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ABSTRACT

One of the most challenging aspects of studying galaxies in the z 7 universe is the infrequent confirmation of
their redshifts through spectroscopy, a phenomenon thought to occur from the increasing opacity of the
intergalactic medium to Lyα photons at >z 6.5. The resulting redshift uncertainties inhibit the efficient search for
[C II] in ~z 7 galaxies with sub-millimeter instruments such as ALMA, given their limited scan speed for faint
lines. One means by which to improve the precision of the inferred redshifts is to exploit the potential impact of
strong nebular emission lines on the colors of z ∼ 4 – 8 galaxies as observed by Spitzer/IRAC. At ~z 6.8, galaxies
exhibit IRAC colors as blue as - ~ -[3.6] [4.5] 1, likely due to the contribution of [O III]+Hβ to the 3.6 μm flux
combined with the absence of line contamination in the 4.5 μm band. In this paper we explore the use of extremely
blue -[3.6] [4.5] colors to identify galaxies in the narrow redshift window ~z 6.6 – 6.9. When combined with an
I-dropout criterion, we demonstrate that we can plausibly select a relatively clean sample of ~z 6.8 galaxies.
Through a systematic application of this selection technique to our catalogs from all five CANDELS fields, we
identify 20 probable ~z 6.6 – 6.9 galaxies. We estimate that our criteria select the ∼50% strongest line emitters at
~z 6.8 and from the IRAC colors we estimate a typical [O III] b+H rest-frame equivalent width of 1085 Å for this

sample. The small redshift uncertainties on our sample make it particularly well suited for follow-up studies with
facilities such as ALMA.

Key words: galaxies: evolution – galaxies: formation – galaxies: high-redshift

1. INTRODUCTION

Since the installation of the Wide Field Camera 3 (WFC3)
on the Hubble Space Telescope (HST), numerous ultraviolet
(UV) bright galaxies in the reionization era have been detected
through their broadband photometric properties. These obser-
vations allow for the determination of the UV luminosity
function (e.g., Bouwens et al. 2011; Lorenzoni et al. 2011;
Bowler et al. 2012, 2014; Bradley et al. 2012; Oesch et al.
2012, 2013, 2014; McLure et al. 2013; Schenker et al. 2013a)
and the typical UV colors of galaxies out to ~z 8 (Stanway
et al. 2005; Bouwens et al. 2009, 2012, 2013; Wilkins et al.
2011; Dunlop et al. 2012, 2013; Finkelstein et al. 2012).

In contrast to the success of identifying candidate galaxies out
to ~z 8 with HST/WFC3 imaging, confirming the redshift of
these sources with spectroscopy has proven very challenging
due to the absorption of Lyα photons by the neutral Intergalactic
Medium (IGM) at z 6.5 (Pentericci et al. 2011; Finkelstein
et al. 2013; Treu et al. 2013; Caruana et al. 2014; Schenker et al.
2014; Vanzella et al. 2014). This creates particular challenges
for follow-up studies with the newest generation of sub-
millimeter telescopes such as ALMA. ALMA has the potential
to perform detailed studies of star formation rates (SFRs),
kinematic structure, and energetics of z ∼ 6 – 8 galaxies through
the direct detection of sub-millimeter fine structure lines such as
[C II]λ157.7 μm (e.g., Carilli & Walter 2013). However, the
frequency range that ALMA is able to scan in one tuning is
relatively small, making follow-up studies with ALMA on
sources without accurate redshift information observationally
expensive.

One way to make progress in this area involves a search for
the C III]λ1908 Å line in z 6 galaxies (Stark et al. 2014a,
2014b). This line has a typical rest-frame equivalent width
(EW0) of ∼4–14Å in two z ∼ 6 – 7 galaxies where this line has
been successfully located (Stark et al. 2014b) and in low-mass
lensed star-forming galaxies at ~z 2 (Stark et al. 2014a). The
challenge with this approach is the faintness of the CIII] line and
high density of sky lines in many regions of the near-infrared
(IR) spectrum.
Another potentially promising way forward is to utilize the

information provided by the Spitzer/IRAC. Recent studies have
reported evidence for the presence of strong nebular emission
lines such as Hα and [O III]λ5007 Å through the apparent
impact of these lines on the IRAC 3.6 and 4.5 μm fluxes of z ∼
4 – 8 galaxies (Schaerer & de Barros 2009; Shim et al. 2011;
González et al. 2012, 2014; Labbé et al. 2013; Stark et al. 2013;
Smit et al. 2014). These lines appear to cause the -[3.6] [4.5]
colors of high redshift galaxies to vary significantly as a
function of redshift. This results in modestly blue -[3.6] [4.5]
colors in ~z 6 galaxies, where both bands are contaminated by
emission lines, very blue -[3.6] [4.5] colors at ~z 6.8, where
only the 3.6 μm band suffers line contamination, and red

-[3.6] [4.5] colors for sources at redshifts >z 7, where the
4.5 μm band is contaminated (Labbé et al. 2013; Wilkins
et al. 2013; Laporte et al. 2014; Smit et al. 2014).
In this paper we attempt to exploit the extreme IRAC colors

galaxies exhibit at specific redshifts to isolate galaxies over a
narrow range in redshift. To test this method, we utilize a large
sample of z ∼ 5 – 8 galaxies identified from the CANDELS
program (Grogin et al. 2011; Koekemoer et al. 2011). We
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select a sample of sources with extremely blue [3.6] – [4.5]
IRAC colors and show that these sources likely fall in the
narrow redshift range ~z 6.6 – 6.9. Ultimately, of course, this
approach and the assumptions behind it will need to be tested
through spectroscopy with the James Webb Space Tele-
scope (JWST).

Additionally we discuss a few objects with blue
-[3.6] [4.5] colors that are clearly at z 6.6 from their

HST photometry, and we suggest that these objects could be
explained by high [O III]/Hβ ratios such as found at ~z 3
(Schenker et al. 2013b; Holden et al. 2014).

This paper is organized as follows. Section 2 discusses our
data set and photometric procedure. Section 3 presents the

-[3.6] [4.5] IRAC colors as a function of photometric redshift
for a sample of z ∼ 5 – 8 UV-selected galaxies. Section 4
discusses the selection of extreme -[3.6] [4.5] color galaxies,
and Section 5 presents our ~z 6.6 – 6.9 galaxy sample.
Section 6 gives a short summary of our results.

Throughout this paper we adopt a Salpeter IMF with limits
0.1–100 M (Salpeter 1955). For ease of comparison with
previous studies we take = =- -H 70kms Mpc , Ω 0.3,m0

1 1

and =LΩ 0.7. Magnitudes are quoted in the AB system (Oke
& Gunn 1983)

2. OBSERVATIONS, PHOTOMETRY
AND ~z 5 – 8 SAMPLE

2.1. HST Data and Photometry

The primary sample of z ∼ 5 – 8 galaxies that we use in this
paper was selected from the catalogs described by Bouwens
et al. (2014). The purpose of this sample is to establish how the

-[3.6] [4.5] color of galaxies depends on redshift and also to
establish the redshift distribution of galaxies with the most
extreme IRAC colors. The catalogs were compiled from HST
Advanced Camera for Surveys (ACS) (B V i I, , ,435 606 775 814 and
z850) and WFC3/IR (Y Y J JH, ,098 105 125 140 and H160) data over
the GOODS-N and GOODS-S fields. We also used the deep
and wide-area observations obtained in the HUDF09+HUDF12
(Beckwith et al. 2006; Bouwens et al. 2011; Ellis et al. 2013;
Illingworth et al. 2013), ERS (Windhorst et al. 2011), and
CANDELS (Grogin et al. 2011; Koekemoer et al. 2011)
programs as well as any archival HST observations over these
fields. The shallow JH140 imaging was taken from the 3D-HST
survey (Brammer et al. 2012a) and A Grism Hα Spectroscopic
survey (PI:Weiner). The procedure for reducing the data is
described in detail by Illingworth et al. (2013) and Bouwens
et al. (2014).

