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ABSTRACT
We study the stellar halo colour properties of six nearby massive highly inclined disc galaxies
using Hubble space telescope Advanced Camera for Surveys and Wide Field Camera 3
observations in both F606W and F814W filters from the GHOSTS (Galaxy Halos, Outer
disks, Substructure, Thick disks, and Star clusters) survey. The observed fields probe the stellar
outskirts out to projected distances of ∼50–70 kpc from their galactic centre along the minor
axis. The 50 per cent completeness levels of the colour–magnitude diagrams are typically at 2
mag below the tip of the red giant branch (RGB). We find that all galaxies have extended stellar
haloes out to ∼50 kpc and two out to ∼70 kpc. We determined the halo colour distribution
and colour profile for each galaxy using the median colours of stars in the RGB. Within each
galaxy, we find variations in the median colours as a function of radius which likely indicates
population variations, reflecting that their outskirts were built from several small accreted
objects. We find that half of the galaxies (NGC 0891, NGC 4565, and NGC 7814) present
a clear negative colour gradient in their haloes, reflecting a declining metallicity; the other
have no significant colour or population gradient. In addition, notwithstanding the modest
sample size of galaxies, there is no strong correlation between their halo colour/metallicity
or gradient with galaxy’s properties such as rotational velocity or stellar mass. The diversity
in halo colour profiles observed in the GHOSTS galaxies qualitatively supports the predicted
galaxy-to-galaxy scatter in halo stellar properties, a consequence of the stochasticity inherent
in the assembling history of galaxies.

Key words: galaxies: evolution – galaxies: haloes – galaxies: photometry – galaxies: spiral –
galaxies: stellar content.

1 IN T RO D U C T I O N

In the � cold dark matter (�CDM) paradigm, galaxies form in
potential wells defined by dark matter haloes (e.g. White & Rees
1978). These haloes grow in great part by the merging of smaller

�Based on observations made with the NASA/ESA Hubble Space Telescope,
obtained at the Space Telescope Science Institute, which is operated by the
Association of Universities for Research in Astronomy, Inc., under NASA
contract NAS 5-26555.
†E-mail: antonela@mpa-garching.mpg.de

subhaloes plus the kinematic heating of disc stars. This produces a
diffuse stellar halo around most galaxies with a structure intimately
tied to the growth and assembly history of the system.

Over the past decade, different approaches have been used to
observe stellar haloes, a challenging task due to their faint surface
brightnesses. Long-exposure wide-field imaging with photographic
plates (Malin & Carter 1980; Malin & Hadley 1997) and with small
telescopes and wide-field CCDs (e.g. Zheng et al. 1999; Martı́nez-
Delgado et al. 2010) has allowed panoramic mapping of the brightest
overdensities in nearby galaxies, revealing numerous tidal streams.
Evidence of stellar halo substructures (e.g. stellar streams, shells,
etc.) in the outer regions of galaxies was possible with these types of

C© 2016 The Authors
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images, proving the importance of merging in the galaxy formation
process. On the other hand, stacks of a large number of similar
galaxies allows us to both reach very low surface brightness limits
and study the average properties of stellar haloes as a function of
certain galaxy parameters, such as halo mass, stellar mass, or bulge-
to-disc ratio (e.g. Zibetti, White & Brinkmann 2004; D’Souza et al.
2014). However, none of these techniques allow for a detailed study
of the physical properties of individual haloes predicted by models,
such as their age and metallicity as a function of galactocentric
distance. Integrated light observations are subject to degeneracies
between age, metallicity, and extinction as well as being limited in
sensitivity due to the sky brightness, flat-field, and scattered light
corrections (de Jong 2008). Even using optics with very low scatter
light (van Dokkum, Abraham & Merritt 2014), it is not possible to
obtain detailed population age and metallicity information.

A more informative but observationally intensive approach for
characterizing the properties of nearby galactic stellar haloes is
to study their resolved stellar populations. It is possible to mea-
sure stellar densities of resolved stars reaching equivalent surface
brightnesses as faint as μV ∼ 33 mag arcsec−2, as well as measuring
the stellar populations of those haloes, which is crucial for testing
model predictions (Monachesi et al. 2013). One such prediction is
that there should be stellar population variations within a halo since
the stellar population of haloes should reflect the various satellites
that form them. In particular, how a halo has formed and evolved
is expected to leave strong imprint on its metallicity or abundance
pattern (e.g. Font et al. 2006a; Tumlinson 2010; Cooper et al. 2010;
Tissera et al. 2013, 2014).

To date, only the resolved stars of the Milky Way (MW) and M31
haloes have been extensively studied. Stellar populations variations
within each halo have been detected by observations in our own MW
(e.g. Ivezić et al. 2008; Bell et al. 2010) as well as in M31 (Brown
et al. 2006; McConnachie et al. 2009; Sarajedini et al. 2012; Gilbert
et al. 2014; Ibata et al. 2014). In addition, whereas the halo of M31
has a clear negative metallicity gradient, with a change of roughly
a dex in metallicity from 9 to 100 kpc (Gilbert et al. 2014; Ibata
et al. 2014), there is little to no metallicity gradient in the MW,
measured using stars 10–50 kpc from the centre of the MW (Sesar,
Jurić & Ivezić 2011; Xue et al. 2015).1 The order of magnitude
difference in stellar halo mass (Bell et al. 2008; Ibata et al. 2014)
and factor of 5 difference in metallicity and difference in gradient
betray large differences in halo growth history (e.g. Gilbert et al.
2012, 2014; Deason et al. 2013). Given the stochasticity involved
in the process of galaxy formation, it is important to enlarge the
sample of observed galactic haloes to understand both the range of
possible halo properties and what a ‘typical’ halo looks like.

Cosmological models of galaxy formation predict that there
should be large variations among the properties of individual haloes
in disc galaxies with similar mass (e.g. Bullock & Johnston 2005;
Cooper et al. 2010; Tissera et al. 2014, see also earlier efforts using
semicosmological simulations by Renda et al. 2005a,b.). Predic-
tions such as differences in metallicity profiles, fraction of stellar
halo created in situ and accreted, stellar halo morphology, etc., need
to be compared against observations to differentiate between the

1 Claims of a steep metallicity gradient by Carollo et al. (2007, 2010)
have since been shown to suffer from strong selection bias by Schönrich,
Asplund & Casagrande (2011). Low-metallicity stars selected for study by
Sloan Extension for Galactic Understanding and Exploration (SEGUE) are
substantially brighter than their somewhat higher metallicity counterparts,
imposing an apparent metallicity gradient.

models and quantify the predicted halo-to-halo scatter. Mouhcine
et al. (2005a,b,c) presented the first study of stellar halo populations
in disc galaxies outside the Local Group. Their sample consists of
four massive and four low-mass disc galaxies. They resolved red
giant branch (RGB) stars using the Wide Field Planetary Camera
2 (WFC2) camera onboard the Hubble Space Telescope (HST) in
fields at projected galactocentric distances between 2 and 13 kpc.
They found that the metallicities of the four massive MW-like galax-
ies are nearly 1 dex higher than the metallicity of the MW halo at a
similar galactocentric distance, suggesting that massive disc galax-
ies with metal-poor haloes are unusual. They also found that the
mean colour of the halo RGB stars in bright galaxies are redder
than those in low-luminous galaxies. However, they observed one
field per galaxy and thus they were not able to construct stellar
population profiles as a function of radius. Moreover, given the
abundant substructure present in stellar haloes, it is important to
observe more than one field per galaxy at and in different directions
to avoid biasing our view of the stellar halo as much as possible.
Finally, the Mouhcine et al. (2005a) fields were quite close to the
disc of the galaxies and were possibly subject to contamination by
disc stars.

Accordingly, a number of groups have attempted to resolve the
stellar populations of nearby galaxies using wide-field imagers on
large ground-based telescopes. Current efforts have resolved the top
magnitude or so of the RGB, and have permitted characterization of
halo profile shapes, masses, axis ratios, and some characterization
of stellar population properties out to galactocentric distances of
∼30 kpc (see e.g. Barker et al. 2009 and Mouhcine & Ibata 2009
for NGC 3031, Mouhcine, Ibata & Rejkuba 2010 for NGC 0891,
Bailin et al. 2011 and Greggio et al. 2014 for NGC 0253). However,
the precision of measurements of stellar halo RGB colour, and thus
metallicity, from the ground is low, at least in part because of crowd-
ing and unresolved background galaxy contamination (Bailin et al.
2011). Moreover, ground-based measurements have not extended
to more than ∼30 kpc, and in particular are not sensitive to stellar
population gradients.

