trial, the 

results were decreased. This proves again the fact that the initial weights have a big 

impact on the learning rate. In general this could be considered as admissible results, 

because the difference between the training accuracy and the testing accuracy is getting 

lower. 
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In this topology the number of weights is distributed as follows: 210 weights that 

connect the input layer with the first hidden layer with additional 15 biased weights for 

the 15 hidden nodes of the first hidden layer, 150 weights that connect the first hidden 

layer with the second hidden layer with additional ten biased weights for the ten hidden 

nodes of the second hidden layer and 50 weights that connect the second hidden layer 

with the output layer with additional five biased weights for the five output nodes. The 

total number of weights is 440. The complexity of the introduced topology in this 

experiment has affected the speed of the learning process, so it is now lower than before. 

It is now clear that more weights the network topology has, the lower the learning process 

is and the more accurate the convergence is. 

Experiment 9: 

In this experiment the network topology will be based on the topology created in 

the eighth experiment but the second hidden layer will contain 15 hidden nodes. The first 

hidden layer will be the same with 15 hidden nodes. 

Results: 

The code has been run twice for each dataset. The training and testing accuracy 

and the number of errors for each trial were computed as in the following table: 

TABLE 13 

Results of the ninth experiment for MLP 

Training Accuracy Testing Accuracy 
Trial A Trial B Trial A Trial B 

Accuracy # of Accuracy #of Accuracy #of Accuracy # of 
Rate Errors Rate E rrors Rate Errors Rate Errors 

96.4% 9 99.6% 1 89.6% 26 98(70 5 
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The results of this experiment are the acceptable results through our observations. 

The training accuracy is high in both trials. And the testing accuracy is also high in both 

trials. So, the best topology that has solved the cars classification problem consists of a 

multi-layer perceptron with two hidden layer and each hidden layer contains 15 hidden 

neurons. As this topology is the most complex one, the learning speed has reached the 

maximum slower rate. 

In this topology the number of weights is distributed as follows: 210 weights that 

connect the input layer with the first hidden layer with additional 15 biased weights for 

the 15 hidden nodes of the first hidden layer, 225 weights that connect the first hidden 

layer with the second hidden layer with additional 15 biased weights for the ten hidden 

nodes. of the second hidden layer and 75 weights that connect the second hidden layer 

with the output layer with additional five biased weights for the five output nodes. The 

total number of weights is 545. 

Final Observations: 

The following charts show the training accuracy and the testing accuracy for the 

first and second trials. From the first chart, it is clear that the accuracy in the eighth 

experiment is the most optimum for the training and testing dataset (see figure 21). For 

the second trial, the ninth experiment has the higher accuracy (see figure 22). We should 

confirm again that the randomly initialized weights have affected the learning and testing 

accuracy, that's why the results are different between both trials. It is also expected that if 

a third trial has been implemented, the final results would also be different between the 

three trials. 
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Figure 2 1. Flow Chart of the First Tria l for the MLP 
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All the experiments implemented here are following the trial and error method. 

This was done by using the code found in "Appendix H" that is implemented for each 

experiment separately. 

Error Analysis: 

As investigating the errors derived from the classification process is considered a 

very important phase in evaluating classification techniques, we introduce here the types 

of error that may be resulted from the experiments done in this thesis. In general, we have 

two error types, namely type-I errors and type-II errors. Type-I errors are the data 

samples that haven't been classified correctly with respect to the predefined class labels, 

where type-II errors are the data samples that shouldn't be classified correctly but have 

been classified correctly with respect tOi the predefined class labels. In any classification 

technique, type-l errors are less dangerous than type-II errors. So if the result of a certain 

classification process results in many type-I errors but less type-II errors, then this is 

considered an advantage for the technique used and vise versa. 

In the first trial of the ninth experiment, there were nine errors discovered in the 

training dataset, where there was only one error in the testing dataset. All these errors are 

type-I errors. We have constructed a confidence matrix for the errors derived from both 

trials of experiment 9. In figure 23 the confidence matrix for the training process of the 

first trial shows that all the samples of the first class have been classified correctly. In 

addition, 42 samples of the second class have been classified correctly and eight samples 

have not been classified correctly where four samples have been classified into the first 

class and another four samples have been classified into the third class. It is also obvious 

that 49 samples of the third class have been classified correctly where only one sample 
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has not been classified correctly, as it has been classified into the first class. All the 

samples of the fourth and fifth classes have been classified correctly. 

1 2 3 4 5 1 2 3 4 5 
1 50 0 0 0 0 1 50 0 0 0 0 
2 4 42 4 0 0 2 3 32 15 0 0 
3 1 0 49 0 0 3 1 0 49 0 0 
4 0 0 0 50 0 4 0 0 0 48 2 
5 0 0 0 0 50 5 1 0 0 4 45 

Training-Trial A Testing-Trial A 

Figure 23. Confidence Matrix of the Errors for the MLP Experiment 9 - Trial A 

In figure 23 also, the confidence matrix of the testing process shows that all the 

samples of the first class have been classified correctly. 32 samples of the second class 

have been classified correctly and 18 samples have not been classified correctly where 

three samples have been classified into the first class and 15 samples have been classified 

into the third class. For the third class, 49 of its samples have been classified correctly 

and only one sample has not been classified correctly, as it has been classified into the 

first class. It is also clear that 48 samples of the fourth class have been classified correctly 

where only two samples have been classified into the fifth class. Finally, 45 samples of 

the fifth class have been classified correctly where four samples have been classified into 

the fourth class and only one sample has been classified into the first class. 

The confidence matrices of the second trial can also be analyzed as the same way 

used in the first trial (see figure 24). 
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I 50 0 0 0 0 1 50 0 0 0 0 
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2 0 50 4 0 0 2 } 49 0 0 0 
-

3 I 0 49 0 0 3 1 0 49 0 0 
-

4 0 0 0 50 0 4 0 0 0 48 2 
5 0 0 0 0 50 5 1 0 0 0 49 

Training-Tria} B Testing-Trial B 

Figure 24. Confidence Matrix of the Errors for the MLP Experiment 9 - Trial 
Testing the Scalability of the Multi-Layer Perceptrons Networks 

As investigating the scalability and the efficiency of the techniques implemented 

in this thesis is considered the backhone of this thesis, we have implemented the most 

scalable and efficient algorithm here, namely the multi-layer perceptrons, using MatLab 

and a complex and large dataset. The MatLab code contains the same logic implemented 

in the previous experiment of the cars classification problems. The dataset contains two 

types of data, namely the training dataset which contains 6238 data sample and the 

testing dataset which contains 1559. Each dataset contains a huge number of features: 

617 features. This dataset contains data about isolated spoken letters that need to be 

classified into 26 classes (one for each letter). All features are continuous, real-valued 

features scaled into the range -1.0 to 1.0. Some of these features are contour features, 

sonorant features, pre-sonorant features, and post-sonorant features, which are describing 

the difference between each spoken letter. 

This data set was generated as follows: 150 subjects spoke the name of each letter 

of the alphabet twice. Hence, there are 52 training examples from each speaker. Speakers 

are grouped into sets of 30 speakers each, and are referred to as isoletl, isolet2, isolet3, 

isolet4, and isolet5. In our experiment we have considered the data collected from the 
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first four groups to be the training dataset, and the data collected from the fifth group to 

be the testing dataset. The data appears in the training dataset in sequential order, first the 

speakers from isolet 1, then isolet2, and so on. 

The source of this dataset, namely the machine learning repository of the 

University of California, Irvine, has stated that it is a very good domain for noisy and 

perceptual task. In addition, it is a very good domain for testing the scaling abilities of 

classification algorithms. This is really the goal of this section in the thesis. 

This dataset has been used by Fanty and Cole (1991), as they have targeted to 

predict which letter name was spoken. They have implemented the OPT backpropagation 

algorithm and the result was 95.9% of the data samples has been classified successfully. 

Their network architecture contained 56 hidden nodes and 26 output nodes (one per 

class). Dietterich and Bakiri have implemented the dataset in two different studies in 

1991 and in 1994. In 1991, they used the OPT backpropagation algorithm with 78 hidden 

nodes and 26 output nodes. In this case the result was 95.83% correct. Then they have 

changed the network architecture to contain 156 hidden nodes and 30 output nodes and 

have used a 30-bit error-correcting output code with OPT. in this case the result was 

96.73%. In 1994, Dietterich and Bakiri have used the dataset in a wide study, in which 

they have used different algorithms with many different configurations as follows: 
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TABLE 14 

Results of Past Usage of the Isolated Spoken Letters Dataset 

Algorithm and Configuration Errors Error Percentage Correct 
Percentage 

Opt 30-bit ECOC 51 3.27 96.73 
Opt 62-bit ECOC 63 4.04 95.96 
OptOPC 65 4.l7 95.83 
C4.5 107-bit ECOC soft pruned 103 6 .. 61 93.39 
C4.5 92-bit ECOC soft pruned 107 6.86 93.14 
C4.5 45-bit ECOC soft pruned 109 6.99 93.01 
C4.5 107-bit ECOC soft raw 116 7.44 92.56 
C4.5 92-bit ECOC soft raw 118 7.57 92.43 
C4.5 30-bit ECOC soft raw 175 1l.23 88.77 
C4.5 30-bit ECOC hard pruned 185 1l.87 88.13 

It is very clear from the previous table that the implementations in which the 

backpropagation algorithm was used had the most higher correct classification rate, 

where in the case of using the C4.5 algorithm the error rate was getting increased. So, we 

can say that the backpropagation algorithm is more scalable and efficient than the C4.5 

algorithm when classifying the data samples in the isolated spoken letters dataset. 

In our implementation, the network architecture contained two hidden layers with 

200 hidden nodes for each one. The output layer contained 26 neurons as we have 26 

classes. After running the code, we got a very magnificent result: the training accuracy 

was 99.872% with only 8 error samples that were not classified correctly and the testing 

accuracy was 91.725% with only 129 error samples that were not classified correctly. 

These results have proved that the multi-layer perceptrons networks technique with 

backpropagation is the most scalable and efficient algorithm implemented in this thesis. 

Geometric Representation of the Multi-Layer Perceptrons Networks 
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In order to understand the behind concepts of the MLP networks we need to 

introduce a geometric representation that helps in understanding the concepts of different 

layers in the topology. For deli vering the right concept, we introduce here a celiain 

classification problem which contains some data samples that need to be classified into 

three different classes. The given problem is a 2-D problem that could be presented in a 

scatter diagram. As the given problem is a simple one because the data samples are not 

mixed up, two classifiers are sufficient to solve the problem (see figure 25). 

P1 
• + 

• • - • • 
• • • • 

• P2 + • Class A 
• 

• Class B 
1 2 • Class C • 

-1 
• -1 

• • 
• • 

Figure 25. Geometric Representation of MLP Networks 

Since two classifiers have been used to solve the problem, the first hidden layer which 

represents the partitioning layer will have two nodes (neurons). Each neuron represents a 

classifier. 

In this problem we do not need to have a second hidden layer. This problem is a 

simple one that performs only an "anding process". As the two classifiers divide the 

space into three regions, the output layer will have only three nodes. The output layer 
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represents here the "anding layer". In some other complex problems it may represent the 

"oring layer" and the second hidden layer represents the "anding layer" . 

Now, we need to get the weights of both classifiers: 

The c1assi ti er PI : 

y = mx +c 
y -l.3x l 2 
y - l.3x - 2 - 0 

W2X2 1- W[ XI + wo 0 

wO = - 2 

W[ = - 1.3 

w2 = I 

The class ifier P2: 

y = mx r c 
y -1.3 x - 2 
y - l.3x I 2 = O 

W2X2 +W IXI 1 wO= O 

wO = 2 

WI = - IJ 

w2 = 1 

The input layer could be modeled as in the rollowing figure: 

P1 

Figure 26. Geometric Rep resentati on of the Input Layer for MLP Networks 
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The output y!" and Yi is e ither + 1 01' -1 depend ing on the region where the in put 

samp les (x I, and x2) lies . There are four poss ible out put combinati ons for YI', and Yi 

and each combination defines a reg ion (class label) in the space. Note that the fourth 

combination does not define any class label because there is no region that could be 

defined by + I for the output Y I' and - I for the output Y2'. This could be checked in the 

following tab le. 

TABLE I S 

Results of Past Usage of the Isolated Spoken Letters Dataset 

YI' Yi Region Code 

- I + 1 R I (class A) 
+1 + 1 R2 (c lass B) 
- I - I R3 (c lass C) 
+ 1 -I -

YI' and Yi will be considered as inputs (x I and x2) for the nex t layer, which is the 

output layer. Thi s laye r the Handing layer" which wil l have two inpu ts (yt ', yi ) and three 

outpu ts (we have only three classes) as specified in the following table: 

TABLE 16 

Truth Table of the Outputs of the Output Layer 

YI' yi Class Label YI Y2 Y3 
- I + 1 A + 1 - I - I 
+ 1 +1 B - I +1 - I 
- I - 1 C - I - I + 1 

Now the fi nal topo logy will be as follows: 
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Figure 27. Geometric Representation of the Final Topology ('or MLP Networks 

We need to get the weights of the output layer, so we need first to plot the points 

which formulate table 15 (see ligure 28). Plotting the values of the weights helps us 

completely in understanding the concept behind thi s geometri c representati on. This 

scaUer plot will also fac ilitate the plotting of the three perceptrons of the output layer as 

shown in the nex t coming fi gures . 

Class A Cia" B 
• +.1 • 

-:1 +1 yl 
• -1 

Cia" C 

Fi gure 28. Scatter Plot of the Outputs of the Hidden Layer 

To get the weights o f the fi rst neuron in the output Layer whose output is YI, we need to 

get the we ights of the perceptron that identili es YI (class A) as modeled in the fo llowing 

fi gure. 
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Class A 

• • 

-2 
Y2 ' 

• -2 

Class C 

Figure 29. The Perceptron of the First Output Node 

Its weights are calculated as follows: 

To get the weights oCthe second neuron in the output Layer whose output is y2, we need 

10 get the weights of the perceptron that identi li es Y2 (class B) as modeled in the 

following tigure. 

y:: 

Class A Class B 

• +1. • 

-2 +l 

• -2 

Cia" C 

Figure 30. The Pereeptron of the Second Output Node 

Its weights arc calculated as follows: 
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To get the weights of the thi rd neuron in the output Layer whose output is y3, we need to 

get the weights of the perceptron that identifi es Y3 (class C) as modeled in the fo llowing 

figure. 

Class A Cia" B 
• +~ • 

-2 +1 

• 
CI. " C 

Figure 31. The Perceptron of the Third Output Node 

lts weights are calculated as lallows: 

W2 = I, WI = I, WO = J 

The benefits of the above analysis are: 

I . Any MLP with two hidden layers, an input layer and an output layer could be 

designed to solve any classificati on problem. In case we have a more complex 

problem, we can use more nodes in the parti tioning Layer, and perfoml the same 

analysis. 

2. The number of nodes in the partitioning layer depends directly on the complex ity 

o f the problem. 

3. The output layer (anding layer) is used to collect and gather contiguous and join t 

regions to map them to a particular class label. 

4 . In more complex problems the output layer represents the (oring layer) which is 

then used to gather the non-contiguous and disjoint regions to map them to a 

certain class label. 
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Performance Evaluation 

Through the current chapter it becomes so clear how the multi-layer perceptron 

networks could solve most of the difficult and complex classification problems. In 

addition, we have seen through all the experiments which were implemented in this 

chapter how efficient the MLP with backpropagation algorithm is in finding weights for 

classification problems that are not linearly separable. As it is some how difficult to know 

if the given classification problem is linearly separable or not, it was discovered that the 

single-layer perceptron is not an efficient technique for classification. So that the MLP 

networks were introduced to help in solving those critical and mixed up problems. As it 

has been proved in the previous section of the concepts of the geometric representation of 

the MLP, a maximum of two hidden layers could be used in any neural network solution 

to solve any complex problem. If the problem is getting more complex, we can then add 

new nodes in the first hidden layer then in the second hidden layer until reaching the 

required convergence rate. 

Because most of the MLP networks are dependent on the backpropagation 

algorithm to a high extent, the learning process in the MLP networks may be considered 

too slow for many applications and it scales up poorly as the classification problem 

becomes larger and more complex. The backpropagation learning algorithm runs faster 

than earlier learning methods such as the single-layer perceptron, but it is still much 

slower than what is desirable. Even in the case of having simple classification problems, 

the backpropagation algorithm requires the complete training dataset to be available 

many times through the learning process. This means that we are limited to testing small 

networks with only a few thousand trainable weights. As if the networks are getting 
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larger, the performance of the learning process will be too slow. Some problems of the 

real world are in this simple and small scale, but most of the tasks for which neural 

networks technology might be appropriate are much too large and complex to be handled 

by our current backpropagation algorithm. Actually this could be solved through running 

the learning process on faster computers or to implement the network elements directly in 

VLSI chips which stand for very large scale integration chips. It is a technology that 

refers to semiconductor chips that are engineered to accommodate a large number of 

transistors and can do much more. But the best solution would be combining a powerful 

and faster hardware and a more reliable learning algorithm that scale up to very large 

networks in order to tackle a much larger environment of possible classification 

problems. 

We have investigated how the MLP network has solved the XOR problem, but if 

our goal is to develop good learning algorithms for real-world pattern classification 

problems, the XOR problem is the wrong problem to concentrate on. Classification tasks 

take advantage of a learning network's ability to generalize from the input patterns it has 

seen during training to nearby patterns in the space of possible inputs. These kinds of 

networks must infrequently make precise distinctions between very similar input patterns, 

but this is the exception rather than the rule. The XOR problem, on the other hand, has 

exactly the opposite character: generalization is rarely implemented, since the nearest 

data samples of an input pattern belong to the opposite class label of the input pattern 

itself. 

Although they have some disadvantages, the MLP networks with backpropagation 

algorithm are considered one of the most powerful and efficient techniques to classify 
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data samples. So we can live with the slow process of learning in order to achieve the 

best accuracy desired in different applications. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

Final Conclusion 

We have seen through this thesis chapter how the three algorithms are varied 

greatly in performance and in types of classification problems that could be solved. Many 

factors could be investigated in order to select the most suitable techniques that would 

help greatly in achieving the task. As we have started the analysis in this thesis from the 

less scalable algorithm, namely the nearest neighbor, to the most scalable and efficient 

one, namely the multi-layer perceptron, it was clearly obvious how the distribution of the 

given data samples plays a great role in deciding which algorithm to use. For instance, if 

the training samples are clearly separable, the nearest neighbor technique may be the 

most efficient one to classify the new unknown samples. If the given problem is linearly 

separable the task is to classify the data into two classes only, the single- layer perceptron 

may be the best technique to achieve the required classification task. On the other hand, if 

the problem we face is complicated with mixed up data samples that could not be linearly 

separable task, the multi-layer perceptrons networks may be the most suitable technique 

to solve the problem. 

It is noticeable that in the previous paragraph we are using the words "may" and 

"could", this is because we can't guarantee that the choices here are the best effort done 

in this field. In classification domain, one can't guarantee any final results without testing 
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or even without the trial-and-error technique. In practical, everything should be tested 

before starting the classification process. Of course, we do not mean to discourage people 

who are interested in this field, but we introduce here some facts about one of the most 

evolving fields in computer sciences. All the analysis achieved in this thesis will -with no 

doubt- help the researchers and interested people in the classification field in selecting the 

most efficient technique to address any classification tasks. 