A secondary sample of z ∼ 5 – 8 galaxies is used to increase
the number of ~z 6.8 and ~z 6.0 galaxies in our selection.
We derived this sample from the HST data over the
CANDELS-UDS, CANDELS-COSMOS, and CANDELS-
EGS fields (V I J, ,606 814 125 and H160, for more details on the
CANDELS fields see Koekemoer et al. 2011 and Skelton
et al. 2014) and deep U- and B-band ground-based observa-
tions from Canada–France–Hawaii Telescope and Subaru
(Capak et al. 2007; Furusawa et al. 2008).

An overview of all fields, bands and depths is given in Table
1 of Bouwens et al. (2014). Both the ACS and WFC3/IR data
reach total magnitudes of27.2 at 5σ, using as a basis the flux
uncertainties on the total magnitude measurements for the
faintest 20% of galaxies from the Bouwens et al. (2014)

catalogs over these fields. Our total search area over all the
fields is 720 arcmin2.
The photometry followed the procedure described by

Bouwens et al. (2012). In short, we ran an adapted version
of the Source Extractor software (Bertin & Arnouts 1996) in
dual-image mode. The detection images were created by
combining all deep bands redwards of the Lyman break (i.e.,
Y Y J, ,098 105 125 and H160) into a square-root c2 image (Szalay
et al. 1999). After matching the observations to the H160-band
point-spread function (PSF), colors and total magnitudes were
measured in Kron-like apertures with Kron factors 1.6 and 2.5
respectively (defined on the H160-band).

2.2. Spitzer/IRAC Data and Photometry

The first part of our Spitzer/IRAC data set covers all five
CANDELS fields with the 3.6 and 4.5 μm bands5 from the
Spitzer Extended Deep Survey (PI: Fazio) and all available
archival data sets from before 2011 (Ashby et al. 2013). We
complement this data set with the new deep IRAC imaging
from the Spitzer Very Deep Survey (S-CANDELS) Explora-
tion Science Project (Ashby et al. 2015), which brings the
IRAC coverage up to 50 hr in depth (26.8 mag at 5σ in the
3.6 μm band). For the sources in the HUDF, we utilize
additional data from the IRAC Ultra Deep Field (Labbé
et al. 2013) program.
Before performing photometry on the sources in our sample,

we removed the contamination of foreground sources with an
automated cleaning procedure (Labbé et al. 2010a, 2010b). In
short, the HST images provided a high-spatial resolution
template with which to model the positions and flux profiles of
the foreground sources. The light profiles of individual sources
in the HST image were convolved with a kernel to match the
IRAC PSF and then simultaneously fitted to the IRAC image
within a region of ∼11arcsec around the sources from our
sample. We subtracted the flux from the foreground galaxies
and performed photometry in 2″.0-diameter circular apertures on
the resulting images. We applied a correction to account for the
flux outside of the aperture, given by the ratio of the flux
enclosed in the photometric aperture in the HST image (before
convolution) to the IRAC model (after convolution). This
correction ranges from~ ´2.2 to~ ´2.4 , depending on the size
of the source. The local noise was estimated from the clean
background on a residual IRAC image from which all sources
were subtracted. Our procedure for deblending can fail when
contaminating sources are too bright or too close to the central
source. We removed sources from our sample with a high c2

parameter determined from the residual IRAC image (see
Section 2.3).

2.3. Base Sample of z~ 5 – 8 Galaxies

In this section, we present the base sample of z ∼ 5 – 8
galaxies we use to study how the IRAC colors of star-forming
galaxies depend upon redshift. We selected our sources from
which we measure IRAC colors in the rest-frame UV, adopting
the Lyman-break technique (Steidel et al. 1999) with the
requirement that the source drops out in the I814 band.
Specifically, our requirements for z ∼ 5 – 8 Lyman Break

5 http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/calibrationfiles/
spectralresponse/
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Galaxies (LBGs) were

- >  - <( ) ( )I J J H0.8 0.4814 125 125 160

 - > - +( ( ) )I J J H2 0.8 , (1)814 125 125 160

where ∧ indicates logical AND. We chose the I814 and J125
band fluxes for our identification of z 5 LBGs, instead of
more closely spaced passbands like z850 and Y105, which are
available over the GOODS-N and GOODS-S fields. While this
is less optimal for selecting a sample of galaxies with the
lowest contamination rate, these bands were chosen in order to
select galaxies over a relatively extended redshift range ~z 5.5
– ~z 8.5 (without any gaps) and to use filters that are available
over all five CANDELS fields for a more uniform selection.
Information from the more closely spaced bandpasses was
nevertheless utilized in deriving photometric redshifts for
sources from our selection and hence determining the relation-
ship between the IRAC colors of sources and their redshifts.

We also required sources to have either a non-detection in
the V606 band ( s<2 ) or to have a very strong Lyman break, i.e.,

- >V J 2.5606 125 . Furthermore, we required sources to be
undetected ( s<2 ) in the available B435-band data over GOODS
north and south or, in the case of the CANDELS UDS,
COSMOS, or EGS fields, to be undetected ( s<2.5 ) in the c2

statistic image Bouwens et al. (2014) derived from the ground-
based U and B images. We required the SExtractor stellarity
parameter (equal to 0 and 1 for extended and point sources,
respectively) in the J125 band be less than 0.92 to ensure that
our selection is largely free of contamination by stars (e.g.,
Holwerda et al. 2014). Moreover, the blue IRAC color criterion
introduced in Section 2.3 also selects effectively against
contamination from brown dwarfs in our Milky Way
(Kirkpatrick et al. 2011; B. W. Holwerda et al. 2015, in
preparation). We selected sources with a signal-to-noise ratio
(S/N) >HS N( ) 5160 , and additionally we required

>n nf H ef μ( ) (3.6 m) 2.5160 and >n nf H ef μ( ) (4.5 m) 2.5160 ,
where nf H( )160 is the measured flux density in the H160 band
and nef μ(3.6 m) and nef μ(4.5 m) are the estimated uncertain-
ties in the 3.6 and 4.5 μm band fluxes. Our chosen
requirements explicitly do not include a dependence on the
observed flux in the IRAC bands to ensure that our results are
not biased according to the emission line flux in our candidates.
In practice, most high-redshift sources exhibit a somewhat red
UV-to-optical color (González et al. 2012), and as a result 75%
of our sample is detected at s>5 in the 3.6 μm IRAC band. We
exclude those ∼30% of the sources that show strong residuals
in the IRAC images after our deblending procedure (Sec-
tion 2.2), which results in a final sample of 220 sources in
GOODS-N/S and 224 sources in CANDELS-EGS/UDS/
COSMOS.

3. -[3.6] [4.5] COLOR VERSUS REDSHIFT

Before moving onto a discussion of how the IRAC
-[3.6] [4.5] color might be used to refine redshift determina-

tions for specific >z 6 selections, it is useful to quickly assess
whether our sample agrees with our main assumption: that the

-[3.6] [4.5] color is strongly influenced by the presence of
strong nebular emission lines such as Hα and [O III] in the
IRAC filters. To this end we explore the variation of the median

-[3.6] [4.5] color as a function of redshift for our sample.
Figure 1 shows the colors of our GOODS-N/S sample as a

function of the photometric redshift, as derived from the HST

broadband photometry. We used the software Easy and
Accurate Zphot from Yale (EAZY; Brammer et al. 2008) to
estimate photometric redshifts for the galaxies in our sample.
We used the standard template set of EAZY, but we
complemented these templates with a number of templates
generated with Galaxy Evolutionary Synthesis Models
(GALEV; Kotulla et al. 2009), which includes nebular
continuum and emission lines as described by Anders &
Fritze-v. Alvensleben (2003). Additionally we included a
template with an [OIII]λ4959,5007Å/Hβ ratio of 10 to match
the most extreme line ratios observed in spectroscopy of
galaxies at lower redshifts (Amorín et al. 2012; Brammer
et al. 2012b; Jaskot & Oey 2013; Schenker et al. 2013b; van
der Wel et al. 2013; Holden et al. 2014; Steidel et al. 2014). No
use of the Spitzer/IRAC photometry is made in the photometric
redshift determination to avoid coupling between our redshift
estimates and the measured IRAC fluxes. We do not include
sources from our EGS/UDS/COSMOS sample in Figure 1
because of the lack of deep HST coverage in the z850 and
Y Y105 098 bands, which is needed for obtaining sufficiently
accurate redshifts for the analysis we describe.
We observe a clear discontinuity in the median color (red

points) around ~z 7, where the [O III] emission line moves
from the 3.6 μm to the 4.5 μm band. Moreover, we find the
bluest median -[3.6] [4.5] color at ~z 6.8, where [O III]
boosts the 3.6 μm flux while Hα has already moved out of the
4.5 μm band. This suggests that the IRAC colors are strongly
influenced by emission lines, in agreement with recent studies
(Schaerer & de Barros 2009; Shim et al. 2011; González et al.
2012, 2014; Labbé et al. 2013; Stark et al. 2013; Smit
et al. 2014) and in agreement with predictions of stellar
population synthesis models with emission lines. We can use
this information to improve our determinations of the redshift
probability functions for strong line emitters by including the
IRAC fluxes in our photometric redshift estimates.