The Galaxy Halos, Outer disks, Substructure, Thick disks, and
Star clusters (GHOSTS) survey (Radburn-Smith et al. 2011) is an
extensive HST programme dedicated to resolve the stars in the out-
skirts of 16 nearby disc galaxies observing various fields along the
minor and major axis of each galaxy. It is the largest study of re-
solved stellar populations in the outer disc and halo of disc galaxies
to date. Using the RGB stars as tracers of the stellar halo population,
we are able to study the size and shape of each stellar halo as well
as the properties of their stellar populations such as age and metal-
licity. In Monachesi et al. (2013), we used the median colours of
RGB stars as a function of projected radius to construct the colour
profile of the stellar halo of M81 using HST/ACS observations from
GHOSTS. We found that the colour profile of M81’s stellar halo is
rather flat, indicating little population gradient, out to galactocentric
projected distances of ∼50 kpc. When comparing our results with
model predictions for the colours of stellar haloes using simula-
tions of stellar haloes built purely from accretion events (Bullock
& Johnston 2005), we found a good agreement with the observa-
tions. Because the colour of the RGB is an approximate indicator
of metallicity, this result likely reflects a flat metallicity gradient in
M81’s halo, which suggests a stellar halo assembly dominated by
several satellites of comparable mass (Cooper et al. 2010) which
were likely accreted at early times (Font et al. 2006b).

In this paper, we extend the work done in Monachesi et al. (2013)
and investigate the stellar halo colour profiles of six MW-mass disc
galaxies in GHOSTS, increasing the number of galaxies from which

MNRAS 457, 1419–1446 (2016)
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Table 1. Properties of the six most massive disc galaxies from the GHOSTS survey.

Name α2000 δ2000 b i Vmax
rot AV MB Morph. DM Mag limit Fields

NGC type adopted not used
(h m s) (◦ ′ ′′) (◦) (◦) (km s−1) (mag) (mag) (mag) (mag)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

0253 00 47 33.12 −25 17 17.6 −87.96 79 194 0.05 −21.23 SAB(s)c 27.7 25.6 F1, F2, F3
0891 02 22 33.41 +42 20 56.9 −17.41 90 212 0.16 −20.10 SA(s)b 29.8 26.3 F3, F9
3031 09 55 33.17 +69 03 55.1 +40.90 68 224 0.19 −20.71 SA(s)ab 27.8 25.5 F1
4565 12 36 20.78 +25 59 15.6 +86.44 90 245 0.04 −20.28 SA(s)b 30.4 27.0 F4
4945 13 05 27.31 −49 28 04.3 +13.34 85 167 0.44 −20.58 SB(s)cd 27.8 25.1 F12
7814 00 03 14.89 +16 08 43.5 −45.17 71 231 0.11 −20.15 SA(s)ab 30.8 27.2 F7

Notes. (1) NGC identifier; (2) and (3) right ascension and declination; (4) Galactic latitude in degrees; (5) inclination angle of the galaxy, as listed in
Huchtmeier & Richter (1989); (6) maximum rotational velocity in km s−1, as listed in Hyperleda (Makarov et al. 2014, http://leda.univ-lyon1.fr/); (7) mean V-
band Galactic extinction from Schlegel, Finkbeiner & Davis (1998), Schlafly & Finkbeiner (2011); (8) total B-band absolute magnitude, as listed in Hyperleda;
(9) morphological type, as listed in the NASA/IPAC Extragalactic Database (http://nedwww.ipac.caltech.edu); (10) adopted distance modulus from TRGB
distance measurements obtained in Section C; (11) faintest F814W-band magnitude adopted in the selection box of RGB stars used for this work’s analysis to
assure that all the selected stars are above the 50 or 70 per cent photometric completeness; (12) fields excluded from our analysis due to severe incompleteness
and/or Galactic foreground/background contamination.

we have halo stellar population gradients information by a further
five galaxies. These are all nearby spiral galaxies of similar mor-
phology, total luminosities, and stellar masses of the MW and M31.
We use HST/ACS and Wide Field Camera 3 (WFC3) observations
(a subset of which was presented by Radburn-Smith et al. 2011) to
measure the median colours of RGB stars in the halo of these galax-
ies out to ∼70 kpc. We find a great diversity in the colour profiles
of the stellar haloes of massive disc galaxies, which we interpret
as reflecting differences in their metallicity profiles. The outline of
the paper is as follows. In Section 2, we describe the observations
and the sample of galaxies. We then explain the data reduction and
photometry in Section 3. Our resulting colour–magnitude diagrams
(CMDs) are discussed in Section 4. The main results of the paper
are shown in Section 5 where we construct the colour distribution
functions for each field/galaxy, the galaxy colour profiles, and the
stellar halo colour profiles, derived using only the minor axis fields.
In Section 6, we discuss our results and compare them with both
observations and models. We conclude with a summary in Section 7.

2 O BSERVATIONS

We use observations from the GHOSTS survey (PI: R. de Jong).2

GHOSTS is an extensive HST programme designed to resolve the
individual stars in the outer disks and haloes of spiral galaxies. A de-
tailed description of the survey can be found in Radburn-Smith et al.
(2011, hereafter R-S11). Briefly, the GHOSTS sample consists of
16 nearby large angular size disc galaxies, of a range of masses (75
< Vmax(km s−1) < 250) and inclinations (mostly edge-on) that were
sampled along their principal axes. The targeted galaxies are imaged
with the Advanced Camera for Surveys (ACS) and WFC3 onboard
HST in the F606W and F814W filters, and their individual stars
are resolved. GHOSTS observations provide star counts and CMDs
typically 2–3 mag below the tip of the RGB (TRGB). The resolved
RGB stars can reach very low equivalent surface brightnesses, which
varies from system to system, of μV ∼ 34 mag arcsec−2 (Harmsen
et al., in preparation). These measurements are only limited by fore-
ground and background contamination (see Section 3.1). In order
to achieve these depths, we have observed each HST pointing with
one to eight orbits depending on the distance of the galaxy.

2 http://vo.aip.de/ghosts/

The data were taken as part of four different GHOSTS pro-
grammes (10523, 10889, 11613, and 12213) and were comple-
mented with archival data fulfilling the requisites discussed above.3

The GHOSTS survey is the largest study of resolved stellar
populations in the outer regions of disc galaxies to date. Such
data allow us to shed light on various issues. For instance, we
can use the RGB stars as tracers of the faint underlying pop-
ulation to obtain information about the galactic stellar haloes,
such as their metallicities, stellar surface density along the minor
axis profiles, and shapes (de Jong 2008; Monachesi et al. 2013,
Harmsen et al., in preparation). In addition, the GHOSTS ob-
servations can be used to dissect the disks into populations of
different ages and study structures of stellar populations sepa-
rately (de Jong et al. 2007; Radburn-Smith et al. 2014; Streich
et al. 2016) as well as to discover faint dwarf galaxies (Monachesi
et al. 2014).

2.1 Galaxies studied in this work

In this paper, we focus on the six most massive galaxies of the
GHOSTS sample, which have maximum rotation velocity Vmax �
170 km s−1. These are all spiral galaxies of similar morphology,
total luminosities, and stellar masses of the MW and M31. Table 1
summarizes the main properties of the six galaxies studied in this
paper. Four of these galaxies are edge-on and two are highly in-
clined. Thus, they are ideal for stellar halo studies since one expects
little disc contamination when they are observed out to large radii
along their minor axis. For each of these galaxies, we have several
HST pointings spaced along the minor and major axes. We have also
observed fields in regions that are half-way between the major and
minor axes, which are called intermediate axis fields throughout
the text for simplicity. This strategy allows us to probe the stellar
haloes out to large projected distances from the galactic centre. We
typically have fields observed out to R ∼ 50 to 70 kpc along the
minor axis.

Figs 1 to 6 show colour images of the six GHOSTS galaxies
studied in this work with the ACS/WFC and WFC3/UVIS fields
overlaid. Fields in green represent the ACS/WFC data presented in

3 These HST programmes have contributed to GHOSTS observations: 9353,
9414, 9765, 9864, 10136, 10182, 10235, 10584, 10608, 10889, 10915,
12196, 13357, 13366.