The nearest neighbor technique is a lazy learner as it needs to store all the training 

samples and does not build a classifier until a new unknown sample is available for 

classification. This technique is considered a slower classifier as it slows the speed of 

recognition, because it measures the distance between the unknown samples and all of the 

historically classified samples. Although the nearest neighbor technique is very slow, it is 

considered to be the most accurate classifier among the two other techniques introduced 

in this thesis. This is because it will result in at least one minimum distance between the 

new sample and the old samples. 

The single-layer perceptron is more efficient that the nearest neighbor technique. 

It is one of the classification algorithms that learn the weights of the neural network 

designed for achieving the classification task. Once the learning process is finished, there 

is no further need for storing the training data samples as the case in the nearest neighbor 

method. This fact has resulted in having a quicker algorithm that completes the learning 

process quickly and efficiently. In order to have good results, the training data samples 

should be linearly separable. In this case the convergence rate of the algorithm is 

increased to a satisfactory value. But if the training data samples are mixed up and not 

linearly separable, the perceptron algorithm won't be useful in solving the problems, as it 
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will not converge based on the desired rate. Most real life classification problems are not 

linearly separable, so that the single-layer perceptron is not the good choice for most of 

these problems. As a result, many studies and researches were continued in order to 

develop more scalable and efficient algorithms. 

The last Algorithm represented in this thesis is the multi-layer perceptrons with 

backpropagation algorithm. This technique has overcome many deficiencies that were 

faced in implementing the two other techniques. The multi-layer perceptron networks 

have the power to classify the non-linearly separable data samples. So, the MLP networks 

were developed to solve those critical and very complex classification problems. This 

fact was derived from an advanced geometric representation of the MLP: a maximum of 

two hidden layers could be used in any neural network application to achieve any 

complex task for classification. But in the case of having more complex problems, we can 

add new neurons or nodes to the hidden layers. The experiments introduced in this thesis 

prove these facts clearly. They also prove that the trial-and-error technique is one of the 

best techniques to achieve the desired results. The convergence rates achieved by the 

multi-layer perceptrons are more efficient and with some little efforts and trial, we can 

reach the rate we need. In general, the MLP networks are considered to be slower learner 

as it scales up poorly when the given classification problem becomes larger and more 

complex. Although the backpropagation algorithm is faster than the other learning 

algorithms introduced in this thesis, it is still much slower than what is desirable. Of 

course, the studies in this field are continued to find more efficient methods for 

classification. 
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Future Work 

The development of new learning algorithms is being a critical task nowadays. 

Many classification algorithms are being used in current studies. Some have gained big 

success and others have failed to achieve what is desirable. A more consistent way to 

develop a new approach in the classification field is to try to update some existing 

algorithms to reflect all the changes needed. So, the adaptive neural networks are 

considered a focal point for our future work. This new approach has been tackled in some 

previous studies but it still need some efforts to get a more efficient and scalable 

architecture. The adaptive architecture will be of a great benefit for the classification 

systems of medical analysis and GIS. This could be the start point of our future work. 

Another target would be investigating and analyzing the effect of the learning rate in the 

multi-layer perceptrons architecture, as determining the best learning rate would help 

extremely in improving the performance of the network. 

110 



REFERENCES 

Abdel Azim, H. (2004). Handouts and Lectures of Neural Networks at the Regional 
Information Technology Institute, Cairo, Egypt. 

Battiti, R. (1989). Accelerated Backpropagation Learning: Two Optimization Methods. 
Complex Systems 3, 331-342. 

Brank, J., Grobelnik, M., Mili6-Frayling, N., & Mladeni6, D. (2002). Feature Selection 
Using Linear Support Vector Machines. Technical Report MSR-TR-2002-63. 
Redmond, W A: Microsoft Research. ftp://ftp.research.microsoft.com!pub/tr/tr-
2002-63.pdf. 

Center for VisIOn Speech & Signal Processing (1996). Pattern Recognition and Neural 
Networks. Surrey, UK: University of Surrey. 
http://www.ee.surrey.ac. uklResearchlVSSP/report96/report/node 19 .html. 

Chen, Y.Q. (1995). Novel Techniques for Image Texture Classification. PhD Thesis, 
Department of Electronics and Computer Science, University of Southampton. 
http://citeseer.ist.psu.edu/chen95novel.html. 

Cover, T.M., & Hart, P.E. (1967). Nearest Neighbor Pattern Classification. IEEE 
Transactions on Information Theory IT-13(1), 21-27. 
http://yreka.stanford.edu/ -cover/papers/transIT /0021 cove. pdf. 

Dietterich, T. G., & Bakiri, G. (1991) Error-Correcting Output Codes: A General Method 
for Improving Multic1ass Inductive Learning Programs. Proceedings of the 
Ninth National Conference on Artificial Intelligence (AAAI-91), Anaheim, CA: 
AAAIPress. 

Dietterich, T. G., & Bakiri, G. (1994) Solving Multic1ass Learning Problems via Error­
Correcting Output Codes. ftp://ftp.cs.orst.edu/pub/tgd/papers/tr-ecoc.ps.gz 

Domeniconi, c., Peng, J., & Gunopulos, D. (2002). Locally Adaptive Metric Nearest­
Neighbor Classification. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 24(9),1281·1285. 
http://www.ise.gmu.edu/-carlotta/publications/pami.pdf. 

111 



Eaton, H., & Olivier, T. (1992). Learning Coefficient Dependence on Training Set Size, 
Neural Networks 5, 283-288. 

Fahlman, S.E. (1988). An Empirical Study of Learning Speeds in Backpropagation 
Networks. Technical Report CMU-Cs-88-162. Pittsburgh, PA: Carnegie Mellon 
University. 

Fanty, M., & Cole, R. (1991). Spoken letter recognition. In Lippman, R. P., Moody, J., 
& Touretzky, D. S. (Eds). Advances in Neural Information Processing Systems 3. 
San Mateo, CA: Morgan Kaufmann. 

Freund, Y., & Schapire, R.E. (1998). Large Margin Classification Using the Perceptron 
Algorithm. Computational Learning Theory, 209-217. 
http://citeseer.isLpsu.edu/freund98large.html. 

Fukumizu, K. (1996). Active Learning in Multilayer Perceptrons. Advances in Neural 
Information Processing Systems 8, 295-301. Cambridge, MA: MIT Press. 
http://citeseer.isLpsu.edu/fukumizu96active.html. 

Guyon, I., & Elisseeff, A (2003). An Introduction to Variable and Feature Selection. 
Journal of Machine Learning Research 3, 1157-1182. 
http://jmlr .csail.miLedu/papers/volume31 guyon03 aI guyon03a. pdf. 

Han, E., Karypis, G., & Kumar, V. (1999). Text Categorization Using Weight Adjusted 
k-Nearest Neighbor Classification. Technical Report TR 99-019. Minneapolis, 
MN: Department of Computer Science and Engineering, University of 
Minnesota. https:llwwws.cs.umn.edu/tech_reports_upload/tr 1999/99-019. pdf. 

Han, l, & Kamber, M. (2001). Data Mining: Concepts and Techniques. San Francisco, 
CA: Morgan Kaufmann Publishers. 

Hettich, S., & Blake, c.L., & Merz, C.J. (1998). UCI Repository of Machine Learning 
Databases. Irvine, CA: University of California, Department of Information and 
Computer Science. http://www .ics. uci.edul -mlearn/MLRepository .html 

Huang, S., hung, Y. (1991). Bounds on the Number of Hidden Neurons in Multilayer 
Perceptrons. IEEE Transactions on Neural Networks, 2(1), 47-55. 

Jacobs, R.A (1988). Increased Rates of Convergence Through Learning Rate Adaptation. 
Neural Networks 1, pp. 295-307. 

Jain, AK., Mao, J., & Mohiuddin, K.M. (1996). Artificial Neural Networks: A Tutorial. 
IEEE Computer 29(3), 31-44. http://citeseer.isLpsu.edu/jain96artificial.html. 

112 



Mashor, M.Y. (2000). Performance Comparison Between Back Propagation, PRE and 
MRPE Algorithms for Training MLP Networks. International Journal of the 
Computer, the Internet and Management (!JCIM) 8(3). 
http://www.journal.au.edu/ijciml2000/sepOO/mohd_yusoff.pdf. 

McAuley, D., Dennis, S. (1997, updated in 1999). The Backpropagation Network: 
Learning by Example. Connectionist Models of Cognition. 
http://www.itee.uq.edu.au/-cogs2010/cmc/chapters/BackProp. 

Michie, D., Spiege1halter, D., & Taylor, C. (Eds). (1994). Machine Learning, Neural, and 
Statistical Classification. New York: Ellis Horwood. 
http://www.amsta.leeds.ac.ukl-charles/statlog. 

Minsky, M., & Papert, S. (1969). Perceptrons: An Introduction to Computational 
Geometry. Cambridge, MA: MIT Press. 

Mirchandani, G., & Cao, W. (1989). On Hidden Nodes for Neural Networks. IEEE 
Transactions on Circuits and Systems 36(5), 661-664. 

Moody, J. (1994). Prediction Risk and Architecture Selection for Neural Networks. From 
Statistics to Neural Networks: Theory and Pattern Recognition Applications, 
147 -165. Berlin: Springer-Verlag, NATO ASI Series F. 
http://citeseer.isLpsu.edu/moody94prediction.html. 

Murray, A.F., & Edwards, PJ. (1993). Synaptic Weight Noise During MLP Learning 
Enhances Fault-Tolerance, Generalisation and Learning Trajectory. Advances in 
Neural Information Processing Systems 5, 491-498. San Meteo, CA: Morgan 
Kaufmann. http://citeseer.ist.psu.edu/murray93synaptic.html. 

Plagianakos, V.P., Magoulas, G.D., & Varhatis, M.N. (2001). Learning Rate Adaption in 
Stochastic Gradient Descent. Advances in convex analysis and global 
optimization 54,433-444. Dordrecht, The Netherlands: Kluwer Academic 
Publishers. 

Pollack, J.B. Book Review: Marvin L. Minsky and Seymour A. Papert. Perceptrons: An 
Introduction to Computational Geometry. http://citeseer.ist.psu.edu129184.html. 

Reisinger, J., Stanley, L.a., & Miikkulainen, R. (2004). Evolving Reusable Neural 
Models. Proceedings of the Genetic and Evolutionary Computation Conference 
(GECCo-2004). New York, NY: Springer-Verlag. 
http;llnn.cs.utexas .edul downloads/papers/reisinger.gecco04. pdf 

Riedmiller, M. (1994). Advanced Supervised Learning in Multi-layer Perceptrons - From 
Backpropagation to Adaptive Learning Algorithms. International Journal of 
Computer Standards and Interfaces 16,265-278. 
http://citeseer.ist.psu.edulriedmiller94advanced.html. 

113 



Rummelhart, D.E., McClelland, lL., & the PDP Group (Ed.) (1986). Parallel Distributed 
Processing: Explorations in the Microstructure of Cognition. Cambridge, MA: 
MIT Press. 

Sarle, W.S. (1994). Neural Networks and Statistical Models. Proceedings of the 
Nineteenth Annual SAS Users Group International Conference, 1538--1550. 
Cary, NC: SAS Institute. http://citeseer.ist.psu.edu/sarle94neural.html. 

Schiffmann, W., Joost, M., & Werner, R. (1992). Synthesis and Performance Analysis of 
Multilayer Neural Network Architecture. Technical report 1611992. 
http://ci teseer.ist. psu.eduI78140.html. 

Sheng, M.A., & Chuanyi, J.1. (1999). Performance and Efficiency: Recent Advances in 
Supervised Learning. Proceedings of the IEEE 87(9),1519-1535. 
http://users.ece.gatech.edu/ -j ic/procieee99. pdf. 

Singh, S., Haddon, J., & Markou, M. (1999). Nearest Neighbor Strategies for Image 
Understanding. Proceedings of Workshop on Advanced Concepts for Intelligent 
Vision, Systems (ACIVS'99). Baden-Baden. 
http://www.dcs.ex.ac.uklresearch/pann/pdf/pann_SS_004.pdf. 

Salzberg, S.L. (1997). Methodological Note On Comparing Classifiers: Pitfalls to Avoid 
and a Recommended Approach. Data Mining and Know ledge Discovery 1, 317-
328. Boston, MA: Kluwer Academic Publishers. 
http://www .cogsci. ucsd.edu/ -rik/ courses/cogs200-w05/readings/salz berg97 -
compClassif. pdf 

Vogl, T.P., Mangis, J.K., Rigler, 1.K., Zink, W.t., & Alkon, D.L (1988). Accelerating the 
Convergence of the Back-propagation Method, Biological Cybernetics 59, 257-
263. 

Wang, J., & Gasser, L. (2002). Mutual Online Concept Learning for Multiple Agents. 
Proceedings of the First International 10int Conference on Autonomous Agents 
and Multiagent Systems - Bologna, Italy -,362-369. New York, NY: ACM 
Press. http://www .isrl. uiuc.edu/ - gasser/papers/wang02aamas. pdf. 

Weiss, S.M., & Kulikowski, c.A. (1991). Computer systems that learn: Classification 
and Prediction Methods from Statistics, Neural Nets, Machine Learning, and 
Expert Systems. San Mateo, CA: Morgan Kaufmann. 

114 



APPENDICES 

A. Dataset of the Nearest Neighbor Practical Experiment 

B. MATLAB Code for the Nearest Neighbor Classifiers 

C. Case Study for the Perceptron Learning Algorithms 

D. Dataset of the Practical Experiment for Perceptron Learning Algorithms 

E. MATLAB Code of the Practical Experiment for Perceptron Learning Algorithms 

F. Case Study for the Multi-Layer Perceptron 

G. Training Dataset of the Practical Experiment for the Multi-Layer Perceptron 

H. Testing Dataset of the Practical Experiment for the Multi-Layer Perceptron 

I MATLAB Code of the Practical Experiment for the Multi-Layer Perceptron 

115 



Appendix A 

Dataset of the Nearest Neighbor Practical Experiment 

Weight Height Class 
35.25 135.97 1 
36.35 142.53 1 
43.36 149.54 1 
40.33 147.79 1 
43.22 135.81 1 
49.64 130.06 1 
38.2 145.9 1 
30.04 139.71 1 
35.5 143.17 1 
31.71 136.09 1 
43.29 130.01 1 
43.34 135.22 1 
36.88 133.62 1 
30.7 142.08 1 
42.7 132.15 1 
39.35 130.02 1 
49.36 149.09 1 
33.9 143.18 1 
37.45 140.61 1 
34.34 132.83 1 
47.47 139.67 1 
45.96 138.64 1 
38.54 130.64 1 
43.61 136.76 1 
35.3 130.37 1 
40.1 148.39 1 
37.3 140.88 1 
32.68 149.21 1 
59.07 193.23 2 
47.37 202.2 2 
48.04 186.55 2 
56.41 193.26 2 
55.53 186.06 2 
41.99 187.28 2 
53.15 186.06 2 
49.13 185.06 2 
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57.35 201.02 2 
53.09 189.14 2 
51.61 194.54 2 
43.97 195.77 2 
59.8 191.32 2 
42.87 193.27 2 

53 195.8 2 
50.97 187.14 2 
46.29 196.51 2 
45.43 190.74 2 
58.31 196.31 2 
47.96 202.55 2 
49.85 199.49 2 
43.99 189.58 2 
41.37 190.26 2 
55.86 198.99 2 
45.73 203.67 2 
47.88 197.35 2 
49.44 201.88 2 
42.4 195.11 2 
86.94 175.46 3 
91.6 196.04 3 
89.45 178.55 3 
95.25 189.37 3 
95.05 199.16 3 
92.48 188.51 3 
92.09 191.11 3 
102.43 186.74 3 
92.07 198.83 3 
97.18 199.33 3 
104.95 188.5 3 
93.42 184.43 3 
102.98 190.57 3 
97.14 185.59 3 
94.75 189.83 3 
96.08 181.77 3 
88.65 177.74 3 
95.52 197.38 3 
85.37 191.49 3 
95.32 193.05 3 
94.86 197 3 
85.95 176.46 3 
102.16 196.8 3 
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103.71 188.74 3 
104.96 182.69 3 
92.47 178.95 3 
95.52 198.41 3 
103.83 182.51 3 
99.04 152.61 4 
103.59 158.09 4 
99.11 142.85 4 
108.52 160 4 
114.04 157.3 4 
107.37 146.87 4 
98.29 157.49 4 
109.28 147.91 4 
100.46 140.44 4 
114.98 153.15 4 
111.6 142.43 4 
112.36 150.21 4 
97.44 151.3 4 
112.63 152.91 4 
110.74 153.16 4 
111.12 156.15 4 
114.62 145.76 4 
110.01 158.22 4 
98.41 140.17 4 
112.32 153.13 4 
112.91 152.06 4 
111.31 142.46 4 
99.97 159.65 4 
101.53 154.57 4 
i 10.69 143.89 4 
109.68 146.64 4 
95.19 145.15 4 
98.27 149.07 4 
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Appendix B 

MATLAB Code for the Nearest Neighbor Classifiers 

% This code illustrates the Nearest Neighbor Classification Technique 

% Class 1: Jockey 
% Class 2: Basket Ball 
% Class 3: Rugby 
% Class 4: Judo 

function [minDistance, classLabel] = NearesCNeighbocClassifier(dataset,unknown) 

count = 1; 
new Value = 0; 
minDistance = 0; 
dataSize = size(dataset); 

for i = 1 : length( dataset) 

for j = 1 : dataSize(2) 

if j < dataSize(2) 

% I check the value of j, in case that the computed 

end 

% weight is O. In this case it should compute the height 
% and not to compute again the weight. 

if newValue == 0 & j == 1 

newValue = abs(unknown(1) - dataset(i,j)); 

else 

newValue = newValue + abs(unknown(2) - dataset(i,j)); 

end 

end 
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end 

% Getting the lowest value and the class label 

if minDistance == 0 
minDistance = newValue; 
classLabel = dataset(i,j); 

end 

if minDis tance < new V al ue 
minDistance = minDistance; 
classLabel = class Label ; 

else 

end 

minDistance = newValue; 
classLabel = dataset(i,j); 

new Value = 0; 
count = count + 1; 

MATIAB Code 1 - Nearest Neighbor Classifier 

In order to run the code in the MATLAB environment we need to follow the 

following steps: 

• 

• 

• 

• 

• 

Copy the code 

Open MATLAB and create a new m file in the same folder that contains the 

dataset file "SPlayers. txt" 

Paste the code in the new created m file 

Save the m file and name it "NearesCNeighbocClassifier.m" 

In the workspace of MATLAB type the following: 

dataFile = load(' SPlayers. txt'); 

unknownS ample = [70175]; 

[minDistance classLabel] = Nearest_NeighbocClassifier (dataFile, 
unknownS ample ) 

• Change the values of the unknown sample and run the code again 
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Appendix C 

Case Study for the Perceptron Learning Algorithm 

Initial weights: 

y=mx+c 
y =1.5x + 0 
Y -1.5x = 0 

f(~) = f(Xl,x2) = W1Xl + W2X2 + wo 

wO=O 

wI = - 1.5 

w2= 1 

jJ = 0.2 

First Iteration: 

Sample 1: 
Ya = g(f) = g(wO + wlx l + w2x2) 
Ya=g(0+(-1.5)x 1 +(1 x 2)) 
Ya = g(0.5) = +1 
Yd=+l 
8=Yd-Ya=0 