4. ULTRA-BLUE -[3.6] [4.5] GALAXIES

In the previous section we showed how the -[3.6] [4.5]
IRAC color would likely change as the [O III] and Hα nebular
lines move in and out of the photometric bands, due to the
redshifting spectrum. We can use this information to
significantly improve our photometric redshift estimates. In
particular the IRAC -[3.6] [4.5] color can provide a valuable
constraint in sources that have uncertain photometric redshifts
from their HST photometry, such as sources over COSMOS,
UDS, or EGS where only 4 HST bands are available. This is
important due to the considerable challenges involved in
improving redshift estimates through spectroscopy (largely due
to the impact of the more neutral IGM on the prevalence of
Lyα emission in >z 6.5 galaxies). In this section we will
investigate a -[3.6] [4.5] color selection on our sample of z ∼
5 – 8 galaxies over the GOODS-N and GOODS-S, where good
photometric redshift constraints are available and in Section 5
we will present a sample of z ∼ 6.6 – 6.9 galaxies over all five
CANDELS fields.

4.1. Blue -[3.6] [4.5] Sources at ~z 6.8

A particularly interesting redshift interval is z ∼ 6.6 – 6.9,
where we expect extreme -[3.6] [4.5] colors due to the
presence of the [O III] line in the 3.6 μm band and the absence
of any strong emission lines in the 4.5 μm band. This is

3
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illustrated in Figure 2. Because the Hα to [O III] line separation
( lD lines) at z = 6.8 is slightly wider than the 4.5 μm filter
width ( lD filter), there is very narrow redshift range

l l lD = D - D =-( )z 0.35lines filter lines,rest frame in which
the 4.5 μm band is free of strong emission lines. In practice,
the effective redshift range where we can observe the extremely
blue IRAC colors is even narrower than this, i.e., D ~z 0.25,
because the relevant wavelength is where [O III] leaves the
3.6 μm filter, not where this line enters the 4.5 μm filter (see
the top panel of Figure 1).

To investigate whether the selection of sources with blue
-[3.6] [4.5] colors can be used to unambiguously identify

galaxies at ~z 6.8, we collected a sample of emission line
candidate galaxies by selecting sources with -[3.6] [4.5]
colors significantly bluer than −0.5 mag. We adopted the
criterion

- < - >P ([3.6] [4.5] 0.5) 84%. (2)

This criterion indicates that the sources in our selection have a
probability (P) of at least 84% to have a true IRAC color bluer
than - < -[3.6] [4.5] 0.5, based on the uncertainties in the
3.6 and 4.5 μm fluxes. We show the galaxies meeting this
color criterion in Figure 3. A color cut in the -[3.6] [4.5] color
can identify galaxies with strong emission lines in the redshift
range z ∼ 6.6 – 6.9, but a galaxy with more moderate emission
lines and very blue continuum -[3.6] [4.5] colors can also
meet the criterion.

We purposely decided to try to select ~z 6.8 galaxies based
on a color criterion rather than fitting emission line templates to
the IRAC bands to obtain photometric redshifts. This was done
to avoid a dependence on the spectral energy distribution
(SED) template set and the assumed line ratios in these
templates. Since the physical properties of the H II regions in
star-forming galaxies, such as gas metallicity and gas density,
strongly influence the line ratios we observe (e.g., Kewley
et al. 2013) we wanted to avoid having our results implicitly
depend on these ratios.
Over the 270 arcmin2 CANDELS/ERS region of GOODS-

north and GOODS-south, 13 sources satisfy this criterion out of
the 220 sources from our base z ∼ 5 – 8 sample. We indicate
these in the top panel of Figure 3 and show a histogram in the
bottom panel of Figure 3. Furthermore, there are 15 sources out
of 224 sources from the base sample over a 450 arcmin2 area in
the CANDELS-EGS/CANDELS-UDS/CANDELS-COSMOS
fields that meet the criterion, but we do not present them in
Figure 3 due to the greater difficulty in determining their
photometric redshifts.
We identify a large number of blue -[3.6] [4.5] sources that

are broadly consistent with a ~z 6.8, similar to the sources
found by Smit et al. (2014). For these galaxies the extreme

-[3.6] [4.5] colors are explained by the likely scenario that the
[O III] emission dominates the 3.6 μm flux while at the same
time the 4.5 μm flux is free of emission line contamination.
Interestingly enough, Figure 3 indicates there might be a few
sources at slightly lower redshift (at ~z 6.0 instead of at
~z 6.8) with such blue IRAC colors; we will discuss these

sources in Section 4.2.
Figure 4 shows four examples of blue -[3.6] [4.5] sources

in GOODS-N/S that are consistent with a ~z 6.8 from their
HST photometry only. We present the redshift probability
function using only the HST bands and also when using
constraints from both Spitzer/IRAC and HST. Due to their

Figure 1. Top panel: a schematic overview of the redshift range where the
strongest nebular lines (Hα, [O III] and [O II]) can contaminate the rest-frame
optical flux in the 3.6 and 4.5 μm bands. Bottom panel: measurements of the

-[3.6] [4.5] color (gray points) in UV-selected galaxies from GOODS-N/S,
placed at their photometric redshift. The red points indicate the median colors
in D =z 0.4 redshift bins (error bars represent the uncertainty in the median,
i.e., s N ). The black dashed line provides an example of the IRAC color at
different redshifts for a source with flat continuum and EW a =(H ) 5000 Å in
combination with emission line ratios as defined by Anders & Fritze-v.
Alvensleben (2003) for sub-solar metallicity = Z Z0.2 . The overall blue

-[3.6] [4.5] colors at <z 7, vs. red -[3.6] [4.5] colors at >z 7 indicate that
in particular the presence of [O III] in the IRAC bands might have a significant
impact on the -[3.6] [4.5] color.

Figure 2. An illustration of the position of the optical nebular emission lines in
a ~z 6.8 star-forming galaxy (red line) with respect to the Spitzer/IRAC
response function (indicated in blue). Our strategy for selecting star-forming
galaxies in the narrow redshift range z ∼ 6.6 – 6.9 capitalizes on the [O III] and
Hα emission lines being separated by almost the same wavelength difference
as the width of Spitzer/IRAC 4.5 μm band. Our -[3.6] [4.5] selection
technique furthermore requires that the [O III] line has not yet dropped out of the
3.6 μm band, which narrows the redshift window where we expect to find
these ultra-blue galaxies, from D ~z 0.35 to D ~z 0.25.

4
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extreme -[3.6] [4.5] colors we can place very tight constraints
on the photometric redshift of these galaxies.

This is particularly useful for follow-up studies to obtain line
detections with sub-millimeter detectors such as ALMA. Line
detections with interferometer arrays are inherently limited in
frequency space by the capabilities of the correlator. ALMA
can roughly observe ∼4 GHz in one tuning in band 6
(211–275 GHz).6 As a reference we indicate the frequency of
the bright [C II]λ157.7 μm line at a given redshift in Figure 4
and we indicate the frequency range that ALMA can observe in
two frequency tunings. With only twice the observing time
required with respect to spectroscopically confirmed sources,
we can typically search the ∼95% probability window for [C II]
emission in these sources.