MNRAS 457, 1419–1446 (2016)
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Figure 1. Left-hand panel: DSS coloured image of NGC 0253, showing the location of the HST ACS/WFC and WFC3/UVIS fields. North is up and east is
to the left. ACS fields in green were already introduced in R-S11 whereas ACS and WFC3 fields indicated in yellow are new observations. Right-hand panel:
three CMDs of fields at different distances from the centre of the galaxy, indicated in each panel in kpc, with increasing distance from top to bottom. Only
the stars that remain after the masks and the culling were applied to the DOLPHOT photometry output. Magnitudes are calibrated on to the VEGAmag HST
system and corrected for Galactic extinction (see Table 1). Label ‘Minor’ (‘Major’) indicates that the field is located on the minor (major) axis of the galaxy.
The stars inside the red box are above ∼50 per cent or 70 per cent completeness (depending on the galaxy) and were used to compute the colour distribution
functions and determine the colour and width profiles in Figs 9–14. A 10 Gyr old isochrone with [Fe/H] = −1.2 dex from BaSTi stellar evolutionary models
(Pietrinferni et al. 2004) is superimposed in each CMD to provide the reader with an idea of the old stellar populations present in these fields. RGB stars
redder and bluer than the isochrone we assume indicate more metal-rich and more metal-poor stars than [Fe/H] = −1.2 dex. The red-dotted line indicates
the 50 per cent completeness level and the errorbars are the photometric errors as a function of magnitude at colour = 1, as derived from the artificial star test
results. We show CMDs from new observations, the CMDs of all the fields in green are presented in R-S11 and all the CMDs are presented on the GHOSTS
website (http://vo.aip.de/ghosts/).

R-S11 whereas yellow fields are new ACS/WFC and WFC3/UVIS
observations. For most of the galaxies, we observed fields along both
the minor and major axes, which allows us to place constraints on
the stellar halo shapes or axis ratios (Harmsen et al., in preparation).
For some galaxies, such as NGC 0253, fields along the minor axis
were prioritized. Information about each individual field is provided
in Appendix A.

3 DATA R E D U C T I O N A N D P H OTO M E T RY

The data reduction steps and photometry were performed using
the GHOSTS pipeline described in R-S11 for the ACS data. We
briefly summarize the general procedure and refer the reader to the
R-S11 paper for full details. There are however some differences
with respect to the data processing presented in R-S11 which we
highlight and describe below. In particular, we describe here the
differences in the treatment of the WFC3/UVIS data, which was not

presented in R-S11. We note that we have rerun the new GHOSTS
pipeline on all our data, both those presented in R-S11 and the new
data introduced here.

We downloaded the images from the Hubble Data Archive MAST
(Mikulski Archive for Space Telescopes). The ACS/WFC data can
be directly obtained as ∗_flcFITS images, which have been passed
through the new version of CALACS package containing a pixel-based
charge transfer efficiency (CTE) correction (Anderson & Bedin
2010). The FLC images have been bias-subtracted, then passed
through a basic cosmic ray rejection step, have been flat-fielded, and
finally corrected for CTE. For the WFC3/UVIS images, however,
we have generated the FLC images locally since the pixel-based
CTE correction is not yet a part of the WFC3/UVIS pipeline. We
have run a code, provided by STScI, on the ∗_raw FITS images
to generate the corresponding FLC images. The WFC3/UVIS code
uses a very similar algorithm to the one that is currently a part of
the ACS/WFC pipeline.

MNRAS 457, 1419–1446 (2016)
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Figure 2. Same as Fig. 1 for NGC 0891. Due to the low latitude of this galaxy, these fields are contaminated by more MW foreground stars than a typical
GHOSTS field. In particular, foreground white dwarf stars may contaminate the region inside the red box from which we select the stars for further analysis.
In order to clean these fields from MW stars, we have used Field 9 as a control field and decontaminated statistically each other field from its stars. We do
not use Field 9 in our analysis, although a handful of its stars (fewer than eight) may actually belong to NGC 0891. The CMDs shown here have not been yet
cleaned using Field 9. See Section 4 for details and Fig. 7 for example decontaminated CMDs. The decontamination mainly affects Field 8.

We have combined the individual FLC images using the
ASTRODRIZZLE package (Gonzaga 2012), which aligns the images,
identifies any additional cosmic rays, removes distortion, and then
combines the images after subtracting the identified cosmic rays.
The output of running ASTRODRIZZLE on FLC images are DRC FITS
images, which we use as a reference frame for coordinate positions;
we do not perform photometry on them.

Stellar photometry was performed using the ACS and WFC3
modules of DOLPHOT, a modified version of HSTPHOT (Dolphin 2000).
DOLPHOT performs point spread function (PSF) fitting on all the flat-
fielded and CTE-corrected images (FLC) per field simultaneously.
A refinement of the shifts between the World Coordinate System
(WCS) of the observations, scale, and rotation adjustments is done
by DOLPHOT after a first estimate of these tasks is done by ASTRO-
DRIZZLE. We have used the synthetic Tiny Tim PSFs (Krist 1995;
Hook, Stoehr & Krist 2008; Krist, Hook & Stoehr 2011) for the
ACS images and the Jay Anderson PSFs (ISR ACS 2006-01) for
the WFC3 images, to centre and measure the magnitude of each star
in both filters. We note that the Tiny Tim PSFs were initially used
for the WFC3 images as well. However, the systematics between
the magnitudes of coincident stars in overlapping regions, which
are most likely due to a combination of PSF and CTE uncertainties,
were worse, with offsets up to 0.1 mag at the bright end. When the

Anderson PSFs were used on the WFC3 images, the photometric
measurements showed smaller systematic offsets, indicating that
the Anderson PSFs were closer match to the real PSF profiles (see
Williams et al. 2014, for a discussion on systematics due to PSF).
The DOLPHOT parameters used on the GHOSTS fields are similar
to those used in the Panchromatic Hubble Andromeda Treasury
(PHAT) programme (Dalcanton et al. 2012) and are indicated in
Table A2 in Appendix A. The final output of DOLPHOT provides in-
strumental VEGA magnitudes, already corrected for CTE loss and
with aperture corrections calculated using isolated stars. The pho-
tometric output also includes various diagnostic parameters that are
used to discriminate detections such as cosmic rays and background
galaxies from actual stars (see Section 3.1 and Appendix B).

An additional step was performed on some of the WFC3 fields
that had one single exposure in the F606W band.4 Because some
cosmic rays can appear indistinguishable from stars, without a sec-
ond exposure the automatic pipeline described previously cannot re-
move them in these single exposure F606W images. Subsequently,

4 The WFC3 fields that have one single exposure in the F606W band are:
Fields 13, 15, 18, 19, 21, 23, 25, and 27 in NGC 3031; Field 14 in NGC
0253; Fields 2, 4, 6, 7, 9, and 11 in NGC 4945.

MNRAS 457, 1419–1446 (2016)
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Figure 3. Same as Fig. 1 for NGC 3031.

DOLPHOT chose these bright, point-like cosmic rays as ideal ‘stars’
from which to determine aperture corrections. As a consequence, the
aperture corrections for those fields, and thus the apparent magni-
tudes, were systematically off. To fix this, we have used the detected
CMD locations of cosmic rays in the raw DOLPHOT output. As the
cosmic rays appear in a CMD as bright F606W detections with
very faint F814W sources (likely hot pixels), we have selected the
compact sources which are implausibly blue in F606W–F814W; all
other point sources in a CMD are likely to be bona fide stars. We
then masked the cosmic rays out in the original F606W FLC image
and re-run DOLPHOT again on those fields.

3.1 Contaminants

The most important source of contamination in the GHOSTS im-
ages are unresolved background galaxies. We have estimated the
background galaxy density using the GALAXYCOUNT program (Ellis
& Bland-Hawthorn 2007). Since the depth of our data varies signifi-
cantly from galaxy to galaxy, mainly due to their different distances,
the number of background galaxies will also vary. For the images
of the nearer galaxies, with 50 per cent completeness at F814W
≈26 mag, the number of unresolved galaxies per arcmin−2 is 21,
50, 92, and 132 at F814W < 24, <25, <26, and <27 mag, respec-
tively. For the more distant galaxies, with 50 per cent completeness
at F814W ≈28 mag, the number of unresolved galaxies is 55, 120,
228, and 366 arcmin−2 at F814W < 25, <26, <27, and <28 mag,

respectively. The number of unresolved background galaxies is sig-
nificant, particularly when one wants to analyse the outermost fields
which may contain only hundreds of real stars. Several selection cri-
teria, i.e. culls, to discriminate unresolved galaxies from stars were
optimized using ‘empty’ deep archival high-redshift HST/ACS and
HST/WFC3 fields. These ‘culls’ were applied to the correspond-
ing raw photometric outputs from ACS and WFC3, which removed
∼95 per cent of the DOLPHOT detections in the high-redshift ‘empty’
fields. Details on the photometric culls and how they were optimized
for the WFC3 data can be found in Appendix B. The optimization
for the ACS culls5 can be found in R-S11.