Sample 2: 
Ya = g(f) = g(wO + wlx l + w2x2) 

Ya = g(O + (-1.5) x (-1) + (1 x 2)) 
Ya = g(3.5) = +1 
Yd=-1 
8 = Yd - Ya = (-1) - (+1) =-2 
11wl =jJ8xl =0.2(-2)-1 =0.4 

11 w2 = jJ 8 x2 = 0.2 (-2) 2 = - 0.8 

11 wo = jJ 8 = 0.2 (-2) = - 0.4 

(wl)new = (wl)old + 11 wI = - 1.5 + 0.4 = - 1.1 

(w2)new = (w2)old + 11 w2 = 1 + (-0.8) = 0.2 

(wO)new = (wO)old + 11 wo = 0 + (-0.4) = - 0.4 
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Sample 3: 

Ya = g(f) = g(wO + wl x l + w2x2) 

Ya = g((-O.4) + (-1.1) x (0) + (0.2 x -1» 
Ya = g(-0.6) =-1 
Yd =-1 
8=Yd-Ya=0 

Second Iteration: 

Sample 1: 
Ya = g(f) = g(wO + wlx l + w2x2) 

Ya = g((-O.4) + (-1.1) x (1) + (0.2 x 2» 
Ya = g( -1.1) = -1 
Yd=+l 
8 = Yd - Ya = (+1) - (-1) = 2 
!:l wI = f3 0 xl = 0.2 (2) 1 = 0.4 

!:l w2 = f3 8 x2 = 0.2 (2) 2 = 0.8 

!:l wo = f3 0 = 0.2 (2) = 0.4 

(wI)new = (wl)old + !:l wI = - 1.1 + 0.4 = - 0.7 

(w2)new = (w2)old + !:l w2 = 0.2 + 0.8 = 1 

(wO)new = (wO)old + !J. wo = -0.4 + (0.4) = 0 

Sample 2: 
Ya = g(f) = g(wO + wI x l + w2x2) 

Ya = g(O + (-0.7) x (-1) + (1 x 2» 
Ya = g(2.7) = +1 
Yd =-1 
8 = Y d - Ya = (-1) - (+ 1) = -2 
!J. WI = fJ 8 Xl = 0.2 (-2) -1 = 0.4 

!J. W2 = f3 8 x2 = 0.2 (-2) 2 = -0.8 

!J. wo = fJ 8 = 0.2 (-2) = - 0.4 

(wUnew = (wl)old +!J. WI = - 0.7 + 0.4 = 1.1 

(w2)new = (w2)old + !J. w2 = 1 + (-0.8) = 0.2 

(wO)new = (wO)old +!J. wo = 0 + (-0.4) = - 0.4 

Sample 3: 
Ya = g(f) = g(wO + wl x l + w2x2) 

Ya = g( ( -0.4) + (1.1) x (0) + (0.2 x -1» 
Ya=g(-0.6) =-1 
Yd= -1 
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b=Yd-Ya=O 

Appendix D 

Dataset of the Practical Experiment for Perceptron Learning Algorithm 

Weight Height Class 
35.25 135.97 -1 
36.35 142.53 -1 
43.36 149.54 -1 
40.33 147.79 -1 
43.22 135.81 -1 
49.64 130.06 -1 
38.20 145.9 -1 
30.04 139.71 -1 
35.50 143.17 -1 
31.71 136.09 -1 
43.29 l30.01 -1 
43.34 135.22 -1 
36.88 l33.62 -1 
30.70 142.08 -1 
42.70 l32.15 -1 
39.35 130.02 -1 
49.36 149.09 -1 
33.90 143.18 -1 
37.45 140.61 -1 
34.34 l32.83 -1 
47.47 l39.67 -1 
45.96 l38.64 -1 
38.54 130.64 -1 
43.61 l36.76 ··1 
35.30 l30.37 -1 
40.10 148.39 -1 
37.30 140.88 -1 
32.68 149.21 -1 
86.94 175.46 1 
91.60 196.04 1 
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89.45 178.55 1 
95.25 189.37 1 
95.05 199.16 1 
92.48 188.51 1 
92.09 191.11 1 
102.43 186.74 1 
92.07 198.83 1 
97.18 199.33 1 
104.95 188.5 1 
93.42 184.43 1 
102.98 190.57 1 
97.14 185.59 1 

94.75 189.83 1 
96.08 181.77 1 
88.65 177.74 1 
95.52 197.38 1 
85.37 191.49 1 
95.32 193.05 1 
94.86 197 1 
85.95 176.46 1 
102.16 196.8 1 
103.71 188.74 1 
104.96 182.69 1 
92.47 178.95 1 
95.52 198.41 1 
103.83 182.51 1 
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Appendix E 

MATLAB Code of the Practical Experiment for Perceptron Learning Algorithm 

%This code illustrates the Perceptron Learning Algorithm 

% Class 1: Jockey, Desired Output is -1 
% Class 2: Rugby, Desired Output is + 1 

load SportsPlayers_Perceptron.txt; % Loading the dataset 
[n m] = size(SportsPlayers_Perceptron); 
Features = SportsPlayers_Perceptron (:,1 :2); 
Vlabels = SportsPlayers_Perceptron (:,3); 
j = 0; 

fori=l:n 
if Vlabels(i) == 1 

j = j+ 1; 
RugbyU,:) = Features(i,:); 

else 
Jockeys(i,:) = Features(i,:); 

end; 
end; 

itermax=500; 

% Initializing the weights and the learning rate (beta) randomly 
wo = rand; 
wI = rand; 
w2 = rand; 
SumDelta = 1; 
iter = 0; 
beta = 0.3; 

% Plotting the data samples on a scatter diagram 
axis([O 200 0 250]); 
hold on; 

x = Rugby(:,l); 
Y = Rugby(:,2); 
plot(X,Y,'rx:'); 

x = Jockeys(:,I); 
Y = Jockeys(:,2); 
plot(X,Y,'bo:'); 
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% Starting the Perceptron Algorithm 
while SumDelta -= 0 & iter < itermax 

iter =iter + I; 
SumDelta=O; 

for i=l:n 
xl = Features(i,l); 
x2 = Features(i,2); 
f = wo + wI * xl + w2 * x2; 
yactual = hardlims(f); 
ydesired = Vlabels(i); 
delta = ydesired - yactual; 
SumDelta = abs(SumDelta) + abs(delta); 

if (delta -= 0) 
dwo = beta * delta * I ; 
dwl = beta * delta * xl; 
dw2 = beta * delta * x2; 

wo = wo +dwo; 
wI =wl +dwl; 
w2=w2+dw2; 

end; 
end; 

end; 

%Plotting the perceptron 
cx2 = -wo / w2;% Part cut from x2 axis 
cxl = -wo / wl;% Part cut from xl axis 
cxlup = -Cwo + w2 * 250) / wl;% Cutting Upper axis 
cx2rt = -Cwo + wI * 200) / w2;% Cutting Upper axis 
line([cxl cxlupJ,[O 250]); 

In order to run the code in the MATLAB environment we need to follow the 

following steps: 

• Copy the code 

• Open MA TLAB and create a new m file in the same folder that contains the 

dataset file "SportsPlayers_Perceptron. txt" 

• Paste the code in the new created m file 
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• Save the m file and name it "Sports_Players_Perceptron.m" 

• Run the code using F5 button 

Appendix F 

Case Study for the Multi-Layer Perceptron 

Calculating the input into the first hidden node (Z 1) in the hidden layer. This input 

represents the output of the first input node in the input layer: 

YHI = g(f) = g(wO + wlx l + w2x2) 
YHI = g(O + (1 x 1) + (-1 x 0.5)) 

YHI = g(1 - 0.5) = 0.5 

YHI = g(0.5) = 111 + e-0.5 = 0.622 

Calculating the input into the second hidden node (Z2) in the hidden layer. This input 

represents the output of the second input node in the input layer: 

YH2 = g(f) = g(wO + wlxl + w2x2) 
YH2 = g(-1.5 + (0.5 x 1) + (0.5 x -0.5)) 

YH2 = g(-l.5 + 0.5 - 0.25) = -1.25 

YH2 = g(-l.25) = 111 + el.25 = 0.223 

Calculating the actual output for the first output node in the output layer: 

Yal = g(f) = g(wO + wlxl + w2x2) 

Yal = g(O + (2 x 0.622) + (l x 0.223)) 

Yal = g( 1.244 + 0.223) = 1.467 

Yal = g(l.467) = 111 + e-l.467 = 0.813 

Yl = 0.8 

Calculating the error at the first output node: 

81 = Yl - Ya l = 0.8 - 0.813 = - 0.013 

Calculating the actual output for the second output node in the output layer: 

Ya2 = g(f) = g(wO + wlxl + w2x2) 
Ya2 = g( -0.5 + (1.5 x 0.622) + (-1 x 0.223)) 

Ya2 = g( -0.5 + 0.933 - 0.223) = 0.21 
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Ya2 = g(0.21) = 111 + e-0.21 = 0.552 

Y2 = 0.2 

Calculating the error at the second output node: 

82 = Y2 - Ya2 = 0.2 - 0.552= - 0.352 

Applying the delta rule to compute the new weights for the first output node: 

1'1 Wll = 0.3 x - 0.013 x (0.813 x (1 - 0.813)) x 0.622 
1'1 Wi1 = - 0.000369 

(WIl)new = Wll +!1 WIl 

(Wll )new = 2 - 0.000369 

(Wll)new = 1.99 

1'1 W21 = 0.3 x - 0.013 x (0.813 x (1 - 0.813)) x 0.223 
1'1 W21 = - 0.00582 

(W21 )new = W21 + !1 W21 

(W21)new = 1 - 0.00582 

(W21)new = 0.000132 

Applying the delta rule to compute the new weights for the second output node: 

1'1 W12 = 0.3 x - 0.352 x (0.552 x (1 - 0.552)) x 0.622 
1'1 W12 = - 0.0162 

(W12)new = Wi2 + 1'1 W12 

(W12)new = 1.5 - 0.0162 

(W12)new = 1.48 

1'1 W22 = 0.3 x - 0.352 x (0.552 x (l - 0.552)) x 0.223 
1'1 W22 = -0.00582 

(W22)new = W22 + 1'1 W22 

(Wn)new = -1 - 0.00582 

(W22)new = - 1.00582 
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Now I compute the backpropagated error at the first hidden node: 

63 = ((WJl)new x 61) + ((WJ2)new x 62) 

63 = (1.99 x - 0.013) + (l.48 x - 0.352) 

63 = -0.02587 + (- 0.52096) 

63 = -0.547 

Now I compute the backpropagated error at the second hidden node: 

64 = ((W21)new x 61) + ((W22)new x 62) 

64 = (0.000132 x - 0.013) + (- 1.00582 x - 0.352) 

64 = -0.0000017 + 0.354 

64 = -0.354 

Applying the delta rule to compute the new weights for the first hidden node: 

!1 Vll = 0.3 x - 0.547 x (0.622 x (1 - 0.622)) x 1 
!1 VlJ = -0.0386 

(Vll )new = Vll +!1 Vu 

(Vll)new = 1 - 0.0386 

(Vn)new = 0.961 

!1 V21 = 0.3 x - 0.547 x (0.622 x (1 - 0.622)) x 0.5 
!1 V21 = -0.0193 

(V21 )new = V21 + !1 V21 

(V21 )new=-1-0.0193 

(V21 )new = - 1.019 

Applying the delta rule to compute the new weights for the second hidden node: 

!1 VJ2 = 0.3 x - 0.354 x (0.223 x (1 - 0.223)) x 1 
!1 VJ2 = - 0.0184 

(VJ2)new = V12 + !1 V12 

(VnJnew = 0.5 - 0.0184 

(VnJnew = 0.482 
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!1 V22 = 0.3 x - 0.354 x (0. 223 x (1 - 0.223» x 0.5 
!1 V22 = -0.0092 

(V22)new = V22 + !1 V22 

(V22)new = -0.5 - 0.0092 

(V22)new = -0.509 
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Appendix G 

Training Dataset of the Practical Experiment for the Multi-Layer Perceptron 

Price CityMPG High Way # Cylinders Engine Size Horse Power RP.M atmaxHP Revs! min Fuel Tank Passenger Length Width Wheel Base Weight Class 
MPG Capacity Capacity 

0.3916 0.69985 0.63514 0.40391 0.33929 0.24264 0.66714 0.75103 0.45737 0.56548 0.52958 0.54312 0.54312 0.22706 I 

0.11571 0.20679 0.18767 0.11934 0.10025 0.071693 0.19712 0.22191 0.13514 0.16708 0.15647 0.16048 0.16048 0.06709 I 

0.10719 0.37047 0.33621 0.21381 0.1796 0.12844 0.35315 0.39756 0.24211 0.29934 0.28033 0.2875 0.2875 0.1202 1 

-0.026552 -0.047452 -0.043065 -0.027387 -0.023005 -0.016452 -0.045234 -0.050922 -0.031011 -0.03&341 -0.035907 -0.036&25 -0.036825 -0.015396 I 

0.67399 1.2045 1.0931 0.69518 0.5&395 0.41761 1.1482 1.2926 0.78719 0.97325 0.91146 0.93476 0.93476 0.3908 I 

-0.59179 -1.0576 -0.95983 -0.6\04 -0.51273 -0.3666& -1.0082 -1.135 -0.69119 -0.85456 -0.8003 -0.&2076 -0.&2076 -0.34314 I 

-0.058724 -0.10495 -0.095244 -0.06057 -0.050879 -0.036386 -0.10004 -0.11262 -0.068587 -0.084798 -0.079414 -0.081445 -0.081445 -0.03405 I 

0.0091106 0.016282 0.014777 0.0093971 0.0078936 0.0056451 0.015521 0.017473 0.010641 0.013156 0.012321 0.012636 0.012636 0.0052826 I ....... 
W -0.062844 -0.11231 -0.10193 -0.06482 -0.054449 -0.038939 -0.10706 -0.12053 -0.0734 -0.090749 -0.084987 -0.08716 -0.08716 -0.036439 I 
>-' 

-0.25457 -0.45496 -0.41289 -0.26258 -0.22057 -0.15774 -0.4337 -0.48823 -0.29733 -0.36761 -0.34427 -0.35307 -0.35307 -0.14761 I 

0.040502 0.072384 0.065691 0.041776 0.035092 0.025096 0.069 0.077677 0.047305 0.058486 0.054773 0.056173 0.056173 0.023484 1 

0.66969 1.1968 1.0862 0.69074 0.58023 0.41495 1.1409 1.2844 0.78217 0.96704 0.90564 0.9288 0.9288 0.3883 I 

·0.0259 -0.046288 -0.042008 -0.026715 -0.02244 -0.016048 -0.044124 -0.049672 -0.03025 -0.0374 -0.035026 -0.035921 -0.035921 -0.015018 I 

0.28588 0.51091 0.46367 0.294&7 0.24769 0.17713 0.48703 0.54827 0.33389 0.41282 0.3866 0.39649 0.39649 0.16576 I 

0.67082 11989 1.088 0.69192 0.58121 0.41565 1.1428 1.2865 0.7835 0.96869 0.90718 0.93038 0.93038 0.38897 1 

0.64831 1.1586 1.0515 0.6687 0.5617 0.4017 1.1045 1.2434 0.7572 0.93617 0.87674 0.89915 0.89915 0.37591 I 

0.66679 1.1917 1.0815 0.68776 0.57772 0.41315 1.136 1.2788 0.77878 0.96286 0.90173 0.92478 0.92478 0.38662 I 

0.62647 1.1196 1.0161 0.64618 0.54279 0.38817 1.0673 1.2015 0.7317 0.90465 0.84721 0.86887 0.86887 0.36325 I 

0.50722 0.90649 0.82267 0.52317 0.43947 0.31428 0.86412 0.97278 0.59242 0.73244 0.68594 0.70348 0.70348 0.2941 I 

0.47448 0.84798 0.76957 0.48941 0.4111 0.294 0.80834 0.90999 0.55418 0.68517 0.64167 0.65807 0.65807 0.27512 I 

0.57888 1.0346 0.9389 0.59709 0.50155 0.35868 0.9862 1.I102 0.67611 0.83592 0.78285 0.80286 0.80286 0.33565 I 

0.49645 0.88723 0.8052 0.51206 0.43013 0.30761 0.84576 0.95211 0.57983 0.71689 0.67137 0.68853 0.68853 0.28786 I 

0.57109 1.0206 0.92625 0.58904 0.4948 0.35385 0.97292 1.0953 0.66701 0.82466 0.7723 0.79205 0.79205 0.33113 1 

-0.49992 -0.89344 -0.81083 -0.51564 -0.43314 -0.30976 -0.85168 -0.95877 -0.58389 -0.7219 -0.67606 -0.69335 -0.69335 -0.28987 1 

0.079448 0.14199 0.12886 0.081947 0.06&835 0.049227 0.13535 0.15237 0.092793 0.11473 0.10744 0.11019 0.11019 0.046067 1 
--_ .. - . 