The selection of galaxies at ~z 6.8 is also of interest for
deriving stellar masses of high-redshift galaxies using Spitzer/
IRAC constraints (Eyles et al. 2005, 2007; Yan et al. 2005,
2006; Labbé et al. 2006; Stark et al. 2009; Yabe et al. 2009;
González et al. 2010, 2011; Labbé et al. 2010b; Curtis-Lake
et al. 2013). In particular, the redshift range z ∼ 6.6 – 7.0
provides us with the only opportunity beyond z 5.4 to
measure the rest-frame optical stellar continuum without the
contamination of nebular line emission in the 4.5 μm band,

allowing for more accurate stellar mass and specific SFR
estimates (e.g., Smit et al. 2014).

4.2. Blue -[3.6] [4.5] Sources at ~z 6.0

In the previous section we showed that a large number of
sources with ultra-blue -[3.6] [4.5] colors very likely have
redshifts in the narrow range 6.6–6.9, where the blue colors can
be easily explained by the presence of [O III] in the 3.6 μm
band, in contrast to the 4.5 μm band that contains no strong
line emission.
Figure 3 also shows a number of very blue -[3.6] [4.5]

sources that prefer a redshift around ~z 6.0 and have a
probability of less than<1% of being at z ∼ 6.6 – 6.9 (based on
the photometric redshift probability distribution using only
HST bands). In the redshift range z ∼ 5.4 – 6.6, [O III] still
contaminates the 3.6 μm band, but the strong Hα line also
boosts the 4.5 μm flux. Both lines are expected to be strong in
young, actively star-forming galaxies, and therefore it is
unclear what the explanation is for the significant spread in

-[3.6] [4.5] colors and in particular the very blue
-[3.6] [4.5] colors observed for a small fraction of the

population. While galaxies containing Active Galactic Nuclei
can exhibit extremely high [O III]/Hβ ratios, this phenomenon is
rare in local galaxies with stellar masses below < M M* 1010

(e.g., Juneau et al. 2013). For our sample of star-forming
galaxies at ~z 6.0, with UV-luminosities ranging from

~ -M 19UV to ~ -M 21UV , we expect nearly all sources to
have stellar masses below this limit (e.g., González et al. 2011;
Salmon et al. 2015). However, we cannot completely rule out
this option based on the limited photometric information
available for these sources.
Figure 5 shows two examples of sources that are at <z 6.6

at high confidence. One source has an IRAC color of
- = - [3.6] [4.5] 1.0 0.4 but a photometric redshift of

-
+5.84 0.30

0.25; the other source has an IRAC color of
- = - [3.6] [4.5] 1.0 0.3 but a photometric redshift of

-
+5.97 0.22

0.22. In both cases, we clearly cannot use the IRAC
colors alone to distinguish between these sources and the
sources from Figure 4, which strongly prefer a redshift around
~z 6.8.
One effect that could influence our estimated photometric

redshifts for these objects—and possibly offer an explanation
for their blue -[3.6] [4.5] colors—is the presence of high EW
Lyα emission in these galaxies. For example Schenker et al.
(2014) show that a 160 Å EW Lyα line can cause the
photometric redshift of a ~z 7.5 galaxy to be underestimated
by as much as D =z 0.2, suggesting that our blue ~z 6.0
sample may actually be at higher redshift. Though our
templates do not include strong Lyα lines, searches for Lyα
have shown a low abundance of Lyα emission at >z 6.5
(Pentericci et al. 2011; Finkelstein et al. 2013; Treu et al. 2013;
Caruana et al. 2014; Schenker et al. 2014), and even at lower
redshifts high-EW Lyα is rarely detected in UV bright
( < -M 20UV ) galaxies (e.g., Stark et al. 2010). Therefore it
seems unlikely to suppose that these blue sources with

~z 6.0phot are actually ~z 6.8 galaxies with strong Lyα
emission.
In order to understand the origin of these extreme IRAC

colors at ~z 6.0 we compare the -[3.6] [4.5] color distribu-
tion of these sources with the colors we would predict based on
a sample of ~z 3 galaxies with near-IR spectroscopy in
Figure 6. In the top panel of Figure 6 we show the sub-sample

Figure 3. Top panel: measurements of the -[3.6] [4.5] color (gray points) in
UV-selected galaxies from GOODS-N/S, placed at their photometric redshift
(see also bottom panel of Figure 1). The blue encircled points indicate sources
that show IRAC colors significantly bluer than - < -[3.6] [4.5] 0.5 (blue
shaded area), as given by Equation (2) (the ultra-blue -[3.6] [4.5] colors for
many sources in the blue shaded area are not significant). Blue circles indicate
sources that are consistent with the redshift range z ∼ 6.6 – 6.9, while blue
squares indicate sources that are at <z 6.6 from their photometric redshift
probability distribution (99% confidence). The solid lines indicate three tracks
of galaxy templates: the dark red solid line indicates a stellar population with
moderate emission lines ( ~aWE 100H ,0 Å) and a flat continuum, the red
dashed lines indicates a young (∼5 Myr) stellar population with strong
emission lines ( ~aWE 1000H ,0 Å) and a flat continuum from moderate dust
extinction ( - ~E B V( ) 0.2), while the dotted–dashed orange line indicates a
young population with strong emission lines, in combination with a high [O III]/
Hβ ratio such as described in Anders & Fritze-v. Alvensleben (2003) for low
metallicity gas ( = Z Z0.2 ) and with blue continuum (dust-free). Bottom
panel: the percentage of the galaxy population that has blue -[3.6] [4.5]
colors, such as defined by Equation (2), at a given photometric redshift. The
presence of extremely blue -[3.6] [4.5] colors is most abundant in galaxy
candidates at ~z 7.

6 A. Lundgren, 2013, ALMA Cycle 2 Technical Handbook Version 1.1,
ALMA, ISBN 978-3-923524-66-2.
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of sources that (with 68% confidence) have a redshift in the
range z ∼ 5.4 – 6.6, where [O III] emission contaminates the
3.6 μm band while at the same time Hα emission contaminates
the 4.5 μm band (see the top panel of Figure 1). In the bottom
panel of Figure 6 we show a prediction of the -[3.6] [4.5]

color distribution from the spectroscopic properties of [O III]
and Hβ in ~z 3 LBGs as listed by Schenker et al. (2013b) and
Holden et al. (2014). These authors find line ratios as high as
[O III]λ4959,5007 Å/Hβ ∼ 10. This strong [O III] flux with
respect to the hydrogen Balmer lines could result in very blue

Figure 4. Four examples of sources selected on their blue IRAC colors (Equation (2)) that have a photometric redshift probability distribution consistent (within the
95% confidence interval) with the redshift range z ∼ 6.6 – 6.9; from top to bottom GSD-2504846559, GSD-2237749136, GND-6427518385, and GND-7035815571
(from the larger Bouwens et al. (2014) catalogs). Left panels: the redshift probability distribution using only the HST bands (black dotted line) and using the
constraints from both HST and Spitzer/IRAC (red line). Due to the substantial impact [O III] emission can have on the 3.6 μm flux, the -[3.6] [4.5] color can set tight
constraints on the redshifts of individual sources. Two ALMA tunings (indicated with the yellow shaded regions) would be sufficient to obtain a spectroscopic redshift
through the [C II]λ158 μm line if one is present within the ∼95% likelihood window. Right panel: Flux densities and 2σ upper limits (black points and arrows) of the
HST and Spitzer/IRAC photometry with the best-fit template (red line). For sources in the redshift window z ∼ 6.6 – 6.9, the 4.5 μm band is not contaminated by
strong emission lines, in contrast with the 3.6 μm band which is dominated by the flux in the [O III] line.
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-[3.6] [4.5] colors if similar sources are present at ~z 6. We
computed the predicted -[3.6] [4.5] colors from the observed
[O III]λ4959,5007 Å EW and an estimate of the Hα EW derived
from the Hβ EW, assuming case B recombination and a flat
continuum in nf . For - =([3.6] [4.5]) 0continuum and assuming
all sources are at z = 6, the [O III] and Hβ EWs allow for a
direct calculation of the -[3.6] [4.5] colors such as shown in
the bottom panel of Figure 6.