Contamination from Galactic foreground stars was es-
timated using the TRILEGAL model (Girardi et al. 2005,
http://stev.oapd.inaf.it/cgi-bin/trilegal), for the magnitude range
F814W = 22–28 and colours (F606W − F814W) > 0. We find
that within those ranges, less than 25 and 18 foreground stars are
expected per ACS and WFC3 field, respectively, with the exception
of NGC 4945 and NGC 0891, which are at a low Galactic lati-
tude, and thus their fields are more contaminated from MW stars
within the same magnitude and colour ranges (770 MW stars in
NGC 4945 fields and 97 stars in NGC 0891; see Section 4). The
foreground contamination was also estimated using the Besançon
Galaxy model (Robin et al. 2003, http://model.obs-besancon.fr/);
however, this model predicted between 0 and 4 stars per ACS field

5 We have applied the sparse-field culls to all our ACS fields.
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Figure 4. Same as Fig. 1 for NGC 4565. We note that Field 6 has an spatial overdensity of stars which is likely a halo substructure, either a stellar stream or a
satellite dwarf galaxy. It is noticeable in the CMD as a bluer RGB, parallel to the isochrone superimposed. Further investigation is needed to understand the
origins of the detected overdensity which is out of the scope of this paper. We emphasize, though, the power of HST in resolving halo substructures, despite the
small FoV (see also Monachesi et al. 2014). We also note that the bluer detections, with colours between −0.2 and 0.5, that are seen in the outer Fields 5 and 6
are in part background galaxies/quasars that passed the culls, as we can see in Fig. B1 in Appendix B. However, some of them may be young stars which may
associated with the detected overdensity of stars in Field 6.

within the magnitude and colour ranges chosen, which is clearly an
underestimation as they can be observed in larger numbers in the
CMDs of the GHOSTS galaxies (Figs 1 to 6).

In addition, a mask of all extended and resolved objects was
constructed for each field using SEXTRACTOR (Bertin & Arnouts
1996). Detections lying in the pixel positions of the masked sources
were discarded from the star catalogue. An extra step was carried out
for the fields in the crowded disc regions, since the resulting mask
from SEXTRACTOR had essentially masked out the entire disc. We
unmasked everything that was not obviously a background galaxy
or bright foreground star in order to get detections in the disc and
any cluster.

3.2 Artificial star tests

Extensive artificial star tests (ASTs) were performed to assess the
completeness level and quantify the photometric errors of the data.
The procedure of the ASTs are explained in detailed in R-S11. In
short, approximately 2000000 artificial stars per field are injected
and photometred by DOLPHOT, one at a time to avoid affecting the
image crowding. The artificial stars were distributed according to
the observed stellar gradient, thus the higher surface brightness re-

gions of an observation were populated with more artificial stars.
The colours and magnitudes of the injected artificial stars are re-
alistic and they cover not only the observed values but also fainter
magnitudes to explore the possibility of recovering faint stars and
assess their contaminating effect on observed stars. We applied the
same culls as in the real images. Artificial stars that did not pass the
culls were considered as lost. The completeness level was calcu-
lated as the ratio of recovered-to-injected number of artificial stars
at a given colour and magnitude bin.

4 C O L O U R – M AG N I T U D E D I AG R A M S

The bottom panels of Figs 1 to 6 show the CMDs of some repre-
sentative fields in each galaxy that were not previously presented
in R-S11, at different galactocentric projected distances and along
the galaxy’s minor and major axes. All of the CMDs are shown in
the GHOSTS website for the interested readers.6 The CMDs were
generated after the masks and culls were applied, thus we expect
little contamination from background-unresolved galaxies in them.

6 http://vo.aip.de/ghosts/
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Figure 5. Same as Fig. 1 for NGC 4945. Note that the MW foreground, stars brighter than F814W ∼ 24 as well as at colours redder than ∼1.4, is substantially
higher than for the other galaxies owing to its low Galactic latitude. The red box used to select the stars for this work’s analysis has a colour cut at 1.4; the
region bluer than that at the magnitude range selected should have the least contamination from foreground stars. We expect Field 12 to be partly or completely
dominated by foreground MW stars and we therefore discard this field in our analysis.

The magnitudes have been corrected for Galactic extinction using
the corrected extinction ratios presented by Schlafly & Finkbeiner
(2011) that are to be used with the E(B−V) values from the Schlegel
et al. (1998) dust maps. The 50 per cent completeness level of each
field as well as their projected radial distance from the galaxy centre
are indicated in each CMD. We note that, as we do not know the
axis ratio of the stellar haloes and the galaxies are mostly edge-on,
we calculated the projected distances using circular symmetry.

As already mentioned, the depth of the GHOSTS CMDs, and
thus their 50 per cent completeness level, varies from galaxy to
galaxy depending mainly on their distance. Within fields of the
same galaxy, there may also be differences in depth since fields
closer to or on top of the galactic disc are limited by crowding
and are therefore shallower than those further out. Typically, the
50 per cent completeness level is found at one to two magnitudes
below the TRGB, indicated as the upper magnitude limit of the
red box superimposed in each of the CMDs in Figs 1 to 6. Since
the absolute I magnitude of the TRGB is almost constant (MI ∼
−4.05) for populations older than 3 Gyr and metallicities lower
than [Fe/H] ∼ −0.7 (Bellazzini, Ferraro & Pancino 2001), this
evolutionary feature can be used to determine the distance to a
galaxy. The TRGB magnitudes and thus the distances for most
of the GHOSTS galaxies were already measured by R-S11. We
measured in this work the TRGB distances of the new data which

can be found in Appendix C. A complete list of all of the GHOSTS
TRGB distances is also provided in Appendix C.

The CMDs are mostly populated by old RGB stars (older than
1 Gyr). There are however younger populations such as blue, ex-
tended main-sequence (MS) stars (< 500 Myr) or massive stars
burning helium in their core (25–600 Myr old red and blue loop
sequence stars). These appear primarily in the fields closer than R
∼ 15 kpc to each galaxy, and especially along the major axis, which
are dominated by disc stars.

As we noted in Section 3.1, contamination from foreground MW
stars is generally very little in our fields, as modelled by TRILEGAL

code. For NGC 4945, however, this contamination is significantly
higher than the other galaxies owing to its low latitude. In addi-
tion, there is a noticeable difference in the amount of foreground
stars from field to field since the region surveyed around NGC
4945 covered ∼0.◦5 × 0.◦5 on the sky. We compared the CMDs and
colour distributions of fields simulated by TRILEGAL at the different
Galactic coordinates of our 12 GHOSTS fields. The correspond-
ing photometric errors on each field as obtained from the ASTs
were applied to the models in order to make a fair and quantitative
model-observation comparison (see Monachesi et al. 2012, 2013 for
details on how the observational effects are simulated in the mod-
els). We find that while the number of foreground stars appears to
reasonably agree with the observations, based mostly on Fields 11
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Figure 6. Same as Fig. 1 for NGC 7814. Note that the limiting depth in the F606W filter as well as the choice of the selection box truncates the colour range
considered for this galaxy. We discuss this further in Section 5.1. We note, as in NGC 4565, that there are few bluer detections, with colours between −0.2 and
0.5. These are most likely background galaxies/quasars that passed the culls, as we can see in Fig. B1 in Appendix B.

and 12 which are the sparser and thus the fields with a higher frac-
tion of contaminants, the TRILEGAL colours are bluer by ∼0.75 mag.
When we shift the colours to match the observations, we find that
the MW contribution is negligible for colours bluer than ∼1.4 and at
magnitudes fainter than the TRGB. We thus decide to make a colour
cut of 1.4 and we do not consider redder stars when analysing these
fields. Brighter MW stars may appear bluer but we do not use that
region of the CMD for our analysis (see red box in Fig. 5 used
to select the RGB stars for computing the colour profiles). Finally,
inspecting how the foreground MW stars should look as simulated
by TRILEGAL code and the CMDs of the NGC 4945 fields, we con-
clude that Field 12 is dominated by MW stars and we subsequently
discard it from further analysis.