....... 
W 
N 

Price 

-0.014161 

0.2609 

0_6353 

0.65519 

0.6743 

0.56522 

0.68421 

0.68988 

0.62289 

-0.24417 

0.39849 

0.46877 

'0.10835 

0.64011 

-0.011147 

0.69098 

0.0053047 

0.64419 

0.24867 

0.58564 

0.2194 

0.67033 

0.58154 

0.50451 

0.39913 

0.92642 

1.4117 

1.3577 

1.4395 

0.66498 

0.80417 

CityMPG 

-0.025308 

0.46627 

1.1354 

1.1709 

1.2051 

1.0101 

1.2228 

1.2329 

1.1132 

-0.43637 

0.71217 

0.83776 

0.19364 

1.144 

-0.019921 

1.2349 

0.0094803 

1.1513 

0.44441 

1.0466 

0.39209 

1.198 

1.0393 

0.90164 

0.71331 

0.55912 

0.85201 

0.81941 

0.86876 

0.40133 

0.48534 

High Way 
MPG 
-0.022968 

0.42316 

1.0304 

1.0627 

1.0937 

0.91673 

1.l097 

1.1189 

1.0103 

-0.39602 

0.64632 

0.7603 

0.17573 

1.0382 

-0.018079 

1.1207 

OJlO86037 

1.0448 

0.40332 

0.94985 

0.35584 

1.0872 

0.9432 

0.81827 

0.64735 

0.56834 

0.86608 

0.83294 

0.8831 

0.40795 

0.49335 

# Cylinders Engine Size Horse Power RPM at max HP 

-0.014606 -0.012269 -0.0087743 -0.024125 

0.26911 0.22605 0.16166 0.44448 

0.65527 0.55043 0.39364 1.0823 

0.67579 0.56767 0.40596 1.1162 

0.69551 0.58423 0.41781 1.1488 

0.58299 0.48971 0.35022 0.~~292 

0.70573 0.59281 0.42395 1.1656 

0.71157 0.59772 0.42746 1.1753 

0.64248 0.53968 0.38595 1.0612 

-0.25185 -0.21155 -0.15129 -0.41597 

0.41102 0.34526 0.24691 0.67888 

0.48351 0.40615 0.29045 0.7986 

0.11176 0.093876 0.067135 0.18459 

0.66024 0.5546 0.39662 1.0905 

-0.011497 -0.0096578 -0.0069067 -0.01899 

0.71271 0.59867 0.42814 1.1772 

0.0054715 0.0045961 0.0032869 0.0090372 

0.66444 0.55813 0.39915 1.0975 

0.25649 0.21545 0.15408 0.42364 

0.60405 0.5074 0.36287 0.9977 

0.22629 0.19009 0.13594 0.37377 

~69141 0.58078 0.41534 1.142 

0.59982 0.50385 0.36033 0.99072 

0.52037 0.43711 0.3126 0.85949 

0.41168 0.34581 0.24731 0.67997 

0.67227 0.66928 0.39676 0.64625 

1.0244 1.0199 0.60461 0.9848 

0.98524 0.98087 0.58148 0.94711 

1.0446 1.0399 0.61649 1.0042 

0.48255 0.48041 0.28479 0.46388 

0.58356 0.58097 0.34441 0.56098 

Revsl min Fuel Tank Passenger Length Width Wheel Base Weight Class 
Capacity Capacity 

-0.027158 -0.016539 -0.020449 -0.01915 -0.01964 -0.01964 -0.008211 I 

0.50037 0.30472 0.37675 0.35283 0.36185 0.36185 0.15128 I 

1.2184 0.742 0.91738 0.85914 0.8811 0.8811 0.36837 I 

1.2566 0.76524 0.94611 0.88604 0.90869 0.90869 0.3799 I 

1.2932 0.78756 0.97371 0.91189 0.9352 0.9352 0.39098 I 

1.084 0.66015 0.81619 0.76436 0.78391 0.78391 0.32773 I 

1.3122 0.79914 0.98802 0.92529 0.94895 0.94895 0.39673 I 

1.3231 0.80575 0.9962 0.93295 0.95681 0.95681 0.40001 I 

L1946 0.72751 0.89947 0.84236 0.8639 0.8639 0.36117 I 

-0.46828 -0.28518 -0.35258 -0.3302 -0.33864 -0.33864 -0.14158 I 

0.76424 0.46542 0.57543 0.5389 0.55267 0.55267 0.23106 I 

0.89902 0.5475 0.67691 0.63393 0.65014 0.65014 0.27181 I 

0.2078 0.12655 0.15646 0.14653 0.15027 0.15027 0.062825 I 

1.2276 0.74762 0.92434 0.86565 0.88778 0.88778 0.37116 i 

-0.021378 -0.013019 -0.016096 -0.015074 -0.01546 -0.01546 -0.0064633 1 

1.3252 0.80704 0.99779 0.93444 0.95833 0.95833 0.40065 1 

0.010174 0.0061957 0.0076601 0.0071737 0.0073572 0.0073572 0.0030758 1 

1.2355 0.75239 0.93022 0.87116 0.89343 0.89343 0.37352 I 

0.47691 0.29043 0.35908 0.33628 0.34488 0.34488 0.14419 1 

1.1232 0.684 0.84567 0.79198 0.81223 0.81223 0.33957 I 

0.42077 0.25625 0.31681 0.2967 0.30428 0.30428 0.12721 1 

1.2856 0.78292 0.96797 0.90651 0.92969 0.92969 0.38868 I 

1.1153 0.67921 0.83975 0.78644 0.80654 0.80654 0.33719 I 

0.96757 0.58925 0.72852 0.68227 0.69971 0.69971 0.29253 I 

0.76547 0.46617 0.57635 0.53976 0.55356 0.55356 0.23143 I 

0.6733 0.69204 0.62745 0.64737 0.67944 0.62922 0.3591 2 

1.026 1.0546 0.95615 0.9865 1.0354 0.95885 0.54721 2 

0.98675 1.0142 0.91956 0.94875 0.99576 0.92216 0.52627 2 

1.0462 1.0753 0.97494 1.0059 1.0557 0.9777 0.55797 2 

0.48329 0.49674 0.45038 0.46468 0.4877 0.45165 0.25776 2 

0.58445 0.60072 0.54466 0.56195 0.58979 0.54619 0.31171 2 



..... 
w 
w 

Price 

D.25575 

1.07 

1.2494 

1.4546 

1.2418 

0.80618 

1.2016 

-0.53302 

1.2201 

IA59 

1.1399 

·1.0416 

!-0.23134 

1.2676 

0.57697 

0.29665 

1.3165 

-0.53897 

0.67932 

1.2995 

1.4457 

0.64399 

1.3048 

1.4673 

1.3219 

-0.70911 

0.95103 

0.14922 

0.62116 

0.54881 

1.0717 

CityMPG 

0.15435 

0.64579 

0.75402 

0.87791 

0.74946 

0.48655 

0.72521 

-0.32169 

0.73639 

0.88056 

0.68793 

0.62862 

-0.13962 

0.76505 

0.34821 

0.17903 

0.79455 

-0.32528 

0.40998 

0.78425 

0.87253 

0.38866 

0.78748 

0.88556 

0.79781 

-0.42796 

0.57397 

0.090058 

0.37489 

0.33122 

0.6468 

High Way 
MPG 
0.1569 

0.65645 

0.76647 

0.8924 

0.76183 

0.49458 

0.73718 

-0.327 

0.74854 

0.89509 

0.69928 

0.63899 

-0.14193 

0.77767 

0.35396 

0.18199 

0.80766 

-0.33065 

0.41675 

0.79719 

0.88693 

0.39508 

0.80048 

0.90018 

0.81098 

-0.43503 

0.58344 

0.091544 

0.38107 

0.33669 

0.65747 

# Cylinders Engine Size Horse Power RPM at max HP 

0.18559 0.18476 0.10953 0.17841 

0.77649 0.77304 0.45827 0.74644 

0.90662 0.90259 0.53507 0.87154 

1.0556 1.0509 0.62299 1.0147 

0.90114 0.89713 0.53184 0.86626 

0.58501 0.58241 0.34527 0.5.6237 

0.87198 0.86811 0.51463 0.83824 

-0.38679 -0.38507 -0.22828 -0.37182 

0.88542 0.88148 0.52256 0.85115 

1.0588 1.0541 0.62487 1.0178 

0.82715 0.82348 0.48817 0.79514 

0.75584 0.75248 0.44608 0.72658 

-0.16788 -0.16713 -0.099079 -0.16138 

0.91988 0.91579 0.5429 0.88428 

0.41868 0.41682 0.2471 0.40248 

0.21526 0.21431 0.12705 0.20693 

0.95535 0.9511 0.56383 0.91837 

-0.39111 -0.38937 -0.23083 -0.37597 

0.49296 0.49077 0.29094 0.47388 

0.94297 0.93878 0.55652 0.90647 

1.0491 1.0445 0.61917 1.0085 

0.46732 0.46524 0.2758 0.44923 

0.94685 0.94264 0.55882 0.91021 

l.0648 1.06 0.62842 1.0236 

0.95927 0.95501 0.56615 0.92214 

-0.51457 -0.51229 -0.30369 -0.49466 

0.69013 0.68706 0.4073 0.66342 

0.10828 0.1078 0.063907 0.10409 

0.45076 0.44875 0.26603 0.43331 

0.39825 0.39648 0.23504 0.38284 

0.7777 0.77424 0.45898 0.7476 
~--.. -- L-______ - ---_ .. _- ---_ ... 

Revsl min Fuel Tank Passenger Length Width Wheel Base Weight Class 
Capacity Cap.cit}" 

0.18587 0.19105 0.17322 0.17872 0.18757 0.17371 0.099133 2 

0.777613 0.79933 0.72473 0.74773 0.78478 0.72677 0.41477 2 

0.90801 0.93329 0.84618 0.87304 0.9163 0.84857 0.48428 2 

1.0572 1.0866 0.98521 1.0165 1.0668 0.988 0.56384 2 

0.90252 0.92764 0.84106 0.86776 0.91076 0.84344 0.48135 2 

0.58591 0.60222 0.54601 0.56335 0.59126 0.54756 0.31249 2 

0.87332 0.89763 0.81385 0.83969 0.88129 0.81615 0.46577 2 

-0.38739 -0.39817 -0.36101 -0.37247 -0.39092 -0.36203 -0.20661 2 

0.88677 0.91146 0.82639 0.85263 0.89487 0.82873 0.47295 2 

1.0604 1.0899 0.98818 1.0196 1.0701 0.99097 0.56554 2 

0.82842 0.85148 0.77201 0.79652 0.83598 0.77419 0.44183 2 

0.75699 0.77807 0.70545 0.72784 0.7639 0.70744 OA0373 2 

-0.16813 -0.17282 -0.15669 -0.16166 -0.16967 -0.15713 -0.089673 2 

0.92129 0.94693 0.85855 0.88581 0.92969 0.86098 0.49136 2 

0.41932 0.431 0.39077 0.40318 0.42315 0.39187 0.22364 2 

0.21559 0.2216 0.20091 0.20729 0.21756 0.20148 0.11498 2 

0.95681 0.98345 0.89166 0.91996 0.96554 0.89418 0.5103 2 

-0.39171 -0.40261 -0.36503 -0.37662 -0.39528 -0.36606 -0.20891 2 

0.49371 0.50746 0.46009 0.4747 0.49822 0.46139 0.26332 2 

0.94441 0.9707 0.8801 0.90804 0.95303 0.88259 0.50369 2 

1.0507 1.08 0.97917 1.0103 1.0603 0.98194 0.56039 2 

0.46804 0.48107 0.43617 0.45001 0.47231 0.4374 0.24962 2 

0.9483 0.9747 0.88373 0.91178 0.95696 0.88623 0.50577 2 

1.0664 1.0961 0.9938 1.0253 1.0761 0.9966 0.56876 2 

0.96074 0.98748 0.89532 0.92374 0.96951 0.89785 0.5124 2 

-0.51536 -0.52971 -0.48027 -0.49551 -0.52006 -0.48163 -0.27486 2 

0.69119 0.71043 0.64412 0.66457 0.6975 0.64594 0.36864 2 

0.10845 0.11147 0.10106 0.10427 0.10944 0.10135 0.05784 2 

0.45145 0.46401 0.42071 0.43406 0.45557 0.42189 0.24077 2 

0.39886 0.40996 0.3717 0.3835 0.4025 0.37275 0.21273 2 

0.77889 0.80057 0.72585 0.74889 0.786 0.7279 0.41541 2 



-'.j:) +:>. 

Price 

-0.5423 

0.90892 

-0.32577 

0.61092 

1.1722 

0.52567 

1.4759 

I.OG69 

-0.095333 

1.4474 
, 

-1.0898 

1.393 

1.1602 

0.28993 

0.27092 

0.69039 

1.2668 

1.1875 

1.0166 

0.74379 

-0.30803 

-0.40283 

1.0839 

0.44653 

-0.0006014 

0.20594 

1.1615 

1.2443 

0.76794 

1.2191 

1.2314 

CityMPG High Way 
MPG 

-0.32729 -0.33269 

0.54855 0.5576 

-0.19661 -0.19986 

0.36871 0.37479 

0.70743 0.7191 

0.31725 0.32249 

0.89075 0.90546 

0.64389 065451 

-0.057536 -0.058485 

0.87354 0.88796 

-0.65771 -0.66857 

0.8407 0.85458 

0.70018 0.71174 

0.22649 0.2155 

0.21164 0.20137 

0.53933 0.51315 

0.98961 0.94157 

0.92768 0.88264 

0.79414 0.75559 

0.58105 0.55283 

-0.24063 -0.22894 

-0.31469 -0.29941 

0.84672 0.80561 

0.34883 0.33189 

-0.0004698 -0.000447 

0.16088 0.15307 

0.90739 0.86333 

0.97201 0.92482 

0.59991 0.57078 

0.95236 0.90613 

0.96193 0.91523 

# Cylinders Engine Size Horse Power RPM at max HP 

-0.39353 -0.39178 -0.23225 -0.3783 

0.65957 0.65664 0.38927 0.63404 

-0.2364 -0.23535 -0.13952 -0.22725 

0.44333 0.44136 0.26164 0.42617 

0.8506 0.84682 0.50201 0.81768 

0.38146 0.37976 0.22513 0.3667 

1.071 1.0663 0.6321 1.0296 

0.7742 0.77076 0.45692 0.74423 

-0.06918 -0.068872 -0.040829 -0.066502 

1.0503 1.0457 0.61989 1.0097 

-0.79082 -0.7873 -0.46673 -0.76021 

1.0108 1.0063 0.59658 0.97172 

0.84188 0.83814 0.49687 0.8093 

0.2451 0.21351 0.17772 0.23561 

0.22903 0.19951 0.16606 0.22016 

0.58363 0.50841 0.42318 0.56104 

1.0709 0.93287 0.77649 1.0295 

1.0039 0.87449 0.7279 0.96503 

0.85938 0.74861 0.62312 0.82612 

0.62877 0.54773 0.45591 0.60444 

-0.26039 -0.22683 -0.18881 -0.25032 

-0.34054 -0.29665 -0.24692 -0.32736 

0.91627 0.79817 0.66437 0.88081 

0.37748 0.32883 0.2737 0.36287 

-0.0005084 -0.0004429 -0.0003686 -0.0004887 

0.1741 0.15166 0.12623 0.16736 

0.98192 0.85537 0.71198 0.94392 

1.0519 0.91628 0.76268 1.0111 

0.64918 0.56551 0.47071 0.62406 

1.0306 0.89776 0.74727 0.99071 

1.0409 0.90678 0.75477 1.0007 
---_ .. _-

Revsl min Fuel Tank Passenger Length Width Wheel Base Weight Class 
Capacity Capacity 

-0.39413 -0.4051 -0.36729 -0.37895 -0.39773 -0.36833 -0.2102 2 

0.66058 0.67897 0.6156 0.63514 0.66661 0.61733 0.35231 2 

-0.23676 -0.24335 -0.22064 -0.22765 -0.23892 -0.22126 -0.12627 2 

0.444 0.45636 0.41377 0.42691 0.44806 0.41494 0.2368 2 

0.8519 0.87561 0.79389 0.81909 0.85967 0.79613 0.45435 2 

0.38204 0.39268 0.35603 0.36733 0.38553 0.35703 0.20376 2 

1.0727 1.1025 0.99962 1.0314 1.0825 1.0024 0.57209 2 

0.77538 0.79697 0.72258 0.74552 0.78246 0.72463 0.41354 2 

-0.069286 -0.071214 -0.064568 -0.066618 -0.069918 -0.06475 -0.036953 2 

1.0519 1.0812 0.9803 1.0114 1.0615 0.98307 0.56104 2 

-0.79203 -0.81408 -0.7381 -0.76153 -0.79926 -0.74018 -0.42242 2 
, 
, 

1.0124 1.0406 0.94345 0.9734 1.0216 0.94612 0.53995 2 

0.84317 0.86665 0.78576 0.8107 0.85087 0.78798 0.4497 2 

0.23969 0.23689 0.22876 0.21786 0.21971 0.21648 0.16717 3 

0.22398 0.22136 0.21376 0.20358 0.20531 0.20229 0.15621 :; 

0.57076 0.56408 0.54472 0.51878 0.52318 0.51549 0.39807 3 

1.0473 1.035 0.99951 0.95191 0.95998 0.94586 0.73041 3 

0.98174 0.97026 0.93696 0.89234 0.8999 0.88667 0.6847 3 

0.84042 0.83059 0.80209 0.76389 0.77037 0.75904 0.58614 3 

0.6149 0.60771 0.58686 0.55891 0.56365 0.55536 0.42886 3 

-0.25465 -0.25167 -0.24303 -0.23146 -0.23342 -0.22999 -0.1776 3 

-0.33303 -0.32913 -0.31784 -0.3027 -0.30527 -0.30078 -0.23227 3 

0.89606 0.88558 0.85518 0.81446 0.82136 0.80928 0.62494 3 

0.36915 0.36484 0.35231 0.33554 0.33838 0.3334 0.25746 3 

-0.0004972 -0.0004914 -0.0004745 -0.0004519 -0.0004557 -0.000449 -0.0003468 3 

0.17026 0.16826 0.16249 0.15475 0.15606 0.15377 0.11874 3 

0.96026 0.94903 0.91646 0.87282 0.88022 0.86727 0.66972 3 

1.0287 1.0166 0.98173 0.93498 0.94291 0.92904 0.71742 3 

0.63486 0.62744 0.6059 0.57705 0.58194 0.57338 0.44278 3 

1.0079 0.99607 0.96189 0.91608 0.92385 0.91026 0.70292 3 

1.0\8 1.0061 0.97155 0.92529 0.93313 0.91941 0.70998 3 



w 
Ul 

Price 

0.34897 

0.24786 

0.78363 

0.65768 

1.2566 

-0.06806 

0.70968 

1.0536 

1.1773 

1.2674 

1.2319 

0.17043 

0.7844 

1.0823 

1.2254 

0.31104 

0.75815 

0.56208 

-0.27003 

-0.31326 

-0.1999 

0.5912 

0.56302 

0.96907 

0.61942 

1.1411 

0.94143 

0.66918 

0.2738 

0.9268 

0.45083 

City MPG High Way 
MPG 

0.27261 0.25938 

0.19363 0.18423 

0.61216 0.58244 

0.51377 0.48883 

0.98168 0.93402 

-0.053168 -0.050587 

0.5544 0.52748 

0.82305 0.78309 

0.91968 0.87503 

0.99006 0.942 

0.96232 0.91559 

0.13314 0.12668 

0.61277 0.58302 

0.84552 0.80447 

0.95725 0.91078 

0.24298 0.23118 

0.59226 0.56351 

0.43909 0.41777 

-0.21095 -0.2007 

-0.24472 -0.23283 

-0.15616 -0.14858 

0.46184 0.43942 

0.43983 0.41848 

0.75703 0.72027 

0.48388 0.46039 

0.89143 0.84815 

0.73544 0.69973 

0.52276 0.49738 

0.21389 0.2035 

0.72401 0.68886 

0.35219 0.33509 

# Cylinders Engine Size Horse Power RPM at max HP 

0.29501 0.25698 0.2139 0.28359 

0.20953 0.18253 0.l5193 0.20142 

0.66245 0.57706 0.48033 0.63681 

0.55598 0.48432 0.40313 0.53446 

1.0623 0.92539 0.77027 1.0212 

-0.057536 -0.05012 -0.041718 -0.055309 

0.59994 0.52261 0.435 0.57672 

0.89066 0.77587 0.6458 0.85619 

0.99523 0.86696 0.72162 0.95671 

1.0714 0.9333 0.77685 1.0299 

1.0414 0.90714 0.75507 1.0011 

0.14408 0.12551 0.10447 0.1385 

0.6631 0.57764 0.4808 0.63744 

0.91497 0.79704 0.66343 0.87956 

1.0359 0.90237 0.7511 0.99579 

0.26294 0.22905 0.19065 0.25276 

0.64091 0.55831 0.46472 0.61611 

0.47516 0.41392 0.34453 0.45677 

-0.22827 -0.19885 -0.16552 -0.21944 

-0.26482 -0.23069 -0.19201 -0.25457 

-0.16899 -0.14721 -0.12253 -0.16245 

0.49977 0.43536 0.36238 0.48043 

0.47596 0.41461 0.34511 0.45754 

0.81921 0.71362 0.594 0.78751 

0.52363 0.45614 0.37968 0.50336 

0.96465 0.84032 0.69945 0.92732 

0.79585 0.69327 0.57706 0.76505 

0.5657 0.49278 0.41018 0.5438 

0.23146 0.20162 0.16783 0.2225 

0.78348 0.6825 0.56809 0.75316 

0.38112 0.33199 0.27634 0.36637 

Revs! min Fuel Tank Passenger Length Width Wheel Base Weight Class 
Capacity Capacity 