The spread in colors in the predicted distribution is smaller
than the spread in the observed distribution at ~z 6.0. Even
when accounting for the spread in -[3.6] [4.5] due to the
observational uncertainties in the IRAC bands, the intrinsic
spread exceeds the width of the predicted distribution (see the
error bars in the top panel of Figure 6). However, this is likely
explained by the spread in the color of the underlying
continuum emission due to different dust content and ages of
the galaxies in the observed distribution, while we assumed a
fixed flat continuum in nf for our predicted colors. A somewhat
evolved population (∼300Myr) and modest dust content
( - ~E B V( ) 0.15) could redden the IRAC color of some of
the observed galaxies by D - ~([3.6] [4.5]) 0.2 (see Fig-
ure 6). Similarly, the -[3.6] [4.5] color of the continuum can
be as blue as −0.4 mag for a very young (10 Myr) and dust-
free galaxy.

Another effect that can change the predicted -[3.6] [4.5]
color distribution is a probable evolution of the emission line
EWs between ~z 3 and ~z 6, e.g., because we are observing
increasingly younger generations of galaxies. Assuming all line

EWs follow the evolution of the Hα EW derived by Fumagalli
et al. (2012) for star-forming galaxies in the redshift range z ∼
0 – 2, the predicted spread in -[3.6] [4.5] color would
increase, while the median predicted -[3.6] [4.5] color would
be bluer by D - =([3.6] [4.5]) 0.23.
From the above comparison we conclude that the blue

-[3.6] [4.5] sources at ~z 6.0 (indicated with the blue
histogram in the top panel of Figure 6) can be explained by the
high [O III]/Hβ values observed in ~z 3 LBGs and a blue
continuum -[3.6] [4.5] color as seen in young galaxies with
low dust content and low metallicity, possibly in combination
with an evolving EW strength of nebular emission lines as a
function of redshift.

5. A FIDUCIAL SAMPLE OF ~z 6.8 EMISSION
LINE GALAXIES

In this section we will present a strategy for the efficient use
of HST+IRAC information to select galaxies over the redshift
range z ∼ 6.6 – 6.9. In Section 4.1 we showed that sources at z
∼ 6.6 – 6.9 have very blue -[3.6] [4.5] colors and that we can
use this information to significantly reduce the uncertainty on

Figure 5. Two examples of sources that prefer a redshift below <z 6.6 (ERS-
2115344329 and GSD-2234402156) from their photometric redshift distribu-
tion (99% confidence), but that also satisfy our -[3.6] [4.5] color criterion
(Equation (2)). Flux densities and upper limits (2σ) of the HST and Spitzer/
IRAC photometry are indicated with black points and arrows, while the best-fit
template is drawn in red. The 4.5 μm band is contaminated by Hα, while the
3.6 μm band is dominated by the flux in the [O III] line. The inset panel in the
top left corner indicates the redshift probability distribution using only the HST
bands (black dotted line) and using the constraints from both HST and Spitzer/
IRAC (red line).

Figure 6. Top panel: the -[3.6] [4.5] color distribution (gray histogram) of
sources with photometric redshifts (from the HST photometry) within the
redshift range z ∼ 5.4 – 6.6 (68% confidence) where [O III] contributes to the
3.6 μm flux, while Hα contributes to the 4.5 μm flux. Sources that satisfy our
ultra-blue IRAC selection criterion (Equation (2)), but prefer a <z 6.6 are
indicated with the blue histogram (note that for a few sources the very blue

-[3.6] [4.5] colors are not significant). The upper error bar on the left side of
the panel indicates the scatter in the -[3.6] [4.5] color distribution due to
photometric uncertainty in the IRAC bands. The lower error bar indicates the
intrinsic scatter, as calculated from the observed scatter and the simulated
IRAC uncertainties. Bottom panel: the predicted -[3.6] [4.5] color distribu-
tion (orange histogram) using the [O III] and Hβ EWs as measured by Schenker
et al. (2013b) and Holden et al. (2014) in ~z 3 LBGs with the MOSFIRE
spectrograph. We predict the -[3.6] [4.5] color assuming Case B recombina-
tion and a flat continuum in nf . Evolution of the EW strength as a function of
redshift (e.g., Smit et al. 2014) will broaden the -[3.6] [4.5] color distribution
and at the same time shift the median color of the distribution to bluer values as
indicated by the left black arrow on the panel. The right black arrow indicates
the shift in -[3.6] [4.5] color when we assume a somewhat more evolved
stellar population with an age of 290 Myr and a dust content of

- =E B V( ) 0.15 (see Section 4.2 for details).
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the redshift determination. However, we also found that a small
number of galaxies at <z 6.6 show extremely blue colors as
well and we cannot distinguish these sources from galaxies in
the redshift range z ∼ 6.6 – 6.9 on the basis of the -[3.6] [4.5]
IRAC colors alone.

5.1. Selection of Our Fiducial ~z 6.8 Sample

To effectively exclude ~z 6 galaxies from our selection of
galaxies in the narrow redshift range z ∼ 6.6 – 6.9, we require
an additional selection criterion besides our -[3.6] [4.5] color
cut (Equation (2)). For our fiducial sample we require that
sources show a significant break across the I814 and J125 bands:

- >I J 2.3. (3)814 125

If I814 is undetected we use the 1σ upper limit to compute the
color. This dropout criterion should effectively exclude the
<z 6.5 contaminating galaxies from our target ~z 6.8

selection (see Figure 7). We will separately select ~z 6
ultra-blue galaxies using a - <I J 2.3814 125 criterion.

We apply the criteria given by Equations (2) and (3) to our
photometric catalogs of sources in all five CANDELS fields
(Bouwens et al. 2014) and find 20 sources in our fiducial
~z 6.8 sample and 8 sources that are likely at lower redshift.

We summarize the properties of the fiducial sample and the
sources that satisfy Equation (2) but not Equation (3) in
Table 1, and we show postage stamps of the sources in
Figures 8 and 9. The typical width of the 68% redshift
confidence intervals for the sources in our fiducial sample as
given by P( +z HST, IRACphot ) is D =z 0.2.

5.2. Ascertaining the Mean Redshift and Contamination
Fraction of the ~z 6.8 Sample

To test the robustness of our selection we stacked the sources
from GOODS-N/S selected by Equations (2) and (3) and we
show the resulting SED in Figure 10. We estimate the mean
redshift for our selected sources from the stacked photometry.

We emphasize that we do not use our flux measurements in the
I814, 3.6 and 4.5 μm bands, due to flux measurements in these
bands playing an important role in the selection of the sources
themselves; this should ensure that our derived redshift is not
significantly biased by the selection process itself. We find a
photometric redshift of = -

+z 6.81phot 0.28
0.25, consistent with the

redshift range z ∼ 6.6 – 6.9. Since the measured flux in the J125
band was also used in the selection of individual sources, it
could have a minor effect on the estimated redshift for the
stacked photometry. Excluding the J125-band flux measure-
ments in deriving the best-fit redshift, gives a photometric
redshift of = z 6.77 0.31phot .
As a test of the robustness of our blue IRAC selection

criterion (Equation (2)) against scatter in the -[3.6] [4.5]
color due to the uncertainties in the 3.6 and 4.5 μm flux
measurements, we simulated the photometric scatter assuming
an intrinsic IRAC color - =[3.6] [4.5] 0 for all sources from
the five CANDELS fields in our z ∼ 5 – 8 base sample. We
simulated the observed colors by adding noise to the 3.6 and
4.5 μm-band fluxes, that match the measured flux uncertainties
(1000× per source). From this simulation we conclude that less
than 0.1 source with an intrinsic IRAC color - =[3.6] [4.5] 0
has scattered into our fiducial selection over all five CANDELS
fields.
The only significant source of interlopers to our fiducial

sample of ~z 6.8 galaxies would seem to arise from galaxies
at <z 6.6. To quantify this interloper fraction, we first estimate
the fraction of ultra-blue -[3.6] [4.5] sources at <z 6.6 from
Figure 6, which is 6%. From the bottom panel of Figure 3 (see
also Table 1) we find that sources in our fiducial sample have
estimated redshifts as far as D ~z 0.3 away from our desired
redshift range z ∼ 6.6 – 6.9. We therefore assume that z ∼ 6.3 –