NGC 0891 is also at a low Galactic latitude and we noticed that its
fields are not only contaminated by bright foreground stars, which
occupy a CMD region that does not overlap with the RGB at the
distance of NGC 0891, but also by white dwarf MW stars, likely
from the Monoceros Ring (Slater et al. 2014). This foreground
contamination, at F814W ∼ 26–27 and colours between 0 and 1
(Calamida et al. 2014) is not an issue for the majority of the fields
which are well populated, but it becomes significant for Fields 8 and
9, which are very sparse. We believe that the stars in the selected
RGB region used to measure the median colour (see the next section)
in Field 9 are mostly contaminants, from both MW stars and some

background galaxies that passed the culls. We therefore consider
Field 9 as a control field and statistically decontaminate the rest of
the NGC 0891 fields from its detections as follows. For each star in
Field 9 that is fainter than F814W = 25.4, we removed the closest
star in each other field’s CMD that has a magnitude and colour
within 0.3 and 0.4 mag, respectively. Since Field 9 is a WFC3
field, thus it covers a smaller area on the sky than an ACS field, the
number of stars subtracted in the ACS fields is corrected to take into
account the differences in area. Fig. 7 shows two examples of how
the CMDs appear after decontaminating for Field 9 stars as well as
the CMD of Field 9. The effect is noticeable most strongly in Field
8 however the calculated colours in Field 7 are also affected by this
decontamination. Because the number of stars in Field 9 is more
than the typical number of remaining background galaxies within
F814W ∼ 25.5 and 27 and many more than the predicted MW white
dwarf stars that should be at that Galactic latitude and longitude,
few stars in Field 9 may actually belong to NGC 0891 (fewer than
eight, from which only three will lie inside the selection box as we
can see in Fig. 7). However, it is impossible to discern if these are
actually field stars or background galaxies that passed the culls. We
therefore discard Field 9 from our analysis.

It is important to emphasize that all of these galaxies have halo
stars out to at least 50 kpc along the minor axis, which is more than
50 scaleheights of the MW’s thick disc. Thus, our observations show
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Figure 7. CMDs of two fields in NGC 0891, Field 7 (first panel) and Field 8 (third panel) and their resulting CMDs after decontamination for foreground
MW white dwarf stars (second and fourth panels, respectively) as well as for some background galaxies that passed the culls. Field 9 of NGC 0891 (last panel)
was used as a control field and its stars were statistically subtracted from each other field in NGC 0891. See Section 4 for details.

that the highly inclined massive disc galaxies (Vmax�170 km s−1)
have clear extended stellar haloes beyond the region where the disc
dominates.

5 R G B S TA R S A S S T E L L A R H A L O TR AC E R S :
T H E I R C O L O U R S

In this section, we use the RGB stars in each galaxy to analyse their
colours as a function of galactocentric distance. We analyse our data
in terms of colours rather than in metallicities, which would require
a colour–metallicity transformation, because age and metallicity
are partially degenerate in the RGB evolutionary phase (see e.g.
Worthey 1994). It is therefore impossible to constrain the ages and
metallicities of the RGB stars from only the CMDs that we observe.
Nevertheless, it is well known that the effects of age are relatively
small compared to metallicity, such that the colour of the RGB is an
approximate indicator of metallicity (Hoyle & Schwarzschild 1955;
Sandage & Smith 1966). In the next section, we will assume that
the colour profiles of the RGB stars reflect metallicity profiles when
comparing our results with other observations and models.

5.1 Colour distribution functions

We calculate the colour distribution function per field using RGB
stars within a magnitude range extending from the TRGB down to a
magnitude limit for each galaxy as indicated in Table 1. We adopt a
magnitude limit to ensure that stars are brighter than the 50 per cent
or 70 per cent completeness level in all the fields and have small
photometric errors. This limit is not the same for all galaxies because
the depth of the CMDs, and thus their 50 per cent completeness
level, varies from galaxy to galaxy, with nearer galaxies exhibiting
deeper CMDs. The brighter magnitude limit (the TRGB) minimizes
contamination from bright asymptotic giant branch (AGB) stars or
other contaminants, mainly MW foreground stars. In addition, since
we are interested in the properties of the RGB stars that constitute
the bulk of the stellar halo populations, we select stars for study
within a restricted colour range chosen by eye. The blue limit avoids
contamination from blue MS/HeB young stars that appear in some
fields closer to the disc, whereas the red limit avoids metal-rich disc
or MW foreground stars as well as incompleteness in the case of the
more distant galaxies (see e.g. the CMDs of NGC 7814) in order to
assure the 50 per cent completeness level of the stars analysed. The
red and blue limit slopes of the selection boxes are the same as the
RGB slope of the 10 Gyr old isochrone with [Fe/H] = −1.2 dex
plotted in each CMD in Figs 1 to 6. The selection box for each galaxy

is shown as a red rectangle in Figs 1 to 6. For consistency, we use
the same box for all the fields within a galaxy. Possible systematic
biases that might be introduced due to the different selection boxes
among the galaxies are discussed and addressed in Appendix D. We
demonstrate in Appendix D that selection boxes differences have
little impact on our main results presented in the next sections.

In addition to the variation in the CMD depth from galaxy to
galaxy, the depth of the CMDs may vary from field to field within
the same galaxy, where fields closer to or on top of the galactic disc
are limited by crowding and are therefore shallower. We note that the
faint magnitude limit mentioned above ensures the 50 per cent com-
pleteness level of the shallower data. However, fields with CMDs
that are much shallower than the rest of the fields in the same galaxy
were discarded when measuring the colour distribution and the me-
dian colour of its RGB stars. These are indicated in the last column
of Table 1. Other fields that were not considered when measuring
the median colour profile include Field 12 of NGC 4945, which is
dominated by MW foreground stars, Field 9 of NGC 0891 whose
selected region of RGB is dominated by white dwarf MW fore-
ground stars and residual background galaxies that passed the culls,
as discussed in Section 4, and Field 7 of NGC 7814 which has only
three stellar detections. They are also indicated in the last column
of Table 1.

In order to obtain a colour distribution that better reflects the
spread in metallicity on a given observed field, we define a new
colour index Q by slightly rotating the CMDs an angle of −8.◦29,
where a line of slope −6.7 becomes vertical. The rotation is such
that the magnitude axis (y-axis) of each CMD is parallel to a 10 Gyr
old [Fe/H] = −1.2 dex isochrone7 shown in the CMDs of Figs 1 to
6. Fig. 8 shows the normalized colour distribution functions of Field
22 of NGC 3031 in the true colour (F606W − F814W) in black as
well as in the rotated Q-index colour in red. This exemplifies the
effect of going from the true to the Q-index colour in the colour
distribution functions. The CMD rotation yields a tighter colour
distribution, which also better reflects the metallicity distribution.

The left-hand panels in Figs 9 and 10 show examples of the
normalized Q-index colour distribution functions for three fields in
each galaxy, plotted as histograms. The field numbers from which

7 We chose this particular isochrone as it qualitatively matches reasonably
well the RGB shape of the halo CMDs for NGC 3031, NGC 4565, and NGC
7814. For the other three galaxies, no single isochrone is a good match to
the RGB shape, but this isochrone does match both the bluer RGB stars
and captures much of the slope of the RGB even for higher metallicity
isochrones.
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Figure 8. Colour distribution functions in (F606W–F814W) and Q-index
colours, as black and red histograms, respectively, for Field 22 in NGC
3031 (top panel) and Field 5 in NGC 0891 (bottom panel). The colour
distribution becomes tighter when using the Q-index colour. The Q-index
colour distribution reflects the metallicity distributions better than the true
colour distribution. The peak of this distribution in the bottom panel is at a
redder colour than that in the top panel, reflecting a higher metallicity for
the NGC 0891 field. The inset figures show the CMDs of the same fields
with dashed lines indicating constant Q-index colours. The red and blue
limits of the selection boxes for these galaxies are shown as the rightmost
and leftmost lines on the CMDs, respectively.

the distributions are shown as well as their galactocentric distances
are indicated in each panel. Some field numbers have a subscript
1; this is because the fields of the more distant galaxies have been
divided in either three or four regions as explained in the next
subsection. What we shown in those cases is the colour distribution
of one of the regions per field.

Looking at the colour distribution functions, we find differences
in both the range of colours and the dominant colour from galaxy
to galaxy and in some cases from field to field within the same
galaxy. This can also be appreciated in the middle and right panels
of Figs 9 and 10, where we show the cumulative colour distribu-
tion function for fields closer and farther than 30 kpc, respectively.
The grey-dashed line in each figure shows the cumulative colour
distribution resulting from a fiducial CMD model of 10.5 Gyr

and [Fe/H = −1.2 ± 0.3] dex, generated using IAC-STAR code
(Aparicio & Gallart 2004). The observational effects correspond-
ing to each galaxy were simulated using the results from the ASTs
(see Monachesi et al. 2012, 2013) and the same selection of RGB
stars per galaxy as well as the CMD rotation to obtain the Q-index
colour were applied to the model. A visual comparison between
the cumulative colour distribution of the fiducial model and that
of observed fields indicates where the median colour and range of
colours of each field differs or agree with that of the model. We
quantify the differences between the colours of each field and the
range of colours observed, i.e. the width of the colour distribution
functions, in the next subsections.