0.2885 0.28512 0.27534 0.26223 0.26445 0.26056 0.20121 3 

0.20491 0.20251 0.19556 0.18625 0.18783 0.18507 0.14291 3 

0.64783 0.64026 0.61828 0.58884 0.59383 0.5851 0.45182 3 

0.54371 0.53735 0.51891 0.4942 0.49839 0.49106 0.3792 3 

1.0389 1.0267 0.99149 0.94428 0.95228 0.93828 0.72455 3 

-0.056266 -0.055608 -0.0537 -0.051143 -0.051576 -0.050818 -0.039242 3 

0.5867 0.57984 0.55994 0.53328 0.5378 0.52989 0.40919 3 

0.87102 0.86083 0.83129 0.7917 0.79841 0.78667 0.60748 3 

0.97328 0.96189 0.92888 0.88465 0.89215 0.87903 0.6788 3 

1.0478 1.0355 0.99997 0.95235 0.96042 0.94629 0.73074 3 

1.0184 1.0065 0.97194 0.92566 0.9335 0.91977 0.71026 3 

0.1409 0.13925 0.13447 0.12807 0.12915 0.12725 0.098267 3 

0.64847 0.64089 0.6189 0.58942 0.59442 0.58568 0.45227 3 

0.89479 0.88433 0.85398 0.81331 0.8202 0.80814 0.62406 3 

1.013 1.0012 0.96682 0.92078 0.92859 0.91493 0.70652 3 

0.25714 0.25413 0.24541 0.23372 0.23571 0.23224 0.17934 3 

0.62678 0.61945 0.59819 0.5697 0.57453 0.56608 0.43714 3 

0.46468 0.45924 0.44348 0.42236 0.42594 0.41968 0.32408 3 

-0.22324 -0.22063 -0.21306 -0.20291 -0.20463 -0.20162 -0.15569 3 

-0.25898 -0.25595 -0.24716 -0.23539 -0.23739 -0.2339 -0.18062 3 

-0.16526 -0.16333 -0.15773 -0.15021 -0.15149 -0.14926 -0.11526 3 

0.48875 0.48303 0.46646 0.44424 0.44801 0.44142 0.34087 3 

0.46546 0.46001 0.44423 0.42307 0.42666 0.42038 0.32463 3 

0.80114 0.79177 0.7646 0.72819 0.73436 0.72356 0.55874 3 

0.51208 0.50609 0.48872 0.46545 0.46939 0.46249 0.35714 3 

0.94337 0.93234 0.90034 0.85747 0.86474 0.85202 0.65794 3 

0.77829 0.76919 0.74279 0.70742 0.71342 0.70292 0.54281 3 

0.55322 0.54675 0.52798 0.50284 0.5071 0.49965 0.38583 3 

0.22635 0.2237 0.21603 0.20574 0.20748 0.20443 0.15787 3 

0.7662 0.75724 0.73125 0.69643 0.70233 0.692 0.53438 3 

0.37271 0.36835 0.35571 0.33877 0.34164 0.33662 0.25994 3 
---- - -------



........ 
VJ 
0\ 

Price 

0.94872 

0.43075 

0.83709 

0.10438 

-0.13505 

0.90451 

0.33427 

0.44996 

0.21693 

0.62916 

0.72154 

-0.34581 

0.29137 

1°·51938 

0.55412 

0.71459 

0.89827 

0.377 

0.79339 

-0.62252 

0.86697 

-0.20917 

0.22956 

0.027921 

0.46789 

-0.21418 

0.49286 

0.52902 

0.29131 

0.90539 

0.65271 

CityMPG 

0.74ll4 

0.44724 

0.86913 

0.10837 

-0.14022 

0.93913 

0.34706 

0.46718 

0.22523 

0.65324 

0.74916 

-0.35905 

0.30252 

0.53926 

0.57532 

0.74194 

0.93264 

0.39143 

0.82375 

-0.64635 

0.90015 

-0.2i718 

0.23835 

0.028989 

0.4858 

-0.22238 

0.51172 

0.54927 

0.30246 

0.94004 

0.67769 

High Way It Cylinders 
MPG 
0.70515 0.80201 

0.48238 0.50945 

0.93741 0.99002 

0.11689 0.12345 

-0.15123 -0.15972 

1.0129 1.0698 

0.37433 0.39533 

0.50388 0.53216 

0.24293 0.25656 

0.70456 0.7441 

0.80802 0.85336 

-0.38726 -0.40899 

0.32628 0.3446 

0.58163 0.61427 

0.62053 0.65535 

0.80023 0.84514 

1.0059 1.0624 

0.42218 0.44587 

0.88847 0.93834 

-0.69713 -0.73625 

0.97087 1.0254 

-0.23424 -0.24738 

0.25708 0.2715 

0.031267 0.033022 

0.52396 0.55337 

-0.23985 -0.25331 

0.55193 0.5829 

0.59242 0.62567 

0.32623 0.34453 

1.0139 1.0708 

0.73093 0.77195 

Engine Size Horse Power RPM at max HP 

0.69864 0.58153 0.77098 

0.60228 0.8161 0.4274 

1.1704 1.5859 0.83058 

0.14594 0.19775 0.10357 

-0.18882 -0.25586 -0.134 

1.2647 1.7137 0.89747 

0.46737 0.6333 0.33167 

0.62913 0.85248 0.44646 

0.30331 0.411 0.21524 

0.8797 1.192 0.62427 

1.0089 1.367 0.71593 

-0.48352 -0.65517 -0.34312 

0.40739 0.55202 0.2891 

0.7262 0.98401 0.51534 

0.77477 1.0498 0.54981 

0.99914 1.3539 0.70903 

1.256 1.7018 0.89128 

0.52712 0.71426 0.37407 

1.1093 1.5031 0.78722 

-0.87041 -1.1794 -0.61768 

1.2122 1.6425 0.86023 

-0.29246 -0.39629 -0.20754 

0.32098 0.43493 0.22778 

0.039039 0.052898 0.027704 

0.65421 0.88646 0.46425 

-0.29947 -0.40579 -0.21252 

0.68912 0.93377 0.48903 

0.73968 1.0023 0.5249 

0.40732 0.55192 0.28905 

1.2659 1.7153 0.89835 

0.91262 1.2366 0.64763 

Revsl min Fuel Tank Passenger Length Width Wheel Base Weight Class 
Capacity Capacity 

0.78432 0.77515 0.74855 0.7129 0.71894 0.70837 0.54702 3 

0.34307 0.52443 0.57058 0.50316 0.49698 0.49698 0.94658 4 

0.66669 1.0191 1.1088 0.9778 0.96578 0.96578 1.8395 4 

0.08313 0.12708 0.13826 0.12192 0.12042 0.12042 0.22937 4 

-0.10756 -0.16442 -0.17888 -0.15775 -0.15581 -0.15581 -0.29677 4 

0.72038 1.1012 1.1981 1.0565 1.0436 1.0436 1.9877 4 

0.26622 0.40696 0.44277 0.39045 0.38566 0.38566 0.73455 4 

0.35836 0.54781 0.59602 0.52559 0.51913 0.51913 0.98878 4 

0.17277 0.264ll 0.28735 0.2534 0.25028 0.25028 0.47671 4 

0.50108 0.76599 0.8334 0.73492 0.72589 0.72589 1.3826 4 

0.57466 0.87846 0.95577 0.84283 0.83247 0.83247 1.5856 4 

-0.27542 -0.42102 -0.45807 -0.40394 -0.39898 -0.39898 -0.75993 4 

0.23205 0.35473 0.38595 0.34034 0.33616 0.33616 0.64028 4 

0.41365 0.63234 0.68798 0.60668 0.59923 0.59923 1.1413 4 

0.44132 0.67463 0.73399 0.64726 0.6393\ 0.6393\ 1.2177 4 

0.56912 0.87 0.94656 0.83471 0.82445 0.82445 1.5703 4 

0.71541 1.0936 \.1899 1.0493 1.0364 1.0364 1.9739 4 

0.30025 0.45899 0.49938 0.44037 0.43496 0.43496 0.82846 4 

0.63188 0.96594 1.0509 0.92675 0.91536 0.91536 1.7435 4 

-0.4958 -0.75791 -0.8246 -0.72716 -0.7\823 -0.71823 -1.368 4 

0.69048 1.0555 1.1484 1.0127 1.0003 \.0003 1.9052 4 

-0.16659 -0.25466 -0.27707 -0.24433 -0.24\33 -0.24133 -0.45965 4 

0.18283 0.27949 0.30408 0.26815 0.26486 0.26486 0.50447 4 

0.022237 0.033993 0.036984 0.032614 0.032213 0.032213 0.061356 4 

0.37264 0.56965 0.61978 0.54654 0.53982 0.53982 1.0282 4 

-0.17058 -0.26076 -0.28371 -0.25018 -0.24711 -0.24711 -0.47067 4 

0.39253 0.60005 0.65285 0.57571 0.56863 0.56863 1.0831 4 

0.42133 0.64407 0.70075 0.61794 0.61035 0.61035 1.1625 4 

0.23201 0.35467 0.38588 0.34028 0.3361 0.3361 0.64016 4 

0.72108 1.1023 1.1993 1.0576 1.0446 1.0446 1.9896 4 

0.51984 0.79466 0.86459 0.76242 0.75306 0.75306 1.4343 4 



Price CityMPG High Way # Cylinders Engine Size Horse Power RPM at max HP Revsl min Fuel Tank Passenger Length Width Wheel Base Weight Class 
MPG Capacity Capacity 

0.40629 0.42184 0.45498 0.48051 0.56807 0.76975 0.40313 0.32358 0.49465 0.53818 0.47458 0.46875 0.46875 0.89282 4 

0.72474 0.75248 0.8116 0.85715 1.0133 1.3731 0.71911 0.57721 0.88236 0.96001 0.84657 0.83616 0.83616 1.5926 4 

0.64403 0.66868 0.72121 0.76169 0.90049 1.2202 0.63902 0.51293 0.78409 0.85309 0.75229 0.74304 0.74304 1.4153 4 

0.88908 0.92311 0.99563 1.0515 1.2431 1.6844 0.88217 0.70809 1.0824 1.1777 1.0385 1.0258 1.0258 1.9538 4 

-0.051092 -0,053048 -0.057215 -0.060426 -0.071437 -0.096799 -0.050695 -0.040692 -0.062204 -0.067678 -0.05968 -0.058947 -0.058947 -0.11128 4 

-0.26499 -0.27513 -0.29675 -0.3134 -0.37051 -0.50205 -0.26293 -0.21105 -0.32262 -0.35101 -0.30954 -0.30573 -0.30573 -0,58232 4 

0.060365 0.062675 0.067599 0.071393 0.084402 0.11437 0.059895 0.048076 0.073492 0.07996 0.070511 0.069645 0.069645 0.13265 4 

0.39552 0.41066 0.44292 0.46778 0.55302 0.74935 0.39245 0.31501 0.48154 0.52392 0.46201 0.45633 0.45633 0.86916 4 

0.64881 0.67364 0.72657 0.76734 0.90717 1.2292 0.64376 0.51673 0.78991 0.85942 0.75787 0.74856 0.74856 1.4258 4 

0.43047 0.44694 0.48205 0.50911 0.60188 0.81555 0.42712 0.34284 0.52408 0.5702 0.50282 0.49664 0.49664 0.94595 4 

0.064389 0.066853 0.072106 0.076152 0.090029 0.12199 0.063888 0.051281 0.078392 0.085291 0.075212 0.074288 0.074288 0.14149 4 I 
I 

-0.40945 -0.42512 ·0.45852 -0.48425 -0.57249 -0.77573 -0.40626 -0.3261 -0.49849 -0.54236 -0.47827 -0.47239 -0.47239 -0.89976 4 

0.39872 0.41398 0.4465 0.47156 0.55749 0.7554 0.39562 0.31755 0.48543 0.52815 0.46574 0.46002 0.46002 0.87618 4 

0.31185 0.32378 0.34922 0.36882 0.43603 0.59083 0.30942 0.24837 0.37967 0.41308 0.36427 0.35979 0.35979 0.68529 4 

-- 0.328 0.34056 0.36731 0.38793 0.45862 0.62143 0.32545 0.26123 0.39934 0.43448 0.38314 0.37843 0.37843 0.72079 4 
W 
-....l 0.33578 0.34863 0.37602 0.39712 0.46949 0.63616 0.33317 0.26742 0.4088 0.44478 0.39222 0.3874 0.3874 0.73787 4 

0.87387 0.90731 0.9786 1.0335 1.2218 1.6556 0.86707 0.69598 1.0639 1.1575 1.0208 1.0082 1.0082 1.9203 4 

0.85286 0.8855 0.95507 1.0087 1.1925 1.6158 0.84623 0.67925 1.0383 1.1297 0.99622 0.98398 0.98398 1.8742 4 

0,84517 0.87752 0.94646 0.99958 1.1817 1.6013 0.8386 0.67312 1.029 1.1195 0.98724 0.97511 0.97511 1.8573 4 

036355 0.37746 0.40712 0.42997 0.50832 0.68878 0.36072 0.28954 0.44262 0.48157 0.42466 0.41944 0.41944 0.79891 4 

0.64474 0.92211 0.99456 1.0504 1.1111 1.4169 0.8445 0.8132 0.93109 0.78428 1.0011 0.93235 1.0247 1.279 5 

0.071643 0.10246 0.11051 0.11672 0.12346 0.15745 0.093839 0.090362 0.10346 0.087148 0.11124 0.1036 0.11386 0.14212 5 

0.32126 0.45947 0.49557 0.52338 0.55362 0.70604 0.4208 0.40521 0.46395 0.39079 0.49883 0.46457 0.51057 0.63729 5 

0.15125 0.21632 0.23332 0.24641 0.26065 0.33241 0.19812 0.19077 0.21843 0.18399 0.23485 0.21873 0.24038 0.30004 5 

0.61193 0.87519 0.94395 0.99692 1.0545 1.3448 0.80152 0.77182 0.88371 0.74437 0.95015 0.8849 0.97252 1.2139 5 

0.48592 0.69496 0.74956 0.79162 0.83736 1.0679 0.63646 0.61288 0.70172 0.59108 0.75449 0.70267 0.77224 0.96391 5 

-0.12581 -0.17994 -0.19407 -0.20496 -0.21681 -0.27649 -0.16479 -0.15868 -0.18169 -0.15304 -0.19535 -0.18193 -0.19995 -0.24957 5 

0.57737 0.82575 0.89062 0.94061 0.99495 1.2689 0.75624 0.72822 0.83379 0.70232 0.89648 0.83492 0.91758 1.1453 5 

0.55162 0.78893 0.85092 0.89867 0.95059 1.2123 0.72253 0.69575 0.79662 0.67101 0.85651 0.79769 0.87667 1.0943 5 

0.50569 0.72324 0.78006 0.82384 0.87144 1.11l4 0.66236 0.63782 0.73028 0.61513 0.78519 0.73127 0.80367 1.0031 5 

0.12178 0.17417 0.18786 0.1984 0.20986 0.26764 0.15951 0.1536 0.17587 0.14814 0.18909 0.17611 0,19354 0.24158 5 
---



........ 
w 
00 

Price 

0.65333 

0.62966 

0.53583 

0.59474 

-0.098471 

0.25097 

-0.1084 

0.61506 

0.64174 

0.65483 

0.35415 

0.39944 

0.042303 

0.52378 

0.57711 

034521 

0.034854 

0.40942 

0.61992 

0.57398 

0.57405 

0.097993 

0.17826 

0.61032 

0.3937 

0.38487 

0.10259 

0.64944 

0.64911 

-0.21646 

0.38341 

CityMPG 

0.93439 

0.90055 

0.76635 

0.85059 

-0.14083 

0.35894 

-0.15503 

0.87%5 

0.91781 

0.93654 

0.50651 

0.57128 

0.060502 

0.74911 

0.82538 

0.49371 

0.049849 

0.58555 

0.88661 

0.8209 

0.82101 

0.14015 

0.25495 

0.87289 

0.56308 

0.55044 

0.14672 

0.92883 

0.92836 

-0.30958 

0.54836 

High Way # Cylinders 
MPG 
1.0078 1.0644 

0.9713 1.0258 

0.82656 0.87295 

0.91742 0.96891 

-0.1519 -0.16042 

0.38714 0.40887 

-0.16721 -0.1766 

0.94876 1.002 

0.98992 1.0455 

1.0101 1.0668 

0.54631 0.57697 

0.61617 0.65075 

0.065256 0.068918 

0.80796 0.85331 

0.89022 0.94019 

0.5325 0.56239 

0.053765 0.056783 

0.63156 0.667 

0.95627 1.0099 

0.8854 0.93509 

0.88551 0.93521 

0.15116 0.15964 

0.27498 0.29041 

0.94146 0.9943 

0.60732 0.6414 

0.59368 0.627 

0.15825 0.16713 

1.0018 1.058 

1.0013 1.0575 

-0.3339 -0.35264 

0.59144 0.62463 

Engine Size Horse Power RPM atmaxHP 

1.1259 1.4358 0.85574 

1.0851 1.3838 0.82475 

0.92338 1.1776 0.70184 

1.0249 1.307 0.779 

-0.16969 -0.21641 -0.12898 

0.43249 0.55156 0.3<2873 

-0.1868 -0.23823 -0.14198 

1.0599 1.3517 0.80561 

1.l059 1.4103 0.84056 

1.1284 1.4391 0.85771 

0.6103 0.77832 0.46388 

0.68835 0.87785 0.5232 

0.0729 0.09297 0.05541 

0.90261 1.1511 0.68605 

0.99451 1.2683 0.75591 

0.59488 0.75866 0.45216 

0.060063 0.076599 0.045653 

0.70554 0.89978 0.53627 

1.0683 1.3624 0.81198 

0.98912 1.2614 0.75181 

0.98925 1.2616 0.75191 

0.16887 0.21536 0.12835 

0.30719 0.39176 0.23349 

1.0518 1.3413 0.79941 

0.67846 0.86524 0.51568 

0.66323 0.84582 0.50411 

0.17678 0.22545 0.13437 

1.1192 1.4273 0.85065 

1.1186 1.4265 0.85022 

-0.37302 -0.47571 -0.28352 

0.66072 0.84263 0.5022 

Revs! min Fuel Tank Passenger Length Width Wheel Base Weight Class 
Capacity Capacity 