6.6 galaxies cannot be completely removed from our fiducial
sample using our - <I J 2.3814 125 color criterion (Equa-
tion (3)) and could potentially be contaminating our ~z 6.8
sample. Multiplying those sources from our base sample of
galaxies from all five CANDELS fields (Section 2.3) with

~z HST,phot 6.3 – 6.6 by the 6% fraction with ultra-blue
IRAC colors, we estimate that ∼2.0 sources could have
scattered into our fiducial ~z 6.8 sample from <z 6.6. We
therefore conservatively estimate that ∼90% of the 20 sources
with extreme IRAC colors and -I J814 125 colors > 2.3
(Table 1) lie in the redshift range z ∼ 6.6 – 6.9.
Furthermore, comparing the 20 galaxies from our ~z 6.8,

IRAC ultra-blue sample (90% of which we estimated to lie in
this redshift range: see previous paragraph) with the 35
galaxies estimated to lie in the redshift range z ∼ 6.6 – 6.9 from
the redshifts of our z ∼ 5 – 8 base sample, we estimate that
∼50% of all sources at ~z 6.8 exhibit ultra-blue colors (versus
6% at ~z 6). This makes IRAC ultra-blue sources roughly ∼8
times more common at ~z 6.8 than at <z 6.6. This is useful
to establish, since it indicates that ultra-blue IRAC criteria—
such as we propose—reduce the numbers of contaminants in
our samples significantly, i.e., improving the purity of z ∼
6.6–6.9 selections by a factor of 8 over what one would
manage using HST and ground-based observations alone.

5.3. Quantifying the Rest-frame EWs of [O III]+Hβ in our
~z 6.8 IRAC Ultra-blue Sample

Using the assumption that the 4.5 μm band is free of
emission line contamination at z ∼ 6.6 – 6.9 while the 3.6 μm
band is contaminated by [O III] and Hβ, we can make a

Figure 7. Color–color diagram showing the selection criteria for our fiducial
~z 6.8 sample (blue shaded region) with the color measurements of galaxies

from our base as a sample of z ∼ 5 – 8 galaxies over all five CANDELS fields
(gray points and arrows; non-detections in the I814 band are placed at the 1σ
upper limit). The blue encircled points indicate the 20 selected sources listed in
Table 1, that satisfy our blue IRAC criterion (Equation (2)) as well as a

- >I J 2.3814 125 (see Section 5) criterion (sources that have large uncertainties
in the IRAC color are not selected). The solid lines indicate tracks for three
different galaxy templates as described in Figure 3, with the solid points
indicating the colors of the templates at =z [6.0, 6.5, 7.0].
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Table 1
Properties of Extremely Blue -[3.6] [4.5] Galaxies in Our Samples

ID R.A. Decl. mH160 -I J814 125 -[3.6] [4.5] z HSTphot,
c

+z HSTphot, IRAC
c EW([O III]+Hβ)[Å]

Fiducial ~z 6.8 Samplea

GND-7035815571 12:37:03.586 +62:15:57.18 26.3 ± 0.1 >3.2 −1.0 ± 0.3 -
+7.26 0.34

0.33
-
+6.81 0.07

0.07 1374 ± 415

GND-7025017221 12:37:02.500 +62:17:22.17 26.8 ± 0.1 >2.8 −1.2 ± 0.3 -
+7.25 0.45

0.43
-
+6.76 0.06

0.06 1779 ± 486

GND-6427518385 12:36:42.753 +62:18:38.55 27.0 ± 0.2 2.5 ± 0.9 −1.5 ± 0.4 -
+6.52 0.37

0.37
-
+6.71 0.06

0.08 2591 ± 1095

GND-6372717115 12:36:37.279 +62:17:11.59 26.3 ± 0.1 >3.2 −0.9 ± 0.3 -
+6.75 0.26

0.27
-
+6.70 0.12

0.13 1193 ± 485

GSD-2504846559l 03:32:50.481 -27:46:55.95 25.8 ± 0.1 2.3 ± 0.9 −0.9 ± 0.2 -
+6.83 0.34

0.32
-
+6.78 0.08

0.08 962 ± 293

GSD-2254450533 03:32:25.443 -27:50:53.36 26.3 ± 0.1 >3.3 −1.3 ± 0.3 -
+6.96 0.26

0.26
-
+6.78 0.06

0.06 1471 ± 432

GSD-2237749136 03:32:23.778 -27:49:13.64 26.6 ± 0.1 >3.0 −1.3 ± 0.4 -
+6.90 0.19

0.20
-
+6.74 0.09

0.09 1800 ± 704

GSD-2252146266l 03:32:25.216 -27:46:26.69 26.9 ± 0.1 >3.1 −1.6 ± 0.5 -
+6.94 0.23

0.23
-
+6.75 0.06

0.06 2424 ± 1083

COS-3731073631 10:00:37.310 +02:27:36.31 26.0 ± 0.1 >2.3 −1.5 ± 0.5 -
+7.43 1.23

1.07
-
+6.68 0.14

0.14 1686 ± 676

COS-2987030247d 10:00:29.870 +02:13:02.47 24.8 ± 0.1 2.7 ± 0.8 −1.0 ± 0.1 -
+6.99 1.25

1.16
-
+6.66 0.14

0.14 1128 ± 166

COS-1318939512e 10:00:13.189 +02:23:9.512 25.0 0.1e 2.8 ± 1.0 −1.5 ± 0.4 -
+7.15 0.99

1.07
-
+6.75 0.08

0.09 786 ± 301

COS-3018555981f 10:00:30.185 +02:15:59.81 24.9 ± 0.1 >3.3 −1.2 ± 0.1 -
+7.76 0.82

0.79
-
+6.76 0.07

0.07 1424 ± 143

EGS-4434164969 14:19:44.341 +52:56:49.69 26.3 ± 0.1 >2.6 −1.3 ± 0.5 -
+7.08 1.82

1.41
-
+6.62 0.20

0.19 1321 ± 619

EGS-5711424617 14:19:57.114 +52:52:46.17 25.1 ± 0.1 2.4 ± 0.2 −0.8 ± 0.1 -
+6.33 0.21

0.22
-
+6.47 0.10

0.10 927 ± 149

EGS-3506853076g 14:19:35.068 +52:55:30.76 26.2 ± 0.1 2.9 ± 0.9 −0.9 ± 0.2 -
+7.18 0.82

0.94
-
+6.62 0.16

0.16 1084 ± 298

EGS-1952445714h 14:19:19.524 +52:44:57.14 25.3 ± 0.1 >3.9 −0.7 ± 0.1 -
+7.52 0.66

0.66
-
+6.75 0.11

0.11 768 ± 151

EGS-1350184593l 14:19:13.501 +52:48:45.93 26.5 ± 0.1 >3.2 −1.6 ± 0.6 -
+7.56 0.74

0.71
-
+6.72 0.08

0.09 2391 ± 1196

EGS-2713432218 14:19:27.134 +52:53:22.18 26.1 ± 0.1 >3.1 −0.8 ± 0.2 -
+7.56 0.68

0.66
-
+6.71 0.14

0.13 1048 ± 242

UDS-0089122444 02:17:00.891 -05:12:24.44 26.5 ± 0.2 >2.7 −1.5 ± 0.6 -
+7.34 0.87

0.83
-
+6.70 0.10

0.11 2620 ± 1350

UDS-5754844803i 02:17:57.548 -05:08:44.80 24.8 ± 0.2 2.5 ± 1.1 −0.9 ± 0.1 -
+7.05 1.28