We note that the colour distribution functions of our most distant
galaxies, NGC 7814 and some fields of NGC 891, are incomplete
for red colours owing to a limited depth in F606W-band images
(see Fig. 6). We are thus unable to observe the reddest stars in
these fields. Moreover, the redder stars that we do observe have
larger photometric uncertainties and the choice of the RGB selec-
tion box truncates the colour range observed to assure that all the
stars analysed are above ∼60 per cent completeness level. We there-
fore consider that the median colours and the width of the colour
distributions presented for the fields in NGC 7814 are a lower limit
of the actual values.

5.2 Galaxy colour profiles

We discuss in this section the global colour profiles for the GHOSTS
galaxies, using all the fields analysed in this work. We focus on the
stellar halo colour profiles in the next section.

Fig. 11 displays the global median colour profile of each galaxy
as a function of projected radius. Red, blue, and black dots indicate
measurements obtained in fields along the major, minor, and inter-
mediate axis, respectively. The errorbars indicate uncertainties in
the median values calculated by bootstrapping our sample of RGB
stars as well as systematic uncertainties due to calibration which
accounts for up to ∼0.04 mag in colours (see below).

To derive the colour profiles, we obtain the median colour of the
selected RGB stars at different projected galactocentric distances.8

We first calculate the median of the Q-index colours, which we then
rotate back to the original coordinates of (F606W − F814W) colour
using a magnitude that is 0.5 mag below the TRGB. Because we
select the sample of RGB stars within different magnitude ranges
on a galaxy by galaxy basis (described in the previous section), the
normalization of each measurement to a colour at a same absolute
magnitude makes the colour median values comparable from galaxy
to galaxy.

Each median colour measurement represents the star colours in
an approximately 3 kpc region on a side (approximately 10 kpc2

area). For the three nearest galaxies (NGC 0253, NGC 3031, and
NGC 4945), we obtain a median colour measurement per HST field.
These galaxies are at a distance of ≈4 Mpc and the size of their
HST fields extends over roughly the same linear distance, covering
≈ 3.5 and 2.8 kpc on a side of the ACS and WFC3 field of view
(FoV), respectively. However, NGC 0891, NGC 4565, and NGC
7814 are at further distances, indicated in Table C1. Therefore,
the FoVs of the fields located around these galaxies cover larger

8 Fields 14 and 15 of NGC 3031 contain one massive globular cluster each
(Jang et al. 2012) and Field 14 contains a background dwarf galaxy (Monach-
esi et al. 2014). The resolved stars from these objects were removed from
the field star catalogues for obtaining the colour profile of this galaxy.
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Figure 9. Left-hand panels: a sample of representative colour distribution functions from three fields per galaxy, for NGC 0253, NGC 0891, and NGC 3031.
The field numbers and projected distance from the galactic centre in kpc are indicated in each panel. Only stars inside the red selection box shown in Figs 1 to 6
were used to construct these functions. The Q-index colour is obtained by rotating the CMD in such a way that the RGB lies parallel to an isochrone of [Fe/H]
= −1.2 dex and thus the Q-index colour distribution better reflects the metallicity distribution. Middle and right panels: cumulative colour distributions of each
field for fields closer and farther than 30 kpc, respectively. These are colour coded to represent the radial distance of the field to the galactic centre, as indicated
in the colourbar. Fields on the major axis are plotted with dash–dotted lines. The grey-dashed line in each panel is a fiducial colour distribution of a 10.5 Gyr
old population with metallicities [Fe/H] = −1.2 ± 0.3 dex. The same fiducial model is shown for each galaxy; however, the photometric errors corresponding
to each galaxy as well as their RGB selection box were applied to the model in order to construct the cumulative distribution for a fair comparison with the
observed data.

linear extensions, having side lengths from ∼9 to ∼14 kpc. In order
to obtain colour measurements that represent the properties of stars
from similar spatial regions, we divide each field of the more distant
galaxies in either three or four radial bins, such that each region for
which a colour measurement is made covers ≈ 3 kpc on a side.
An exception was made for Field 8 in NGC 0891 and Field 6 in
NGC 7814. These fields have about 10 stars in the chosen region
selected to calculate the RGB median colour and therefore we do
not divide them in radial bins such that we use a statistical sample
of stars to measure the median colour.

We see in Fig. 11 field to field variations in the median values of
the colours within each galaxy, i.e. colour variations as a function of
galactocentric distances. This is observed not only within the first
10 kpc or in fields along the major axis, where colour variations
could be attributed to expected metallicity gradients from the disc,
but also out to large distances, where stars from the halo are ex-
pected to dominate. The degree of scatter within each stellar halo

may reflect population variations, predicted by models in which the
stellar haloes are built from many small accreted objects. R-S11
showed that photometric differences between magnitude measure-
ments of coincident stars in overlapping fields can account for up to
∼0.04 mag uncertainty in their colours. This systematic uncertainty
of 0.04 mag is included in quadrature together with the median un-
certainty in the errorbars in Fig. 11. Thus, although some of these
colour variations may be partly due to systematics in the data cali-
bration, as maybe e.g. in NGC 0253, the scatter cannot be explained
by systematics only in most galaxies.

We also notice that fields along the major axis are typically redder
than the minor axis fields at similar galactocentric distances. The
redder colours for major axis fields closer than 15 kpc most likely
indicate a larger contribution from red more metal-rich disc stars.
However, the redder colours for fields at larger distances (seen in
NGC 0891, NGC 4565, and NGC 7814) may indicate differences
in the stellar halo populations between the minor and major axis
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Figure 10. Same as Fig. 9 for galaxies NGC 4565, NGC 4945, and NGC 7814. The subscript 1 in some of the field labels indicate that only one region from
that field is used to construct the colour distribution function. This is because the fields of the more distant galaxies have been divided in either three or four
regions as explained in Section 5.2.

of the galaxy. A quantitative investigation will require joint fitting
of the colours and surface densities of stars, which is deferred to
a future work. Nevertheless, we note that the disc scalelengths of
NGC 0891, NGC 4565, and NGC 7814 are 4 kpc (Schechtman-
Rook & Bershady 2013), 5.5 kpc (van der Kruit 1984), and 4 kpc
(Wainscoat, Hyland & Freeman 1990) respectively, larger than the
disc scalelengths of NGC 0253, NGC 3031, and NGC 4945, which
are 2.1 kpc (Greggio et al. 2014), 2.9 kpc (Barker et al. 2009), and
2.3 kpc (de Vaucouleurs 1964), respectively.

Finally, a first glance of Fig. 11 suggests that two out of six
galaxies have a colour gradient (NGC 0891, NGC 4565) whereas
four present a rather flat colour profile if we average all the fields per
galaxy within a range in radial distances regardless of their different
directions. We investigate this further in the next subsection, where
only the fields along the minor axis are considered.

5.3 Stellar halo colour profiles: minor axis fields

To study whether there is a colour gradient in the stellar haloes of
the GHOSTS MW-mass galaxies, we need first to define a sample
of halo stars.

The disc galaxies studied in this work are highly inclined; four
out of six are edge-on, and the rest are no more than 25◦ from edge-
on. Therefore, the stellar populations observed along their minor

axis fields should mostly sample halo stars with the least possible
contamination from disc stars. In order to have a clean stellar halo
profile and to avoid the disc as much as possible, we do not use the
major axis fields in this section. We assume that the stars observed
along the minor axis fields located at galactocentric distances R
> 5 kpc for the edge-on galaxies (NGC 0253, NGC 0891, NGC
4565, NGC 4945) and R > 10 kpc for the highly inclined galaxies
(NGC 3031, NGC 7814) represent halo stellar populations.