0.82403 0.94349 0.79472 1.0144 0.94476 1.0383 1.296 5 

0.79419 0.90932 0.76594 0.97769 0.91054 1.0007 1.2491 5 

0.67584 0.77381 0.6518 0.83199 0.77486 0.85157 1.0629 5 

0.75013 0.85888 0.72345 0.92345 0.86003 0.94519 1.1798 5 

-0.1242 -0.1422 -0.11978 -0.1529 -0.1424 -0.1565 -0.19534 5 

0.31655 0.36243 0.30529 0.38968 0.36292 0.39886 0.49785 5 

-0.13672 -0.15654 -0.13186 -0.16831 -0.15675 -0.17227 -0.21503 5 

0.77576 0.88822 0.74817 0.955 0.88942 0.97748 1.2201 5 • 

0.80941 0.92675 0.78062 0.99643 0.928 1.0199 1.273 5 

0.82593 0.94566 0.79655 1.0168 0.94694 1.0407 1.299 5 

0.44669 0.51145 0.4308 0.5499 0.51214 0.56284 0.70254 5 

0.50381 0.57685 0.48589 0.62022 0.57762 0.63481 0.79238 5 

0.053356 0.061091 0.051459 0.065685 0.061174 0.067231 0.083917 5 

0.66063 0.7564 0.63714 0.81327 0.75742 0.83242 1.039 5 

0.7279 0.83342 0.70201 0.89608 0.83454 0.91717 1.1448 5 

0.4354 0.49852 0.41992 0.53601 0.4992 0.54862 0.68479 5 

0.043%1 0.050334 0.042398 0.054119 0.050402 0.055392 0.069141 5 

0.51639 0.59126 0.49803 0.63571 0.59205 0.65067 0.81217 5 

0.7819 0.89525 0.75409 0.96256 0.89645 0.98521 1.2297 5 

0.72395 0.8289 0.6982 0.89122 0.83002 0.9122 1.1386 5 

0.72404 0.82901 0.69829 0.89134 0.83013 0.91232 1.1388 '\ 

0.1236 0.14151 0.1192 0.15215 0.14171 0.15574 0.19439 5 

0.22484 0.25743 0.21684 0.27678 0.25778 0.2833 0.35361 5 

0.76979 0.88139 0.74241 0.94766 0.88258 0.96996 1.2107 5 

0.49657 0.56856 0.47891 0.61131 0.56933 0.6257 0.78099 5 

0.48543 0.5558 0.46816 0.59759 0.55655 0.61165 0.76346 5 

0.12939 0.14815 0.12479 0.15929 0.14835 0.16303 0.2035 5 

0.81913 0.93787 0.78999 1.0084 0.93914 1.0321 1.2883 5 

0.81871 0.9374 0.78959 1.0079 0.93867 1.0316 1.2876 5 

-0.27302 -0.31259 -0.26331 -0.3361 -0.31302 -0.34401 -0.42939 5 

0.48359 0.5537 0.46639 0.59533 0.55445 0.60934 0.76058 5 
-~ 



....... 
W 
\0 

Price 

0.47144 

-0.035916 

0.24037 

0.58218 

-0.011784 

0.39867 

0.6238 

-0.059145 

CityMPG 

0.67425 

-0.051367 

0.34377 

0.83263 

-0.016854 

0.57018 

0.89216 

-0.084589 

High Way # Cylinders 
MPG 
0.72722 0.76803 

-0.055402 -0.058512 

0.37078 0.39159 

0.89804 0.94844 

-0.018178 -0.019198 

0.61497 0.64949 

0.96226 1.0163 

-0.091235 -0.096355 

Engine Size Horse Power RPM atmaxHP 

0.81241 1.0361 0.6175 

-0.061892 -0.078932 -0.047043 

0.41422 0.52825 0.31484 

1.0032 1.2794 0.76254 

-0.020308 -0.025898 -0.015435 

0.68701 0.87615 0.52218 

1.075 1.3709 0.81707 

-0.10192 -0.12998 -0.077469 
.. ----- --

Revs/min Fuel Tank Passenger Length Width Wheel Base Weight Class 
C~acity Capacity 

0.59461 0.68081 0.57346 0.732 0.68173 0.74923 0.93519 5 

-0.0453 -0.051867 -0.043689 -0.055767 -0.051937 -0.057079 -0.071246 5 

0.30317 0.34712 0.29239 0.37322 0.34759 0.382 0.47682 5 

0.73429 0.84074 0.70817 0.90395 0.84187 0.92522 1.1549 5 

-0.014863 -0.017018 -0.014335 -0.018298 -0.017041 -0.018728 -0.023377 5 

0.50284 0.57573 0.48495 0.61902 0.57651 0.63359 0.79084 5 

0.78679 0.90085 0.75881 0.96858 0.90207 0.99138 1.2374 5 

-0.074599 -0.085413 -0.071945 -0.091835 -0.085528 -0.093996 -0.11733 5 
--- - ,. 



,..... 
+:>. 
o 

Price 

0.069062 

-0.57922 

0.54707 

0.530\ I 

0.6222 

0.21746 

-0.34621 

0.65363 

0.040125 

-1.3015 

-0.13795 

0.44324 

-0.56267 

-0.11611 

0.59119 

-0.77566 

0.6615 

-0.18531 

0.21764 

0.36605 

-1.2035 

0.031489 

0.12247 

0.58669 

0.40944 

0.66372 

CityMPG 

0.12343 

-1.0352 

0.97771 

0.9474 

Ll12 

0.38863 

-0.61873 

Ll681 

0.071709 

-2.3261 

-0.24655 

0.79215 

-1.0056 

-0.20751 

1.0566 

-1.3862 

1.1822 

-0.33118 

0.38896 

0.6542 

-2.1508 

0.056275 

0.21887 

1.0485 

0.73173 

1.1862 

Appendix H 

Testing Dataset of the Practical Experirn:ent for the Multi-Layer Perceptron 

High Way # Cylinders Engine Size Horse Power RPM at max Revs/min Fuel Tank Passenger Capacity Length Width 
MPG HP Capacity 

0.11201 0.071234 0.059837 0.042792 0,11766 0.13245 0.080662 0.099728 0.093396 0.095784 

-0.93944 -0.59743 -0.50185 -0.35889 -0.98677 -1.1109 -0.67651 -0.83641 -0.7833 -0.80333 

0.8873 0.56428 0.47399 0.33897 0.93201 1.0492 0.63896 0.78999 0.73983 0.75874 

0.8598 0.54678 0.4593 0.32847 0.90312 1.0167 0.61915 0.7655 0.71689 0.73522 

1.0092 0.64177 0.53908 0.38552 1.06 1.1933 0.7267 0.89847 0.84143 0.86294 

0.3527 0.22429 0.18841 0.13474 0.37046 0.41705 0.25398 0.31401 0.29408 0.30159 

-0.56152 -0.3571 -0.29996 -0.21452 -0.58981 -0.66398 -0.40436 -0.49994 -0.46819 -0.48017 

1.0601 0.67419 0.56632 0.405 1.1135 1.2536 0.76342 0.94386 0.88393 0.90653 

0.065078 0.041386 0.034765 0.024862 0.068357 0.076953 0.046864 0.057941 0.054262 0.055649 

-2.111 -1.3425 -1.1277 -0.80645 -2.2173 -2.4962 -1.5202 -1.8795 -1.7601 -1.8051 

-0.22375 -0.14229 -0. II 953 -0.085478 -0.23502 -0.26457 -0.16112 -0.19921 -0.18656 -0.19133 

0.7189 0.45718 0.38403 0.27464 0.75512 0.85007 0.51769 0.64006 0.59942 0.61474 

-0.9126 -0.58036 -0.4875 -0.34864 -0.95858 -1.0791 -0.65718 -0.81251 -0.76092 -0.78037 

'0.18833 -0.11976 -0.1006 -0.071946 -0.19781 -0.22269 -0.13562 -0.16767 -0.15703 -0.16104 

0.95887 0.60979 0.51222 0.36631 1.0072 1.1338 0.69049 0.8537 0.7995 0.81994 

-1.2581 -0.80006 -0.67205 -0.48061 -1.3214 -1.4876 -0.90594 -1.1201 -1.049 -1.0758 

1.0729 0.6823 0.57313 0.40987 1.1269 1.2687 0.77261 0.95522 0.89457 0.91744 

-0.30056 -0.19114 -0.16056 -0.11482 -0.3157 -0.3554 -0.21644 -0.26759 -0.2506 -0.25701 

0.35299 0.22449 0.18857 0.13485 0.37078 0.4174 0.2542 0.31428 0.29432 0.30185 

0.59371 0.37756 0.31715 0.22681 0.62362 0.70203 0.42754 0.52859 0.49503 0.50769 

-1.9519 -1.2413 -1.0427 -0.74568 -2.0502 -2.3081 -1.4056 -1.7378 -1.6275 -1.6691 

0.051072 0.032479 0.027282 0.019511 0.053645 0.06039 0.036777 0.04547 0.042583 0.043672 

0.19863 0.12632 0.10611 0.075883 0.20864 0.23488 0.14304 0.17685 0.16562 0.16985 

0.95156 0.60514 0.50832 0.36352 0.9995 \.1252 0.68523 0.8472 0.79341 0.81369 

0.66407 0.42231 0.35474 0.25369 0.69753 0.78524 0.47821 0.59124 0.5537 0.56786 

1.0765 0.6846 0.57506 0.41125 1.1307 1.2729 0.7752 0.95843 0.89758 0.92053 
-_ .. 

-~--. - '------ ,-

Wheel Base Weight Class 

0.095784 0.040044 I 

-0.80333 -0.33585 1 

0.75874 0.31721 I 

0.73522 0.30738 I 

0.86294 0.36077 I 

0.30159 0.12609 I 

-0.48017 -0.20074 I 

0.90653 0.379 I 

0.055649 0.023265 I 

-1.8051 -0.75467 1 

-0.19133 -0.07999 I 

0.61474 0.25701 I 

-0.78037 -0.32625 I 

-0.16104 -0.067326 1 

0.81994 0.34279 I 

-1.0758 -0.44975 I 

0.91744 0.38356 I 

-0.25701 -0.10745 1 

0.30185 0.1262 I 

0.50769 0.21225 I 

-1.6691 -0.6978 I 

0.043672 0.018258 1 

0.16985 0.071011 I 

0.81369 0.34().J8 I 

0.56786 0.23741 I 

0.92053 0.38485 1 



Price City MPG High Way # Cylinders Engine Size Horse Power RPM at max Revs/min Fuel Tank Passenger Capacity Length Width Wheel Base Weight Class 
MPG HP Capacity 

0.39838 0.71196 0.64613 0.4109 0.34516 0.24684 0.67868 0.76402 0.46529 0.57527 0.53874 0.55251 0.55251 0.23099 I 

0.25313 0.45238 0.41055 0.26109 0.21931 0.15684 0.43123 0.48546 0.29564 0.36552 0.34231 0.35106 0.35106 0.14677 I 

0..032441 0.057977 0.052616 0.033461 0.028107 0.020101 0.055267 0.062217 0.03789 0.046845 0.043871 0.044993 0.044993 0.01881 I 

0.4965 0.88732 0.80528 0.51211 0.43018 0.30764 0.84585 0.95221 0.57989 0.71696 0.67144 0.6886 0.6886 0.28789 I 

-0.36497 -0.65226 -0.59195 -0.37645 -0.31621 -0.22614 -0.62177 -0.69995 -0.42627 -0.52702 -0.49356 -0.50618 -0.50618 -0.21162 I 

-13472 -2.4076 -2.185 -1.3895 -1.1672 -0.83471 -2.295 -2.5836 -1.5734 -1.9453 -1.8218 -1.8684 -1.8684 -0.78112 I 
I 

!0.0073525 0.01314 0.011925 0.0075837 0.0063703 0.0045557 0.012526 0.014101 0.0085875 0.010617 0.0099431 0.010197 0.010197 0.0042632 I 

!068954 1.2323 1.1184 0.71122 0_59743 0.42725 1.1747 1.3224 0.80536 0.99571 0.93249 0.95634 0.95634 0.39982 1 

0.50281 0.89859 0.81551 0.51862 0.43564 0.31155 0.85659 0.9643 0.58726 0.72606 0.67997 0.69735 0.69735 0.29154 I 

0.33798 0.60402 0.54817 0.34861 0.29283 0.20942 0.57579 0.64819 0.39475 0.48805 0.45706 0.46875 0.46875 0.19597 1 

0.45205 0.80788 0.73318 0.46626 0.39166 0.28009 0.77012 0.86695 0.52797 0.65276 0.61132 0.62695 0.62695 0.26211 1 

0.45607 0.81507 0.7397 0.47041 0.39515 0.28259 0.77697 0.87467 0.53267 0.65858 0.61676 0.63253 0.63253 026444 1 

-0.23844 -0.42612 -0.38672 -0.24593 -0.20658 -0.14774 -0.40621 -0.45728 -0.27848 -0.34431 -0.32245 -0.33069 -0.33069 -0.13825 I 

0.47848 0.85512 0.77605 0.49353 0.41456 0.29647 0.81515 0.91765 0.55885 0.69094 0.64707 0.66361 0.66361 0.27744 I 

........ 0.66276 1.1845 1.0749 0.6836 0.57422 0.41065 1.1291 1.2711 0.77408 0.95704 0.89627 0.91919 0.91919 0.38429 I 

.j:::.. 

........ 0.61833 1.1051 1.0029 0.63778 0.53573 0.38313 1.0534 1.1859 0.72219 0.89289 0.8362 0.85758 0.85758 0.35853 I 

-1.6505 -2.9497 -2.677 -1.7024 -1.43 -1.0227 -2.8118 -3.1654 -1.9277 -2.3834 -2.232 -2.2891 -2.2891 -0.95701 I 

0.63963 1.1431 1.0374 0.65974 0.55419 0.39632 1.0897 1.2267 0.74706 0.92364 0.865 0.88711 0.88711 0.37088 I 

0.13731 0.2454 0.22271 0.14163 0.11897 0.08508 0.23393 0.26334 0.16037 0.19828 0.18569 0.19044 0.19044 0.079617 I 

0.58917 1.0529 0.95559 0.6077 0.51047 0.36506 1.0037 1.1299 0.68813 0.85078 0.79676 0.81713 0.81713 0.34162 I 

0.62522 1.1174 1.014 0.64488 0.5417 0.38739 1.0651 1.1991 0.73023 0.90283 0.84551 0.86712 0.86712 0.36252 I 

0.65539 1.1713 1.063 0.676 0.56784 0.40609 1.1165 1.2569 0.76547 0.94641 0.88632 0.90898 0.90898 0.38002 I 

-0.43239 -0.77274 -0.70129 -0.44598 -0.37463 -0.26791 -0.73662 -0.82925 -0.50501 -0.62438 -0.58473 -0.59968 -0.59968 -0.25071 I 

0.65458 1.1698 1.0617 0.67517 0.56714 0.40559 1.1152 1.2554 0.76453 0.94524 0.88522 0.90785 0.90785 0.37955 I 

1.3055 0.78789 0.80089 0.94734 0.94313 0.55911 0.91068 0.94879 0.97521 0.88419 0.91226 0.95745 0.88668 0.50603 2 

-3.1373 -1.8935 -1.9247 -2.2767 -2.2665 -1.3436 -2.1885 -2.2801 -2.3436 -2.1249 -2.1923 -2.3009 -2.1309 -1.2161 2 

-1.2355 -0.74564 -0.75795 -0.89655 -0.89256 -0.52913 -0.86185 -0.89792 -0.92292 -0.83678 -0.86334 -0.90612 -0.83914 -0.4789 2 

-3.7367 -2.2552 -2.2924 -2.7116 -2.6995 -1.6003 -2.6067 -2.7157 -2.7913 -2.5308 -2.6112 -2.7405 -2.538 -1.4484 2 

1.4746 0.88997 0.90466 1.0701 1.0653 0.63154 1.0287 1.0717 1.1016 0.99874 1.0304 1.0815 1.0016 0.57159 2 

1.2307 0.74275 0.75501 0.89307 0.8891 0.52708 0.85851 0.89444 0.91934 0.83353 0.85999 0.9026 0.83589 0.47704 2 

1.1157 0.67338 0.68449 0.80965 0.80606 0.47785 0.77832 0.8109 0.83347 0.75568 0.77967 0.8183 0.75781 0.43248 2 



....... 

..j:>.. 
N 

Price 

0.80482 

1.0989 

0.11726 

1.0661 

1.4598 

-1.0009 

0.84185 

0.62854 

-0.06074 

0.6638 

;3.6288 

1.4434 

0.68096 

-0.24305 

0.35762 

-1.5305 

1.475 

0.53588 

0.61651 

0.86541 

-0.37392 

0.88003 

-1.2205 

·0.92897 

0.99206 

-0.065825 

1.3745 

1.2934 

-0.33716 

1.4671 

0.55032 

CityMPG 

0.48572 

0.66321 

0.070768 

0.64339 

0.88103 

-0.60406 

0.50807 

0.37934 

-0.036658 

0.40062 

-2.1901 

0.8711 

0.41097 

-0.14669 

0.21583 

-0.9237 

0.89017 

0.32342 

0.37208 

0.52229 

-0.22567 

0.53111 

-0.73658 

-0.56065 

0.59873 

-0.039727 

0.82957 

0.78063 

-0.20348 

0.88542 

0.33213 

High Way # Cylinders 
MPG 
0.49374 0.58403 

0.67416 0.79743 

0.071936 0.08509 

0.65401 0.7736 

0.89557 1.0593 

-0.61403 -0.72632 

0.51646 0.6109 

0.3856 0.45611 

-0.037263 -0.044077 

0.40723 0.4817 

-2.2262 -2.6333 

0.88548 1.0474 

0.41776 0.49414 

-0.14911 -0.17638 

0.21939 0.25951 

-0.93895 -1.1106 

0.90486 1.0703 

0.32876 0.38887 

0.37822 0.44738 

0.53091 0.628 

-0.22939 -0.27134 

0.53988 0.6386 

-0.74874 -0.88565 

-0.56991 -0.67412 

0.60861 0.7199 

-0.040382 -0.047767 

0.84326 0.99746 

0.79351 0.93861 

-0.20684 -0.24466 

0.90004 1.0646 

0.33761 0.39935 

Engine Size Horse Power RPM atma~ 
HP 

0.58143 0.34468 0.56142 

0.79389 0.47063 0.76657 

0.084712 0.050219 0.081797 

0.77016 0.45657 0.74366 

1.0546 0.6252 1.0183 

-0.72309 -0.42866 -0.69821 

0.60818 0.36054 0.58726 

0.45408 0.26919 0.43846 

.-0.043881 -0.026013 -0.042371 

0.47956 0.28429 0.46305 

-2.6216 -1.5541 -2.5314 

1.0427 0.61815 1.0069 

0.49195 0.29164 0.47502 

-0.17559 -0.10409 -0.16955 

0.25836 0.15316 0.24947 

-1.1057 -0.65548 -1.0677 

1.0656 0.63168 1.0289 

0.38714 0.22951 0.37382 

0.44539 0.26404 0.43007 

0.6252 0.37063 0.60369 

-0.27013 -0.16014 -0.26084 

0.63576 0.37689 0.61389 

-0.88172 -0.5227 -0.85138 

-0.67112 -0.39786 -0.64803 

0.7167 0.42488 0.69204 

-0.047554 -0.028191 -0.045918 

0.99303 0.58868 0.95886 

0.93444 0.55395 0.90228 

-0.24357 -0.1444 -0.23519 

1.0599 0.62832 1.0234 

0.39757 0.23569 0.38389 

Revs/min Fuel Tank Passenger Capacity Length Width Wheel Base Weight Class 
Capacity 