1.08
-
+6.61 0.17

0.19 915 ± 95

~z 6.0 Sampleb

GND-6322718286 12:36:32.273 +62:18:28.67 26.2 ± 0.1 2.0 ± 0.4 −1.1 ± 0.3 -
+7.01 0.24

0.23
-
+6.75 j

0.09
0.08 K

GNW-6390808452 12:36:39.080 +62:08:45.29 26.1 ± 0.2 2.1 ± 0.8 −0.7 ± 0.1 -
+5.87 0.33

0.33
-
+4.84 k

0.03
1.50 K

GSD-2234402156 03:32:23.449 -27:50:21.56 26.5 ± 0.1 1.5 ± 0.3 −1.0 ± 0.3 -
+5.97 0.22

0.22
-
+6.09 k

0.12
0.13 K

GSW-2573853217 03:32:57.381 -27:53:21.78 26.2 ± 0.2 >1.7 −0.8 ± 0.2 -
+6.27 0.26

0.25
-
+6.46 k

0.13
0.13 K

ERS-2115344329 03:32:11.539 -27:44:32.99 26.9 ± 0.1 1.1 ± 0.2 −1.0 ± 0.4 -
+5.84 0.30

0.25
-
+6.03 k

0.21
0.12 K

EGS-2802701763 14:20:28.027 +53:00:17.63 26.5 ± 0.2 1.1 ± 0.3 −1.4 ± 0.5 -
+5.48 0.84

0.54
-
+5.94 k

0.24
0.14 K

UDS-5417745460 02:17:54.177 -05:14:54.60 25.5 ± 0.1 2.2 ± 0.4 −0.7 ± 0.2 -
+6.32 1.23

0.29
-
+6.45 k

0.19
0.18 K

UDS-5125213373 02:17:51.252 -05:11:33.73 25.6 ± 0.1 1.8 ± 0.3 −0.9 ± 0.3 -
+6.01 1.36

0.34
-
+6.25 k

0.15
0.14 K

a In addition to our blue IRAC criterion (see Equation (2)) we require - >I J 2.3814 125 for our fiducial 6.6–6.9 sample. If I814 is undetected we use the 1σ upper limit

to compute the color.
b Here, we list sources with - <I J 2.3814 125 , as well as blue IRAC colors (satifying Equation (2)). Low S/N sources cannot unambiguously be selected in the
~z 6.0 sample, i.e., if they satisfy - <  <I J I2.3 S N( ) 1814 125 814 . However, this is only the case for one source in our sample, i.e., GSW-2573853217. The

photometric redshift estimate of this source indicates that it likely belongs in the ~z 6.0 sample.
c Error bars indicate the 68% confidence interval.
d In the stacked ground-based optical image (inverse variance weighted) this source is detected at 7.9 ± 1.5 nJy. However, this flux appears to derive from a
foreground source, close to our object of interest but distinctly separated in the HST optical images.
e This source is detected at the edge of the HST/WFC3 field of view. We have verified that this source is also detected in the ground-based photometry from the
UltraVISTA survey (see Ilbert et al. 2013). However, the total magnitude for this source measured from ground-based data appears to be somewhat fainter than we
measure for HST, suggesting that our HST stack might be affected by some non-Gaussian noise.
f This source was independently discovered by Tilvi et al. (2013) and Bowler et al. (2014), who estimated a photometric redshift of -

+7.24 0.25
0.38 and -

+6.77 0.19
0.14

respectively.
g This source is only marginally resolved; while its spatial profile and SED are much more consistent with its being a ~z 6.8 galaxy, we cannot completely exclude
the possibility that it is a low-mass star.
h Though the size of this source is consistent with its being a low-mass star, the SED of this source is better fit by a high-redshift galaxy than a stellar tempate.
i This source, better known as ‘Himiko’ (Ouchi et al. 2009, 2013), has a spectroscopic redshift at =az 6.59Ly , consistent with our photometric redshift estimate within
the 68% probability window.
j This source is weakly detected in I814 with - = I J 2.0 0.4814 125 and therefore included in the ~z 6 sample. However, due to a s<1 detection in the z850 band,
our estimated photometric redshift indicates a ~z 6.75 solution.
k The typical uncertainty in +z HST, IRACphot for this ~z 6 sample is very small. The ultra-blue IRAC colors of these galaxies are preferentially fit by the template

with the most extreme [O III]/Hα ratio, which allows for little variation of the colors of the continuum emission and thereby narrows the redshift probability
distribution. However, the shape of the spectral energy distributions of these galaxies (and the range of [O III]/Hα ratios at ~z 6) is unknown, and therefore it is likely
that the width of the redshift probability distribution is underestimated for this particular sample.
l The 4.5 μm images for these candidates require a modest (∼50%) correction for contaminating flux from neighboring sources. While we would expect the
corrections we perform to be generally quite accurate, we flag these candidates as somewhat less robust than the other candidates in our sample.
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prediction of the [O III] strength and estimate the fraction of
high-EW [O III] emitters in the high redshift galaxy population.
The median -[3.6] [4.5] color of our ~z 6.8 sample is −1.2
± 0.3, indicating a typical rest-frame EW0([O III]+H b >) 1000
Å (see Smit et al. 2014).
In order to obtain a more accurate estimate of the [O III] EW,

we calculated the difference between the contaminated 3.6 μm
flux and an estimate of the rest-frame optical continuum flux.
The continuum flux was estimated by fitting the SEDs of the
galaxies with stellar population templates using the Fitting and
Assessment of Synthetic Templates code (Kriek et al. 2009). In

the fitting procedure we used stellar population templates by
Bruzual & Charlot (2003) and constant star formation histories
with ages between 30Myr and the age of the universe at
z = 6.6. We assumed a Salpeter (1955) IMF with limits
0.1–100 M and a Calzetti et al. (2000) dust law. We
considered dust contents between =AV 0 – 1.5 and subsolar
metallicities between 0.2 and 0.4 Z . We only considered the
HST and the 4.5 μm IRAC photometry in deriving our best-fit
model, while excluding the measured 3.6 μm fluxes (due to
their being impacted by the [O III]+Hβ lines). We used the best
fit templates from our fitting procedure to obtain an estimate of

Figure 8. HST H160, Spitzer/IRAC 3.6, and 4.5 μm band postage stamp negative images (8″.4 × 8″.4) of our fiducial sample of galaxies at ~z 6.8 in the CANDELS
fields with extremely blue -[3.6] [4.5] IRAC colors (satisfying Equation (2)) and - >I J 2.3814 125 (see Section 5). The IRAC postage stamps have been cleaned for
contamination from neighboring sources (see Section 2.2). Properties of the sources are listed in Table 1.

Figure 9. HST H160, Spitzer/IRAC 3.6, and 4.5 μm band postage stamp
negative images (8″.4 × 8″.4) of our sample of galaxies at ~z 6.0 in the
CANDELS fields with extremely blue -[3.6] [4.5] IRAC colors (satisfying
Equation (2)) and - <I J 2.3814 125 (see Section 5). The IRAC postage stamps
have been cleaned for contamination from neighboring sources (see
Section 2.2). Properties of the sources are listed in Table 1.

Figure 10. Template fit to the stacked broadband observations of blue
-[3.6] [4.5] galaxies (Equation (2)) that also satisfy - >I J 2.3814 125 (see

Section 5). Fluxes and upper limits (black points and thick arrows) show the
mean HST photometry (error bars obtained from bootstrapping). We do not
include the stacked I814, 3.6 and 4.5 μm band flux measurements (indicated by
the thin arrow and open black points) in this analysis in order to avoid biasing
our photometric redshift due to our use of the -I J814 125 and -[3.6] [4.5]
colors in selecting the sources. The inset panel shows the probability
distribution on the mean redshift for our sample. This distribution has a mean
value of = -

+z 6.81phot 0.28
0.25, consistent with the desired redshift range for our

selection.
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the 3.6 μm continuum flux and from this we derived the rest-
frame EW of the combined [O III]λ4959,5007 Å+Hβ lines.