Fig. 12 shows the minor axis stellar halo colour profile of each
galaxy. In order to give a rough quantitative estimate of the magni-
tude of colour variation with radius, we fit a linear colour gradient
to the data. Such a function has no particular physical relevance
or motivation, and a variety of radial profile shapes are predicted
by models (e.g. Cooper et al. 2010; Font et al. 2011; Tissera et al.
2014). Other parameterizations are possible, but additional com-
plexity seems unwarranted given the number of data points and
their uncertainties. The red lines in Fig. 12 show linear fits to the
black dots weighted by the uncertainties in the median colours and
the number on the top-right corner indicates the slope and its cor-
responding 1σ uncertainty in units of mag kpc−1. We exclude from
the fitting fields that were inside 5 or 10 kpc, shown in the figure as
grey dots, according to whether the galaxy is edge-on or highly
inclined, respectively, as explained above. Half of the galaxies
(NGC 4565, NGC 0891, and NGC 7814) show fits consistent with
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Figure 11. Colour profiles of each individual galaxy using all the fields along the minor (blue dots), intermediate (black dots), and major (red dots) axis of
the galaxy. The median colours are calculated using RGB stars selected in a certain magnitude bin such that stars are below the TRGB and above 50 per cent
or 70 per cent completeness. The magnitude range from which the median colours are calculated varies from galaxy to galaxy and the faintest magnitude
considered is indicated in Table 1. We note that due to the incompleteness of our data at the red end of the NGC 7814 CMDs, the median colours obtained for
NGC 7814 are a lower limit of the actual values. Errorbars indicate uncertainties on the median value calculated by bootstrapping the stars sample as well as
systematic uncertainties due to calibration. The dashed line at colour = 1.18 represents the average colour profile of the 11 B&J stellar halo model realizations,
which lacks a colour gradient (see Section 6.2 and Monachesi et al. 2013 for details about comparing with the models). Purple dots in the profiles of NGC
0235, NGC 0891, and NGC 3031 indicate fields with detected halo substructure discussed in Section 6.3.

stellar halo colour gradients whereas the remaining three galaxies
(NGC 0253, NGC 3031, and NGC 4945) have rather flat colour pro-
file. However, it is interesting to note that both NGC 0891 and NGC
4565 show a jump, i.e. a redder colour, in the minor axis colour
profile at approximately 38 kpc, which may be related to substruc-
ture in these galaxies likely either in the form of a stellar stream or
shell. It is also interesting that both major and minor axes profiles
increase colour in NGC 891 at roughly that same radius suggesting
it is a massive feature, whereas the major axis colour profile in
NGC 4565 stays flat while the minor axis decreases over a consid-
erable distance range. We recall that NGC 4565 has a large disc,
with a scalelength of 5.5 kpc (van der Kruit 1984), which may in-
fluence the colour profile at larger radii on the major axis. Several
stellar streams have been detected in NGC 0891 by Mouhcine et al.
(2010, see Section 6.3); however, the redder colour at ∼40 kpc
cannot be due to any of those streams since their observed field

reaches ∼28 kpc from the galactic centre along the minor axis.
Our GHOSTS measurements show that there is little population
gradient in the stellar haloes of half of the massive disc galaxies
in our sample out to ∼60 kpc and half of the galaxies show strong
population gradients in their outskirts. We are confident that either
gradient or flat behaviour in the colour profiles presented in Fig. 12
are not driven by the disc but rather indicate an actual halo property,
due to the above-mentioned selection of stars to obtain the stellar
halo profiles.

In Fig. 13, we show the stellar halo colour profiles of all the galax-
ies together, where we can see the diversity in the colour profiles
of massive disc galaxies. The right-hand panel shows the median
colours as a function of radius in units of effective radius. This
normalizes the differences in galaxy’s sizes which may make the
comparison between galaxy to galaxy more fair. We note, however,
that the effective radius is a major axis/disc property, and may have
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Figure 12. Minor axis colour profiles of each individual galaxy analysed in this work. Median F606W–F814W colours at 0.5 mag below the TRGB are plotted
as a function of projected galactocentric distance. The red lines are linear fits to the black dots using fields at R > 5 kpc for the edge-on galaxies (NGC 0253,
NGC 4945, NGC 0891, and NGC 4565) and at R > 10 kpc for the highly inclined galaxies (NGC 3031 and NGC 7814). Fields that were not used in the fit are
shown as grey dots. The slope of each fit and its corresponding uncertainty are indicated in each panel. We note that due to the incompleteness of our data at the
red end of the NGC 7814 CMDs, the median colours obtained for NGC 7814 are a lower limit of the actual values. Half of the galaxies show colour gradients,
which we interpret as metallicity gradients, whereas half show flat colour profiles, indicative of a lack of metallicity gradient. The right-hand y-axes indicate the
[Fe/H] values that the colours correspond to, calculated from the relation derived by Streich et al. (2014) and assuming [α/Fe] = 0.3. The metallicities [Fe/H]
will be lower or higher for a given colour in case of [α/Fe] larger or lower than 0.3, respectively. The dashed line at colour = 1.18 represents the average
colour profile of the 11 B&J stellar halo model realizations, which lacks any colour gradient (see Section 6.2 and Monachesi et al. 2013 for details about
comparing with the models). Purple dots in the profiles of NGC 0235 and NGC 0891 indicate fields with detected halo substructure discussed in Section 6.3.

little to do with the stellar halo properties. Since the galaxies studied
in this work are all MW-like galaxies, we find that there is a wide
range in halo colours for galaxies of similar mass and luminosity.

5.4 Width of the colour distributions

The widths of the colour distributions provide an idea of the range
in colours, and as we argue later metallicities, at any given radius.
To quantify this, we use the cumulative colour distribution function
of each field shown in Figs 9 and 10. We calculate the Q-index
colour range that is within 68 per cent around the median colour,
i.e. between the 0.16 and 0.84 values in the cumulative percentage
of stars.

Fig. 14 shows the Q-index colour distribution widths as a function
of radius for each galaxy. The errorbars indicate the uncertainties

on the estimated widths due to the photometric errors. These er-
rors widen the intrinsic colour distribution and may bias our results
owing to the different photometric uncertainties for the different
galaxies. For each galaxy, we estimate the width uncertainty on
each field as follows. We generate 1000 colours per star, which are
randomly picked from a distribution of colours. The distribution of
colours is centred at the star’s observed colour with a 1σ spread
corresponding to its photometric error, as derived from the ASTs.
We then computed 1000 colour distribution functions and the stan-
dard deviation of their colour widths represent the field’s colour
width uncertainty.9 We see that the colour widths remain generally

9 While this procedure clearly overestimates the individual colour distribu-
tion width estimates, it does allow estimation of the variation in the widths
from iteration to iteration, i.e. the uncertainty in the colour width.
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Figure 13. Colour profiles of all the galaxies showing only the minor axis fields, as in Fig. 12, as a function of galactocentric distance in kpc (left) and in
units of effective radius (right). The black-dashed line indicates the average colour profile of the 11 B&J stellar halo model realizations and the shaded area
represents the 1σ model-to-model scatter from the average.

Figure 14. Width of the Q-index colour distribution functions as a function of projected galactocentric distance for each galaxy. Red, blue, and black dots
indicate the width value for fields along the major, minor, and intermediate axis, respectively. The errorbars represent the uncertainties on the estimated widths
obtained using the photometric errors of each star’s colour as derived from the ASTs. The dotted line at width value of 0.4 is the same in all panels to help
visualize differences among the galaxies.

constant for most of the radius coverage. There are nevertheless
variations from field to field. In particular, for NGC 0253, NGC
3031, and NGC 4565, the width of the colour distributions becomes
larger in the outer fields. This would imply a larger range in colours
at large radii. It is possible that this reflects artificial broadening of
the colour distribution from the larger fraction of contaminants in

low stellar density outer fields; it is also possible that this reflects
actual metallicity variation in the outer parts of galaxy haloes.

We note that the colour distribution widths for the inner parts of
some galaxies (NGC 3031, NGC 4565, NGC 7814, and NGC 0253)
are also somewhat broadened at radii less than 15 kpc, compared
to their widths at 15 to 40 kpc. We attribute this to contributions

MNRAS 457, 1419–1446 (2016)



The colour profiles of stellar haloes 1435

from metal-rich disc stars with some possible contribution from sub-
structure that has been accreted, especially for the edge-on galaxies.
These values, however, are a lower limit by construction because
the RGB stars selected to generate the colour distribution function
were chosen to maximize the contribution from halo stars. Metal-
rich disc RGB stars that are significantly redder than the median
halo colour are outside the selection box and thus the actual width
is likely much wider for the disc fields.

Fig. 14 also shows that there are galaxy-to-galaxy differences in
the colour distribution widths. Some galaxies have a larger range of
colours per field than others, likely reflecting their different accre-
tion histories.

6 D ISCUSSION

In this section, we discuss our results and compare them with other
observations of stellar haloes as well as with models of stellar halo
formation.