0.58492 0.6012 0.54509 0.5624 0.59026 0.54663 0.31196 2 

0.79866 0.82089 0.74427 0.7679 0.80594 0.74637 0.42595 2 

0.08522 0.087593 0.079417 0.081938 0.085998 0.079642 0.045451 2 

0.77479 0.79636 0.72203 0.74495 0.78186 0.72407 0.41322 2 

1.061 1.0905 0.98871 1.0201 1.0706 0.9915 0.56585 2 

-0.72743 -0.74768 -0.67789 -0.69941 -0.73407 -0.67981 -0.38796 2 

0.61183 0.62887 0.57017 0.58827 0.61742 0.57178 0.32631 2 

0.45681 0.46953 0.4257 0.43922 0.46098 0.42691 0.24363 2 

-0.044144 -0.045373 -0.041138 -0.042444 -0.044547 -0.041255 -0.023544 2 

0.48243 0.49586 0.44958 0.46386 0.48684 0.45085 0.2573 2 

-2.6373 -2.7107 -2.4577 -2.5357 -2.6614 -2.4647 -1.4066 2 

1.049 1.0782 0.97757 1.0086 1.0586 0.98033 0.55947 2 

0.4949 0.50868 0.4612 0.47584 0.49942 0.4625 0.26395 2 

-0.17665 -0.18156 -0.16462 -0.16984 -0.17826 -0.16508 -0.094212 2 

0.25991 0.26714 0.24221 0.2499 0.26228 0.24289 0.13862 2 

-1.1123 -1.1433 -1.0366 -1.0695 - 1.1225 -1.0395 -0.59325 2 

1.072 1.1018 0.99896 1.0307 1.0817 1.0018 0.57171 2 

0.38947 0.40031 0.36295 0.37447 0.39302 0.36397 0.20772 2 

0.44807 0.46054 0.41756 0.43081 0.45216 0.41874 0.23897 2 

0.62896 0.64647 0.58613 0.60474 0.6347 0.58779 0.33545 2 

-0.27176 -0.27932 -0.25325 -0.26129 -0.27424 -0.25397 -0.14494 2 

0.63958 0.65738 0.59603 0.61495 0.64542 0.59771 0.34111 2 

-0.88701 -0.9117 -0.82661 -0.85285 -0.8951 -0.82894 -0.47307 2 

-0.67515 -0.69395 -0.62918 -0.64915 -0.68131 -0.63096 -0.36008 2 

0.72101 0.74108 0.67191 0.69324 0.72759 0.67381 0.38454 2 

-0.04784 -0.049171 -0.044582 -0.045997 -0.048276 -0.044708 -0.025515 2 

0.99899 1.0268 0.93096 0.96052 1.0081 0.93359 0.5328 2 

0.94005 0.96622 0.87604 0.90385 0.94863 0.87851 0.50136 2 

-0.24504 -0.25186 -0.22835 -0.2356 -0.24727 -0.229 -0.13069 2 

1.0662 1.0959 0.99364 1.0252 1.076 0.99645 0.56867 2 

0.39996 0.41109 0.37272 0.38456 0.40361 0.37378 0.21331 2 
--



PriC"c City MPG High Way #Cylindm Engine Size Horse Power RPM at max Revs/min Fuel Tank Passenger Capacity Length Width Wheel Ba,,, Wci~ht CLI';" 
MPG HP Capacity 

·I.ONJS -0.6-1:;!>:,) -0.6563 -0.77631 -0.77286 -OAS817 -0.74627 -0.7775 -0.79915 -0.72456 -0.74756 -0.7R46 -0.72661 -() -11467 2 

o 55(m 0 .. ~321() 0.33704 ()3993~ 0.:19761 0,23571 0.38393 OA 0.41113 0 . .1727f> 0,38459 0.4m65 (U73~1 02133.' , 

1 .. 18 o 832MH 0,84662 f.(X)J4 099699 0.59103 0,90268 1.003 1.0309 0.93467 0.90435 10121 0.93731 0.';:14'12 ) 

04H7'2 02'1411 0.29896 0.35363 (>:\5206 0.20X71 0.33994 0,35417 030403 033005 (1.34053 0.3574 O.330'lH il.IX~X') 

I _~)<)5 () 820'; 0.8:1404 0.98655 098216 0,5822:') 0.94837 0,98806 1.0156 o.non 0.95(Xll 0,99708 0,92.108 0,52697 

0.1';'176 0.094006 0,095557 0.11303 o 11253 0.066709 0.10866 0,1132 0.11636 0.1055 0.10884 0,11424 O.IOS79 O,O('()'17h , 

() 7 ')~ ~ 044.'7:1 0.45105 0,53353 0.53116 0.31488 0,51288 0.53435 0.54922 0.49790 0.51377 0.53922 0.4')937 O.2849'l 2 

(}I)S'l 7:~ (J'i97:15 060721 0,71825 0,71506 0,4239 0,69045 0,71935 0,73'>:17 0.67036 0.69165 O,n591 {).67226 0.3X165 , 
-

-0 "3 -0.25952 -0.2638 -0.31204 -0, 3J 065 -0.IR416 -0.29996 -0.31251 -0.32121 -0.29123 -0.30048 -0.31537 -029206 -0.1 f!6(,X :' 

-I ,"!.~')4 -1.1705 -1.1 898 -1.4074 -1.4011 -O.X3061 -1,3529 -1.4095 -1.4488 -J.3 \:16 -1.3553 -14224 -UI73 -075 liS :' 

()()2:11,(j'i 0.014246 O.014.J81 0,017129 0.01705:1 0.010109 0.010466 0,017156 O,Q17633 0.015987 0.016495 0,017"'.12 OOIW:1.1 o 0O'J1-1'J7 :' 

-2 136' -1.2X93 -UIO(; -15502 -1.5433 -0.91491 -1.4902 -1,5526 -1.5958 -1.446<) -1,4928 -1.566S -1.451 ·1).S2S0'i 2 

11.(,S055 OSl1fl-1 OS0583 0.57531 050116 OAI715 0.55305 0.56262 0.55604 0.5:16% 0.51139 051572 o 50XI4 O.V):.?1.f) , 
i 

·1790<'1 -I .. ~YHX -1,3309 -1.5137 -UIS6 -i,0'l76 -14551 -1.4803 -1,463 -1.-I12X -1,:1455 -1.350') -1..1.17 -I.OJ:'-l , 

-~ -O.'i9Y\7 -0.77617 -0.73848 -0.83992 -0.73167 -0.60901 -0.80742 -0.8214 -0.81179 -0.78393 -0,7466 -(),7529.~ -O.7418'i -0.,\72X7 \ 

VJ -1.5212 -1.1883 -1.1306 -1.286 -1.1202 -0.93242 -\.2362 -1.2576 -1.2429 -1.2002 -1.1431 -I 1528 -I 1358 -IlX770') 1 

-1.217 -()'J'i069 -0,90453 -1.0288 -0.89618 -0.74595 -0.98896 -1.0061 -0.99432 -0.96019 -0,91447 -0,92222 -09{)~66 -0701(,X , 
-tl47'i16 -(>.:17119 -0,:15317 -0.40168 -0 . .14991 -{).29 I 25 -0.38614 -0,39282 -0.38823 -0.3749 -035705 -036008 -(U'i-l78 -027.1')7 \ 

(\ 7XR3'i 061'\85 0.58595 0,66644 0.58054 0.48322 Q,(H()64 0.65174 0.64411 0.02201 059239 0.59741 0.58R62 0.1'\454 3 

1.2:iK) 0.9831 2 0.9,539 1,063') 0,92675 0,7714 1.0227 1,0404 1.0282 0.99295 094567 0.95368 0,93966 a.725h2 :\ 

() <J()1 070542 0.h7117 0.76336 0.h6497 0,5535 0,73382 0,74652 0.73779 0.71247 0,61854 0.68429 067423 1),52065 ~\ 

-I 2.165 -O.'!M')I -0.91902 -1.0453 -0.91053 -0.7579 -1.0048 -f.(1222 -1.0102 -0.97557 -0,92912 -0.93699 -092321 -{).71292 \ 

-I ~37R -I 1232 -l(lfiR7 -1.2155 -10588 -088131 -1.1684 -1.1887 -1.1748 -1.1344 -1.0804 -1.0896 -1.0735 -0.82'J()1 I 

I 194.1 0').13 0,8877 1,(Xl96 0,87951 0,73207 0.97056 0.98737 0.97582 0,942:\3 0.89746 0.90506 0,89175 {)6S862 l 

I 180'! 0.9225 0.87771 0,99828 0.86961 0.72384 0.95964 0.97626 0,96484 1),93173 0.88736 0,89488 0.8HI72 O.(,808K 1 

-(JX15~'.1 -()65271 -0,62102 -0.70633 -0,61529 -0,51215 -0.67899 -0.69075 -0.68267 -0.65924 -O.627S5 -0,6TlI7 -0.62:\K6 ·0.48175 " 
I 185(' 0.92616 0,8812 1,(Xln 0.87306 0,72671 0.96345 0.98013 0,96867 0,935 .. 2 0.89088 0.898 .. 3 0.<88522 (jhK.'-'~ .1 

-() fl-I41 K -0.'\0.123 -0,47879 -0.54456 -0.47437 -0,39485 -{),523-l9 -0.53255 -0.52632 -().50S2t\ -(J,48406 -0.48816 -OA8098 -IU71 .. 2 i 

1)9641 0.75,15 0.71658 0,81502 (J,70997 0,59095 0,78347 0.79704 0.78772 0,76068 0.72440 O.73()6 0.71985 05'i'iS8 , 
() 17:\ 14 (J 13525 012869 0.14636 () 1275 0.10613 0,1407 0.14313 0,14146 0.13661 0.1301 0.1312 0.12927 ()()'I')<~27 .' ! , 

·1 l\1~H -IAI77 -U488 -\.5341 -J.3364 -I 1124 -1,474R -1.5003 -1.4827 -1.4319 -1.3637 -1J752 -U'\5 -1.()46~ :1 
, 

---



........ 

.j:>.. 

.j:>.. 

Price 

1.0498 

-0.7462 

-1.7125 

-3.0052 

-2.5664 

-1.4177 

1.2501 

0.20102 

0.16281 

i 1.234 

0.36341 

-0.44628 

0.78365 

·3.3456 

1.1992 

0.16224 

1.0499 

0.75947 

·0.78767 

0.56908 

0.049244 

·0.24993 

-IAI77 

D.63816 

1.0697 

D.99638 

-2.7958 

0.77225 

-0.42237 

0.20777 

1.2335 

CityMPG High Way 
MPG 

0.82006 0.78024 

-0.58293 -0.55463 

-1.3378 -1.2729 

-2.3477 -2.2337 

-2.0048 -1.9075 

-1.1075 -1.0537 

0.97656 0.92915 

0.15703 0.14941 

0.12718 0.12101 

0.96402 0.91722 

0.2839 0.27011 

-0.34863 -0.33171 

0.61218 0.58246 

-2.6136 -2.4867 

0.93683 0.89135 

0.12674 0.12059 

0.82017 0.78035 

0.59329 0.56449 

-0.61532 -0.58545 

0.44456 0.42298 

0.038469 0.036601 

-0.19524 -0.18576 

-1.1075 -1.0537 

0.49853 0.47432 

0.83568 0.7951 

0.77836 0.74057 

-2.184 -2.078 

0.60328 0.57399 

-0.32996 -0.31394 

0.16231 0.15443 

0.96363 0.91684 

# Cylinders Engine Size Horse Power RPM at max 
HP 

0.88742 0.77304 0.64345 0.85308 

-0.63081 -0.54951 -0.45739 -0.6064 

-1.4477 -1.2611 -1.0497 -1.3917 

-2.5405 -2.2131 -1.8421 -2.4422 

-2.1695 -1.8899 -1.5731 -2.0855 

-1.1984 -1.044 -0.86897 -1.1521 

1.0568 0.92057 0.76625 1.0159 

0.16993 0.14803 0.12322 0.16336 

0.13763 0.11989 0.099793 0.1323 

1.0432 0.90875 0.75641 1.0028 

0.30722 0.26762 0.22276 0.29533 

-0.37727 -0.32865 -0.27355 -0.36267 

0.66246 0.57708 0.48034 0.63683 

-2.8282 -2.4637 -2.0507 -2.7188 

1.0138 0.88312 0.73508 0.97455 

0.13715 0.11948 0.099448 0.13185 

0.88754 0.77314 0.64354 0.85319 

0.64203 0.55928 0.46552 0.61718 

-0.66587 -0.58004 -0.48281 -0.6401 

0.48108 0.41908 0.34882 0.46246 

0.041629 0.036264 0.030185 0.040018 

-0.21128 -0.18405 -0.15319 -0.2031 

-1.1985 -1.044 -0.86899 -1.1521 

0.53948 0.46994 0.39116 0.5186 

0.90432 0.78777 0.65571 0.86932 

0.8423 0.73374 0.61074 0.8097 

-2.3634 -2.0588 -1.7137 -2.272 

0.65283 0.56869 0.47336 0.62756 

-0.35706 -0.31104 -0.2589 -0.34324 

0.17564 0.153 0.12735 0.16884 

1.0428 0.90838 0.7561 1.0024 

Revslmin Fuel Tank Passenger Capacity Length Width Wheel Base Weight Class 
Capacity 

0.86785 0.8577 0.82826 0.78882 0.7955 0.78381 0.60527 3 

-0.6169 -0.60968 -0.58876 -0.56072 -0.56547 -0.55716 -0.43025 ".1 

-1.4158 -1.3992 -1.3512 -1.2868 -1.2978 -1.2787 -0.98741 3 

-2.4845 -2.4554 -2.3711 -2.2582 -2.2774 -2.2439 -1.7327 3 

-2.1216 -2.0968 -2.0249 -1.9284 -1.9448 -1.9162 -1.4797 3 

-1.172 -1.1583 -1.1185 -1.0653 -1.0743 -1.0585 -0.8174 3 

1.0335 1.0214 0.98633 0.93936 0.94732 0.93339 0.72078 3 

0.16619 0.16424 0.15861 0.15105 0.15233 0.15009 0.1159 3 

0.13459 0.13302 0.12845 0.12234 0.12337 0.12156 0.09387 3 

1.0202 1.0083 0.97366 0.9273 0.93516 0.9214 0.71152 3 

0.30044 0.29693 0.28674 0.27308 0.2754 0.27135 0.20954 3 

-0.36895 -0.36463 -0.35212 -0.33535 -0.33819 -0.33322 -0.25732 :; 

0.64785 0.64027 0.6183 0.58886 0.59385 0.58511 0.45183 :; 

-2.7659 -2.7335 -2.6397 -2.514 -2.5353 -2.498 -1.929 :; 

0.99142 0.97982 0.9462 0.90114 0.90878 0.89541 0.69145 3 

0.13413 0.13256 0.12801 0.12192 0.12295 0.12114 0.093546 3 

0.86796 0.85781 0.82837 0.78892 0.79561 0.78391 0.60535 3 

0.62786 0.62052 0.59922 0.57069 0.57553 0.56706 0.43789 3 

-0.65118 -0.64356 -0.62147 -0.59188 -0.5969 -0.58812 -0.45415 :; 

0.47047 0.46497 0.44901 0.42763 0.43125 0.42491 0.32812 3 

0.040711 0.040235 0.038854 0.037004 0.037317 0.036768 0.028393 3 

-0.20662 -0.2042 ·0.19719 -0.1878 -0.18939 -0.18661 -0.1441 3 

-1.172 -1.1583 ·1.1186 -1.0653 -1.0743 -1.0585 -0.81742 3 

0.52758 0.52141 0.50351 0.47953 0.4836 0.47649 0.36795 3 

0.88437 0.87403 0.84403 0.80384 0.81065 0.79873 0.61679 3 

0.82372 0.81409 0.78615 0.74871 0.75506 0.74395 0.57449 3 

-2.3113 -2.2843 -2.2059 -2.1008 -2.1186 -2.0875 -1.612 3 

0.63843 0.63096 0.60931 0.58029 0.58521 0.57661 0.44526 3 

-0.34918 -0.3451 -0.33325 -0.31739 -0.32008 -0.31537 -0.24353 :; 

0.17176 0.16976 0.16393 0.15612 0.15745 0.15513 0.11979 3 

1.0198 1.0079 0.97326 0.92692 0.93477 0.92103 0.71123 3 
-.--- ~ L 



...... 
-+:>­
Vl 

Price 

-0.11541 

0.64875 

-0.35196 

0.38366 

0.76775 

0.90127 

0.71691 

0.65816 

0.18436 

0.2353 

'-0.73169 

-1.9123 

0.89982 

-1%91 

0.89448 

-0.25076 

0.68395 

-1.9411 

0.20003 

0.84742 

0.46411 

0.22911 

0.49045 

0.82535 

-0014616 

0.62704 

-1.3111 

0.89712 

-1.1568 

0.19207 

0.062896 

CityMPG 

-0.11983 

0.67358 

-0.36543 

0.39835 

0.79714 

0.93576 

0.74435 

0.68335 

0.19141 

0.2443 

-0.75969 

-1.9855 

0.93426 

-1.6292 

0.92871 

-0.26036 

0.71012 

-2.0154 

0.20769 

0.87985 

0.48187 

0.23788 

0.50922 

0.85694 

-0.015175 

0.65104 

-1.3612 

0.93146 

-1.2011 

0.19943 

0.065303 

High Way # Cylinders 
MPG 
-0.12924 -0.1365 

0.7265 0.76727 

-0.39414 -0.41626 

0.42964 0.45375 

0.85976 0.90802 

1.0093 1.0659 

0.80283 0.84789 

0.73704 0.7784 

0.20645 0.21804 

0.2635 0.27828 

-0.81938 -0.86536 

-2.1415 -2.2617 

1.0077 1.0642 

-1.7572 -1.8558 

1.0017 1.0579 

-0.28081 -0.29657 

0.76592 0.8089 

-2.1738 -2.2958 

0.224 0.23658 

0.94898 1.0022 

0.51973 0.5489 

0.25657 0.27097 

0.54922 0.58005 

0.92427 0.97614 

-0.016367 -0.017286 

0.70219 0.7416 

-1.4682 -1.5506 

1.0046 1.061 

-1.2954 -1.3681 

0.21509 0.22716 

0.070434 0.074387 

Engine Size Horse Power RPM at max 
HP 

-0.16137 -0.21866 -0.11451 

0.90708 1.2291 0.6437 

-0.49211 -0.66682 -0.34922 

0.53644 0.72688 0.38068 

1.0735 1.4546 0.76178 

1.2602 1.7075 0.89426 

1.0024 1.3583 0.71134 

0.92024 1.2469 0.65304 

0.25777 0.34928 0.18292 

0.32899 0.44579 0.23347 

-1.023 -1.3862 -0.726 

-2.6738 -3.6231 -1.8975 

1.2581 1.7048 0.89282 

-2.1939 -2.9728 -1.5569 

1.2507 1.6947 0.88752 

-0.35061 -0.47509 -0.24881 

0.9563 1.2958 0.67863 

-2.7141 -3.6776 -1.926 

0.27969 0.37898 0.19848 

1.1849 1.6055 0.84083 

0.64892 0.8793 0.4605 

0.32035 0.43408 0.22733 

0.68574 0.92919 0.48663 

1.154 1.5637 0.81893 

-0.020436 -0.027691 -0.014502 

0.87673 1.188 0.62216 

-1.8331 -2.4839 -1.3009 

1.2544 1.6997 0.89015 

-1.6174 -2.1916 -1.1478 

0.26856 0.3639 0.19058 

0.087942 0.11916 0.062407 
-

Revs/min Fuel Tank Passenger Capacity Length Width Wheel Base Weight Class 
Capacity 