Our estimates of rest-frame EW0([O III]+Hβ) are listed in
Table 1 and range from ∼900 to >2000 Å with a median of
1375 Å. Though the uncertainties on the EWs are too large for
the>2000 Å EW measurements to be secure, we estimate rest-
frame EWs as high as 1000 Å in the majority of our selected
sources. Nevertheless, we note that the median EW we derive
here will be biased toward high values because we are using the
same -[3.6] [4.5] color measurements to derive the EWs as
we used for the selection. We estimate this bias by
investigating the selection process in a distribution of galaxies
with an intrinsic IRAC color - =[3.6] [4.5] 0 and simulated
the noise in the 3.6 and 4.5 μm bands based on the measured
flux uncertainties. We selected 50% of the sources with the
bluest simulated -[3.6] [4.5] colors (in agreement with our
estimates in Section 5.2) and found these sources have a
median - = -[3.6] [4.5] 0.15. Using this color bias and
Equations (1) and (2) from Smit et al. (2014) and assuming
a flat continuum in nf for these sources, we estimate an
observed bias of ∼290 Å on the measured [O III]+Hβ EW of
1375 Å due to the noise in the IRAC bands. This suggests that
the median EW of our selected sources is really 1085 Å in the
noise-free case.

We show the predicted EW (0 [O III] b+H ) distribution of our
~z 6.8 sample in Figure 11. We compare this distribution with

the EW distribution from the seven lensed sources selected in
the redshift range z ∼ 6.6 – 7.0 reported by Smit et al. (2014)
and comparable intrinsic UV luminosities. We use the same
procedure to derive EWs for these sources as described in the
paragraph above. For one source we use the 1σ upper limit due
to the high uncertainties in the IRAC photometry. The
comparison between the two distributions confirms that our
suggested critera for selecting ~z 6.8 sources rougly selects
the ∼50% most extreme line emitters at that redshift.

The median UV–luminosity of our sample (computed from
the H160-band fluxes and assuming z = 6.75) is

= -M 20.66UV , roughly comparable to the
= - M 20.87 0.26UV

* from the ~z 7 luminosity function
derived by Bouwens et al. (2014). Combining this information
with our calculation in Section 5.2 we argue that roughly ∼50%
of the MUV

* galaxy population at ~z 7 produces extreme
nebular emission lines (EW0([O III]+H b ) 1000 Å) in the
rest-frame optical.
It is interesting to compare these derived EWs to the

observed [O III] b+H EW distribution at ~z 3 reported by
Schenker et al. (2013b) and Holden et al. (2014). In order to
match our ~z 6.8 sample, we use only the 50% most extreme
emitters from the combined Schenker et al. (2013b) and
Holden et al. (2014) samples and calculate a median

b+ = ÅEW ([O iii] H ) 3900 (with a median redshift
~z 3.5). Comparing this number to the mean EW at ~z 6.8

and assuming the evolution of nebular emission line EWs
scales as ~ + z(1 )n (see Fumagalli et al. 2012), we derive
EW (0 [OIII] b+ µ + zH ) (1 )1.9 0.36. This slope is consistent
with the slope derived by Fumagalli et al. (2012) for Hα
EWs over the redshift range z ∼ 0 – 2 ( ~n 1.8) but somewhat
steeper than the slope derived by Labbé et al. (2013), who
found = n 1.2 0.25 over the redshift range z ∼ 1 – 8.

6. SUMMARY AND DISCUSSION

In this paper we explore the use of IRAC colors to select
star-forming galaxies in the narrow redshift range z ∼ 6.6 – 6.9.
Sources in this redshift range are expected to be very blue due
to the boosted flux in the 3.6 μm band from high-EW [O III]
emission, while the 4.5 μm band is free from contamination of
strong nebular emission lines. This suggests that a blue IRAC
criterion may be appropriate for selecting galaxies in the
redshift range z ∼ 6.6 – 6.9.
In evaluating the suitability of such a selection criterion we

analyze a large sample of LBGs in GOODS-N and GOODS-S
with relatively high S/N Spitzer/IRAC coverage from the
Spitzer GOODS, ERS, and S-CANDELS programs (Ashby et
al. 2015). We find that the majority of candidates with
extremely blue -[3.6] [4.5] colors are consistent with ~z 6.8.
In addition to the z ∼ 6.6 – 6.9 sources, we also find a small
number of sources with extreme -[3.6] [4.5] colors more
likely to be at ~z 6.0. The blue -[3.6] [4.5] galaxies at
~z 6.0 can be explained by high [OIII]/Hβ ratios, such as those

found in ~z 3 LBGs (Schenker et al. 2013b; Holden
et al. 2014), lensed galaxies at z ∼ 1 – 2 (Brammer
et al. 2012b; van der Wel et al. 2013), and in Green Pea
galaxies at ~z 0 (Amorín et al. 2012; Jaskot & Oey 2013) in
combination with blue colors for the optical continuum.
To obtain a clear selection in the redshift range z ∼ 6.6 – 6.9,

we suggest the use of ultra-blue IRAC colors combined with an
- >I J 2.3814 125 dropout criterion. Based on our analysis in

Section 5, we estimate that at least 90% of the sources selected
by these criteria lie in the redshift range z ∼ 6.6 – 6.9. We
systematically apply such criteria to our source catalogs from
the five CANDELS fields (720 arcmin2) and find 20 sources
(∼0.03 arcmin−2). A comparison with the total number of
galaxies from our catalogs in this redshift range suggests that
we select the ∼50% bluest IRAC sources at ~z 6.8 at a typical
UV–luminosity ~ =M MUV UV, z 7

* .

Figure 11. Rest-frame EW distribution of [O III]+Hβ (blue filled histogram),
estimated from the sources in our ~z 6.8 sample (see Section 5.3). For
reference we show the EWs of the sources from Smit et al. (2014) that were
selected on their photometric redshift being in the range z ∼ 6.6 – 7.0 (red
histogram). In Section 5.2 we calculated that our fiducial sample roughly
selects the ∼50% strongest line emitters at ~z 6.8. The observed median of the
distribution is 1375 Å rest-frame EW, but correcting for the bias in the
measurement due to scatter in the -[3.6] [4.5] color (for details see
Section 5.3) we estimate a median EW (0 [O III] b+H ) of 1085 Å. The excellent
agreement between our sample and the 50% most extreme sources from Smit
et al. (2014) provides further evidence that high-EW nebular emission lines are
indeed ubiquitous at high redshift.
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We estimate a median uncertainty on the redshift estimates
for our fiducial sources of D =z 0.2 (68% confidence). Such
redshift uncertainties are significantly smaller than one finds for
these objects without the inclusion of the IRAC fluxes. For
example, we find a median 68% confidence interval on
z hst,phot of D =z 0.6 and D =z 1.7, respectively, for sources
in GOODS-N/S and COSMOS/EGS/UDS. Among other uses,
such tight constraints on the redshifts are necessary for efficient
observations with ALMA. Our constraints on the redshift of
these sources means that we should typically only require two
ALMA tunings to successfully observe [C II]λ157.7 μm in
band 6.

Using our fiducial sample of ~z 6.8 sources with ultra-blue
-[3.6] [4.5] colors, we estimate the strength of [O III]

λ4959,5007 Å+Hβ from the contaminated 3.6 μm flux. We
find that the majority of the sources in our sample show EWs as
high as EW0([O III]+H b ) 1000 Å, in excellent agreement
with the ∼50% most extreme sources from Smit et al. (2014).

Given the recent study by Stark et al. (2014a), who found
evidence for strong [O III]ll4959,5007 Å emission in sources
with high-EW [C III]λ1908 Å lines at ~z 2, it seems reason-
able to suppose that our strong [O III] emitters also exhibit
relatively strong [C III] lines, and therefore our sources are
excellent targets for follow-up studies with near-IR spectro-
scopy (e.g., Stark et al. 2014b).

Finally, with the future launch of the JWST, we will be able
to target these extreme line-emitter galaxies with JWST ʼs near-
infrared spectrograph (NIRSpec). The [O III]λ5007 Å line in a
typical galaxy from our sample should be detected at 10σ in the
JWST/NIRSpec R = 100 mode with a mere 60 s exposure.

We thank Jarle Brinchmann, Rob Crain, Paul van der Werf,
and Tim van Kempen for useful discussions. We are grateful to
Brad Holden for providing us with the complete catalog from
Holden et al. (2014). We thank the anonymous referee of our
paper for valuable feedback on our manuscript. We acknowl-
edge support from ERC grant HIGHZ #227749, and an NWO
vrij competitie grant.
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