-0.091918 -0.14051 -0.15288 -0.13481 -0.13316 -0.13316 -0.25362 4 

0.51668 0.78984 0.85934 0.7578 0.74849 0.74849 1.4256 4 

-0.28031 -0.4285 -0.46621 -0.41112 -0.40607 -0.40607 -0.77343 4 

0.30556 0.4671 0.5082 0.44815 0.44265 0.44265 0.8431 4 

0.61146 0.93472 1.017 0.89681 0.88579 0.88579 1.6871 4 

0.7178 1.0973 1.1938 1.0528 1.0398 1.0398 1.9805 4 
I 

0.57097 0.87282 0.94963 0.83742 0.82713 0.82713 1.5754 4 i 

0.52418 0.80129 0.87181 0.76879 0.75934 0.75934 1.4463 4 

0.14683 0.22445 0.2442 0.21535 0.2127 0.2127 0.40512 4 

0.1874 0.28647 0.31168 0.27485 0.27147 0.27147 0.51706 ..\ 

-0.58274 -0.89081 -0.9692 -0.85468 -0.84418 -0.84418 -1.6079 4 

-1.523 -2.3282 -2.5331 -2.2338 -2.2063 -2.2063 -4.2024 4 

0.71665 1.0955 1.1919 1.0511 1.0382 1.0382 1.9774 4 

-1.2497 -1.9103 -2.0785 -1.8329 -1.8103 -1.8103 -3.4481 4 

0.71239 1.089 1.1848 1.0448 1.032 1.032 1.9656 4 

-0.19971 -0.3053 -0.33216 -0.29291 -0.28931 -0.28931 -0.55105 4 

0.54472 0.83269 0.90597 0.79891 0.7891 0.7891 1.503 4 

-1.546 -2.3633 -2.5712 -2.2674 -2.2395 -2.2395 -4.2656 4 

0.15931 0.24353 0.26497 0.23366 0.23078 0.23078 0.43957 4 

0.67491 1.0317 1.1225 0.98986 0.9777 0.9777 1.8622 4 

0.36963 0.56504 0.61477 0.54212 0.53546 0.53546 1.0199 4 

0.18247 0.27894 0.30349 0.26763 0.26434 0.26434 0.50348 4 

0.39061 0.59711 0.64965 0.57289 0.56585 0.56585 1.0778 4 

0.65734 1.0048 1.0933 0.96409 0.95224 0.95224 1.8137 4 

-0.01164 -0.017794 -0.01936 -0.017073 -0.016863 -0.016863 -0.032118 4 

0.4994 0.76341 0.83059 0.73244 0.72344 0.72344 1.3779 4 

-1.0442 -1.5962 -1.7366 -1.5314 -1.5126 -1.5126 -2.881 4 

0.7145 1.0922 1.1883 1.0479 1.035 1.035 1.9714 4 

-0.92131 -1.4084 -1.5323 -1.3512 -1.3346 -1.3346 -2.5421 4 

0.15297 0.23385 0.25442 0.22436 0.2216 0.2216 0.42208 4 

0.050092 0.076575 0.083313 0.073468 0.072566 0.072566 0.13821 4 
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MPG 

# Cylinders Engine Size Hors.e Pow~r RPM at max 
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OA2727 0.50512 0.68445 O.~5846 

0.95597 1.1302 L5314 0.S0202 

0.756-11 0.89425 1.2117 063459 

0.65268 0.77161 1.1l455 0.54757 
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-0.26996 -0.28556 -0.36-117 -0.21705 

0.8144 0.86145 1.0986 0.65477 

0.18666 0.19744 0.2S18 0.15007 

·069491 ·0.73506 ·0.93742 ·0.5587 

0.67982 0.7191 0.91707 0.54657 

0.49482 0.52341 0.6675 0.3978:~ 

-0.17061 -0.18046 -O.DOIS -0.13717 

-1.6731 -1.7697 -2.2569 -1.3451 

·0.12319 ·0.13031 -0.16619 -0.099047 

-0.571 -0.60399 -0.77028 -0.45908 

# Cylinders Engine Size Horse Power RPM al max 
HI' 

Revs/min Fuel Tank Pass.enger Capacity Length Width \Vhcc! Bast: \Veigh! CLI'-,~ 

Canacitv 
0.28772 0.43983 OA7R54 0,42199 O.416KI 0.41A~1 O.7'HXK -I 

0.64376 0.984()9 1.0707 094417 O.9'257 0.<)'257 1.7762 .) 

O.5()937 o 77B66 0.84718 0.74707 0.73789 O.7:l7R<J 140".5 ·1 

0.43952 0.67188 n.nl 0.64462 0.6367 0.6367 1.2127 4 

-0.57217 -0.87465 -0.95162 -OR3')17 ·0.82886 -0.82886 -1.5787 .1 

0.65498 1.0012 !'()89.l 0.96062 0.94882 0.94882 I.XIIT' 4 

0.038871 0.059421 0.06465 0.05701 0.05631 0.05631 () IOn.' -l 

0.64851 0.99136 1.0786 0.95114 0.9,946 O')Y)46 I n94 -+ 

-0.44609 ·O.uSI'l2 -0.7419, -0.65425 -0.64622 -0(,4622 -1.2:1()X .+ 

0.44013 0.67296 0.7:1218 0.64566 0.6377-' ().6.~77:1 12147 -1 

0.50522 0.77231 OX:1027 0.74098 onlS? 0.7.1187 1.3')4 .) 

-(),0045734 -0'()()69912 -00076064 -0.IX167076 ·0.0066252 -0 (Xl(,62<2 -OOI2I,IQ -j 

-1.0254 -1.5675 -1.7054 ·1.5039 -1,4854 ·1.4854 -2 X2q~ -1 

0,456-12 0.69771 0.7591 0.6694 0.66118 O.6611X 1.25')3 .) 

0.68395 1.0455 1.1375 J.(~m 0.99079 0.99079 1.8X71 .+ 

0.16604 0.25382 0.2761S 0.24352 O.240S3 0.2405:1 ().'+5~1' -l 

0.70594 1.0791 1.1741 ImS4 I.onn 1.0226 I.~-ln .( 

0.14606 0.22328 0.2429, 0.2142"1 0.21159 O.2115'l 1l40'102 .( 

-0.34543 -0.52805 -0.574S2 -0.5%63 -O.5()(l41 ·O.SO()':)I -0.9S.111 -:\ 

-0.17249 ·0.19749 -0.16635 ·0.21234 -0.19776 -0.21734 ·0.27129 5 

·O.2()9 -0.2393 -O.20IS7 -0.2573 -0.23963 -0.26.13.5 -lJ._ ... ~~n2 'i 

063051 0.72191 0.6080R 0.77619 0.72289 079446 (l'N I 64 '> 

0.I44S1 0.16546 O.IW37 01779 Ol65hH O.IH20'1 022728 .'i 

·0.538 -0.61S99 ·0.51886 -0.66231 -061682 -0.677W) -0.X-l615 'i 

0.52632 0.60262 0.5076 064793 0.00343 0.66318 11X277X 'i 

0.38309 0.43862 0.30946 0.4716 0.43922 0.4827 0.60251 ) 

-0.13208 -0.15123 ·0.12739 -0.1626 ·().15144 -0.16643 -0.2077.+ :i 

-1.2953 -1.4831 ·1.2492 ·1.5946 -1.4851 -1.6.\21 -2.m72 'i 

-0.095377 -0.1092 ·0091985 ·O.Il741 ·0.11)935 -O.120IR -0. I 5(X)) 5 

-0.44207 ·0.50616 -0.42635 -0.54422 -0.5(1684 -1J.55702 ·().6952X :i 

Revs/min Fuel Tank Passenger Capacity Length Width Wheel Base Vv'ci~ht ('b"" 
Capacity 
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0.411693 0.1'13<)1 0.62989 0,37541 
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0,49565 056751 OA7803 0.6101X 056827 0.62454 0.77955 " 
0.59296 0.67Sl)2 0.57187 0.72997 0.67984 0.74715 09.12:;~ 'i 

-0.23619 -0.27043 -0.22779 -0.29076 -0.2708 -0.29761 -0. :171·\7 " 
0.049051 0.056162 (J.()47307 0.060385 0,056238 (U16IX06 O.077i·16 , 

-1.0379 -1.1883 -1.0009 -1.2777 -I 1899 -U077 -IF'2\ " 
-028381 -0,31496 -0,27.172 -0.34939 -0.3254 -(US761 -0 44(,\j " 
-0.32162 -0.36824 -0.310IR -0.39593 ·0,:\687-1 -0,40525 -0,'05", , 
0.79035 0.90493 0.76224 0.97297 0.90615 O.'N586 12-D , 
0.56774 0.65004 0.54754 0.69891 0.65{m 0.71536 {UN]')2 'i 

0,451 0,51638 0,43496 (J,5S52 0.51707 056827 n.70')' I 'i 

0.68621 0.78568 0.6618 0.84476 O.7R674 08641>4 10792 , I 

0,1247 0.14278 0,12027 0.15352 0.14297 0.15713 () 1')1>1.1 :.:; 

0.71705 0,821 0.69155 0.8827:1 0.82211 0.9D.'SI I 127~ " 
-0.19223 -0,22009 -0.18539 -0,2366-1 -0,2203') -0,24221 -11.'02.1_\ , 
0.20289 0.2323 0.19567 0.24977 0.23261 IU55ti4 Ii. 3 I 'J I 'i 

0.23898 0.27363 0,23048 0.2942 0.274 (UOl12 O.175X(, ') 

-0.024054 -0027541 -0.onI99 -0.02%12 -0.027579 -00~O309 -0.!1.l7K32 5 

0,39477 OA52 0.38073 0,48598 0.45261 0,49742 O.620XX 'i 

-1.3193 -1.5105 -1.2724 -1.6241 -1.5126 -I ,6()2~ -2074') " 
0.32385 0,3708 0.31233 0,~9868 0,3713 U.40806 0.50')14 'i 
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0.50626 0.57965 0.48825 0,62,23 0.58043 0.6379 IJ 7'-1623 ) 

0.73924 0,8464 0.71294 0.91004 0.84754 O'iJ 146 I 162(, , 
0.35506 OA0653 0.34243 0.43709 OA070X O.44nx ()55X42 5 

-0,68207 -0.78095 -0,65781 -0.83967 -0.781 -O.X';<143 -10727 , 
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Revs/min fuel Tank Passenger Capacity Length Width Wheel Base \}·icig.ht Cia" 
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Appendix I 

MATLAB Code of the Practical Experiment for the Multi-Layer Perceptron 

Code for the Training Process: 

load CarsTrain.mat X ; 

[n m] = size(X); 
Samples=X(:,1: 14); 
Vlabels=X(:,15); 

for i=l:n 
switch Vlabels(i) 

case 1 
Ydes(i,:)=[O 0 0 0 1];% Class 1 

case 2 
Ydes(i,:)=[O 0 0 1 0];% Class 2 

case 3 
Ydes(i,:)=[O 0 1 00];% Class 3 

case 4 
Ydes(i,:)=[O 1 000];% Class 4 

case 5 
Ydes(i,:)=[1 0000];% Class 5 

end 
end; 

IR=minmax(Samples'); 
%break; 
% Experiment 1 
%net = newff(IR, [5],{'logsig'},'traingdx'); 

% Experiment 2 
%net = newff(IR, [5 5],{'logsig' 'logsig'},'traingdx'); 

% Experiment 3 
%net = newff(IR, [10 5],{'logsig' 'logsig'},'traingdx'); 

% Experiment 4 
%net = newff(IR, [15 5], {'logsig' 'logsig'} ,'traingdx'); 

% Experiment 5 
% net = newff(IR, [5 5 5], {'logsig' 'logsig' 'logsig'} ,'traingdx'); 

% Experiment 6 
%net = newff(IR, [105 5],{'logsig' 'logsig' 'logsig'},'traingdx'); 
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% Experiment 7 
%net = newff(IR, [15 5 5],{'logsig' 'logsig' 'logsig'},'traingdx'); 

% Experiment 8 
%net = newff(IR, [15 10 5], {'logsig' 'logsig' 'logsig'}, 'traingdx '); 

% Experiment 9 
net = newff(IR, [15 15 5], {'logsig' 'logsig' 'logsig' },'traingdx'); 
nettrainParam.epochs = 2500; 
net = train(net,Samples', Y des'); 
Y = sim(net,Samples'); 
Compare=[Y' Y des]; 
% Accuracy Computation 
Er=O; 
ConfMat = [00000;00000;00000;00000;00000]; 
for j=l:n 

[rnx ix]=max(CompareU,I:5»; 

if CompareU,6: 10) == [0000 1] 
if( CompareU ,ix + 5)-= 1) 
Er=Er+l; 
if ix==1 

ConfMat (1,5) = ConfMat (1,5)+ 1 ; 
end; 
if ix==2 

ConfMat (1,4) = ConfMat (1,4)+ 1 ; 
end; 
ifix==3 

ConfMat (1,3) = ConfMat (1,3)+ 1; 
end; 
ifix==4 

ConfMat (1,2) = ConfMat (1,2)+ 1 ; 
end; 

else 
ConfMat (l, 1) = ConfMat (l, 1)+ 1 ; 

end; 
end; 

if CompareU,6: 10) == [000 1 0] 
if(Compare(j,ix+5)-=I) 
Er=Er+l; 
if ix==1 

ConfMat (2,5) = ConfMat (2,5)+ 1 ; 
end; 
if ix==2 
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ConfMat (2,4) = ConfMat (2,4)+ 1; 
end; 
if ix==3 

ConfMat (2,3) = ContMat (2,3)+1; 
end; 
if ix==5 

ConfMat (2,1) = ConfMat (2,1)+1; 
end; 

else 
ConfMat (2,2) = ContMat (2,2)+ 1; 

end; 
end; 

if Compare(j,6: 10) == [00 1 00] 
if( Compare(j ,ix + 5)-= 1) 
Er=Er+l; 
if ix==1 

ConfMat (3,5) = ConfMat (3,5)+1; 
end; 
if ix==2 

ConfMat (3,4) = ConfMat (3,4)+1; 
end; 
ifix==4 

ConfMat (3,2) = ConfMat (3,2)+1; 
end; 
if ix==5 

ConfMat (3,1) = ConfMat (3,1)+1; 
end; 

else 
ConfMat (3,3) = ConfMat (3,3)+ 1; 

end; 
end; 

if Compare(j,6: 10) == [0 1 000] 
if( Compare(j ,ix + 5)-= 1) 
Er=Er+l; 
if ix==1 

ConfMat (4,5) = ConfMat (4,5)+ 1; 
end; 
if ix==3 

ConfMat (4,3) = ConfMat (4,3)+1; 
end; 
if ix==4 

ConfMat (4,2) = ConfMat (4,2)+ 1; 
end; 
if ix==5 
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ConfMat (4,1) = ConfMat (4,1)+1; 
end; 

else 
ConfMat (4,4) = ConfMat (4,4)+1; 

end; 
end; 

if Cornpare(j,6: 10) == [1 0000] 
if( Cornpare(j ,ix + 5 )-= 1 ) 
Er=Er+1; 
if ix==2 

ConfMat (5,4) = ConfMat (5,4)+ 1 ; 
end; 
if ix==3 

ConfMat (5,3) = ConfMat (5,3)+ 1; 
end; 
if ix==4 

ConfMat (5,2) = ConfMat (5,2)+ 1; 
end; 
if ix==5 

ConfMat (5,1) = ConfMat (5,1)+1; 
end; 

else 
ConfMat (5,5) = ConfMat (5,5)+ 1; 

end; 
end; 

end; 

Training_Accuracy = 100*«n-Er)/n); 

Code for the Testing Process: 

load CarsTest.rnat X 

[n rn] = size(X); 
Sarnples=X(:,l: 14); 
Vlabels=X(:,15); 

for i=l:n 
switch Vlabels(i) 

case 1 
Ydes(i,:)=[O 0 0 0 1];% Class 1 

case 2 
Ydes(i,:)=[O 0 0 1 0];% Class 2 

case 3 
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Ydes(i,:)=[O 0100];% Class 3 
case 4 

Ydes(i,:)=[O 1000];% Class 4 
case 5 

Ydes(i,:)=[l 0000];% Class 5 
end 

end; 

IR=minmax(Samples'); 
Y = sim(net,Samples'); 
Compare=[Y' Ydes]; 

% Accuracy Computation 
Er=O; 
ConfMaCTest = [00000;00000;00000;00000;00000]; 
for j=1:n 

k=O; 
[rnx ix]=max(CompareU, 1 :5)); 

if CompareU,6: 10) == [0000 1] 
if(CompareU,ix+5)-=1 ) 
Er=Er+1; 
ifix==l 

ConfMaCTest (1,5) = ConfMaCTest (1,5)+1; 
end; 
if ix==2 

ConfMaCTest (1,4) = ConfMat_Test (1,4)+1; 
end; 
if ix==3 

ConfMacTest (1,3) = ConfMat_Test (1,3)+1; 
end; 
if ix==4 

ConfMacTest (1,2) = ConfMat_Test (1,2)+ 1; 
end; 

else 
ConfMaCTest (1,1) = ConfMaCTest (1,1)+1; 

end; 
end; 

if CompareU,6:1O) == [00010] 
if(CompareU,ix+5)-=1 ) 
Er=Er+1; 
ifix==l 

ConfMaCTest (2,5) = ConfMaCTest (2,5)+1; 
end; 
if ix==2 
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ConfMat_ Test (2,4) = ConfMac Test (2,4)+ 1 ; 
end; 
if ix==3 

ConfMaCTest (2,3) = ConfMaCTest (2,3)+1; 
end; 
if ix==5 

ConfMac Test (2,1) = ConfMat_ Test (2,1)+ 1; 
end; 

else 
ConfMaC Test (2,2) = ConfMaC Test (2,2)+ 1; 

end; 
end; 

if CompareU,6: 10) == [00 1 00] 
if(CompareU,ix+5)-=1) 
Er=Er+1; 
if ix==l 

ConfMaCTest (3,5) = ConfMacTest (3,5)+1; 
end; 
if ix==2 

ConfMacTest (3,4) = ConfMaCTest (3,4)+1; 
end; 
if ix==4 

ConfMaCTest (3,2) = ConfMacTest (3,2)+1; 
end; 
if ix==5 

ConfMaCTest (3,1) = ConfMacTest (3,1)+1; 
end; 

else 
ConfMaCTest (3,3) = ConfMacTest (3,3)+1; 

end; 
end; 
if Compare(j,6: 10) == [0 1 000] 

if(CompareU,ix+5)-=1) 
Er=Er+1; 
if ix==l 

ContMaCTest (4,5) = ConfMaCTest (4,5)+1; 
end; 
if ix==3 

ConfMaCTest (4,3) = ConfMat_Test (4,3)+1; 
end; 
if ix==4 

ConfMaCTest (4,2) = ConfMacTest (4,2)+1; 
end; 
if ix::::::::5 

ConfMaCTest (4,1):::: ConfMacTest (4,1)+1; 
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end; 
else 

ConfMaC Test (4,4) = ConfMaC Test (4,4)+ 1; 
end; 

end; 

if CompareU,6: 10) == [1 0000] 
if(CompareU,ix+5)-=1) 
Er=Er+1; 
if ix==2 

ConfMaCTest (5,4) = ConfMat_Test (5,4)+1; 
end; 
if ix==3 

ConfMaCTest (5,3) = ConfMat_Test (5,3)+1; 
end; 
if ix==4 

ConfMaCTest (5,2) = ConfMaCTest (5,2)+1; 
end; 
if ix==5 

ConfMaCTest (5,1) = ConfMaCTest (5,1)+1; 
end; 

else 

end; 
end; 

end; 

ConfMaCTest (5,5) = ConfMaCTest (5,5)+1; 

Testing_Accuracy = 100*((n-Er)/n); 
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