Our results are presented in terms of median colours of RGB
stars as a function of projected galactocentric distances. However,
because the colours of the RGB stars are more sensitive to metallic-
ity than to age and because there is a direct relation between RGB
colours and metallicities (see e.g. Streich et al. 2014, and references
therein), one can assume that the colour profiles presented in the
previous section reflect metallicity profiles. This assumption will
allow us to compare our results with other work in which metallic-
ities of individual fields and/or metallicity profiles of stellar haloes
are constructed.

To obtain metallicities from the median RGB colours, we use the
observational relation between the HST colours F606W − F814W
and metallicities derived by Streich et al. (2014). They use a sample
of globular clusters observed as part of the ACS Globular Cluster
Survey (Sarajedini et al. 2007; Dotter, Sarajedini & Anderson 2011)
and relate their RGB colours at the same absolute magnitude as we
do (i.e. 0.5 mag below the TRGB) with their metallicities. They find
a clear relation between metallicity and RGB colour. However, the
metallicities obtained from RGB colours have large uncertainties.
Streich et al. (2014) estimate a lower uncertainty of 0.3 dex for
metallicities derived for colours F606W − F814W < 1.2, whereas
metallicities derived for colours redder than 1.2 have a 0.15 dex
uncertainty. A metallicity scale is shown on the right-hand y-axis of
Figs 11–13 to indicate the metallicities that the colours correspond
to. We assume [α/Fe] = 0.3 to derive [Fe/H], since this is the typical
value for halo stars in the MW (e.g. Venn et al. 2004; Ishigaki, Chiba
& Aoki 2012) as well as in M31 (Vargas et al. 2014). In addition,
Robertson et al. (2005) and Font et al. (2006a) argue that typical
halo stars should be alpha enriched to approximately this degree,
by combining cosmologically motivated stellar halo models with
a chemical evolution model, reflecting that most halo stars were
accreted at early times before redshift one. Higher or lower values
than [α/Fe] will result in lower or higher [Fe/H], respectively, for
a given colour.

6.1 Comparison with other observed stellar haloes

Given a direct relation between RGB colours and metallicities, our
results suggest that three out of six stellar haloes studied present
a metallicity gradient. Moreover, we likely observe field-to-field
variations in the median metallicity of the stars in the outer regions,
as expected if the halo is built up by accretion of different satellites.
We also find that all of the GHOSTS galaxies have relatively high

median metallicity in their haloes, in some cases higher than [Fe/H]
∼ −1.2 dex out to ∼50–70 kpc.

For the MW, the stellar halo metallicity gradient has been a con-
troversial topic for several decades. Some pioneering works using
globular clusters as tracers of the Stellar Halo have claimed both
the existence of a metallicity gradient (Harris & Canterna 1979) as
well as the lack of it (see e.g. Armandroff, Da Costa & Zinn 1992;
Alfaro, Cabrera-Cano & Delgado 1993, and references therein).
Carollo et al. (2007, 2010) used orbital properties of local halo stars
from Sloan Digital Sky Survey (SDSS) data to measure the metal-
licity of the local halo and inferred from this sample the metallicity
of the outer halo. They claimed that the MW halo has a strong
negative metallicity gradient, with the median metallicity chang-
ing from −1.6 dex in the solar neighbourhood to −2.2 dex beyond
15 kpc. However, these results suffer from important biases. Their
magnitude-limited sample includes only luminous low-metallicity
stars at large distances, imposing an artificial metallicity gradient
(Schönrich et al. 2011). This emphasizes the need for more rep-
resentative samples of distant halo stars, a requirement that only
relatively recently has been met. Sesar et al. (2011) use near-turnoff
MS stars out to ∼35 kpc from Canada–France–Hawaii Telescope
observations to infer no metallicity gradient. Recently, Xue et al.
(2015) use a sample of SEGUE K-giants halo stars fairly sampling
10 to 50 kpc to infer a weak metallicity gradient. Current (e.g. Gaia
mission, Apache Point Observatory Galactic Evolution Experiment,
Large Sky Area Multi-Object Fiber Spectroscopic Telescope) or
upcoming (4-metre Multi-Object Spectroscopic Telescope, WHT
Enhanced Area Velocity Explorer, Dark Energy Spectroscopic In-
strument, and Large Synoptic Survey Telescope) efforts will allow
further refinement of these estimates.

M31 is easier to study than the MW because we can have an
external and complete global view of it, where a single distance
for all its stars is assumed. At the same time, due to its proximity,
M31 can be studied in great detail. Stellar population variations in
M31’s halo have been found in several studies (see e.g. Brown et al.
2006; Richardson et al. 2008; McConnachie et al. 2009). In ad-
dition, recent work by the Pan-Andromeda Archaeological Survey
(Ibata et al. 2014) and Spectroscopic and Photometric Landscape of
Andromeda’s Stellar Halo (Gilbert et al. 2014) surveys have shown
very clearly that there is a strong metallicity gradient in the stellar
halo of M31 if observed over large enough radial ranges. The re-
sults from PAndAS are based on the colours of resolved RGB stars,
whereas SPLASH survey uses both spectroscopic and photometric
data of RGB stars, being able to isolate kinematically a sample of
M31’s halo stars in a statistical manner. The metallicity profile of
M31’s stellar halo shows a continuous gradient from 9 to 100 kpc,
with the median metallicity gradually decreasing from [Fe/H] ∼
−0.47 at 9 kpc to [Fe/H] ∼ −1.4 at 100 kpc, for [α/Fe] = 0;
metallicities will be ∼0.22 dex lower if [α/Fe] = 0.3, typical for
halo stars, is assumed instead.

Mouhcine et al. (2005a,b,c) presented the first study of halo
metallicity in spiral galaxies outside the Local Group. They re-
solved individual RGB stars in the haloes of eight nearby disc
galaxies and analysed their metallicities using the colours of the
RGB stars. Among the galaxies studied by Mouhcine et al. (2005a)
four are low-mass, low-luminous galaxies and four are MW-like
galaxies. We compare our results with their results from the latter
group, which is the type of galaxies studied in this work. They
analysed one field per galaxy using the WFC2 onboard the HST, lo-
cated between 3 and 13 kpc in projected distance along the galaxy’s
minor axis. Their data are shallower than GHOSTS data by one or
two magnitudes. Nevertheless, they were able to reach magnitudes
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Figure 15. Halo median colours/metallicities (left-hand panels) and slopes of colour gradients (right-hand panels) as a function of Vmax (top panels) and total
stellar mass for the eight massive disc galaxies for which this information is available, i.e. the six GHOSTS galaxies analysed in this work in addition to our own
MW and M31. The median colour values are taking at 30 kpc along the minor axis of these galaxies. For the MW and M31, we assume a median metallicity
of −1.7 dex (Sesar et al. 2011; Xue et al. 2015) and −0.76 dex (Gilbert et al. 2014, with an additional −0.213 dex to account for the alpha enhancement of 0.3
assumed in this work) respectively, which were transformed into colours using Streich et al. (2014) relationship. Similarly, the colour gradients for MW and
M31 were obtained from their metallicity values at 10 and 30 kpc. There is a significant scatter in stellar halo colour/metallicity and colour/metallicity gradient
in a narrow range of stellar mass or rotation velocity. We see no significant trend in correlation between these quantities and either Vmax or total stellar mass.

down to 1 or 1.5 mag below the TRGB. Mouhcine et al. (2005b)
derived a colour–luminosity relation between the halo colour and
luminosity of the host galaxy. Moreover, they concluded that mas-
sive disc galaxies have haloes with rather high metallicities, surpris-
ingly more metal rich than what is thought typical of the MW halo at
the same radii ([Fe/H] ∼ −0.6/ − 1.0 versus [Fe/H]MW ∼ −1.6).
Three out of the four massive galaxies in their sample are studied
in this work too, namely NGC 253, NGC 3031, and NGC 4945. We
find that our results are consistent with their estimated metallici-
ties, when comparing our colour measurements at the locations of
their fields. The most important difference between GHOSTS and
Mouhcine et al. (2005a) observations is that they use a single field
per galaxy whereas GHOSTS observes several fields per galaxy
which thus allows us to obtain colour differences and gradients as
a function of radius. GHOSTS also reaches ∼55 kpc further away
from the galactic centre than Mouhcine fields, assuring that we
have no disc contamination along the minor axis. Interestingly, we
find that the three galaxies in common between Mouhcine et al.’s
sample and ours have a flat colour/metallicity gradient. Thus, the
metallicity estimated by Mouhcine et al. (2005c) in one field can be
applied to the outer regions in those galaxies. Moreover, we show
in Fig. 13 that even in the outer regions at minor axis radii of R ∼
70 kpc in projection, we can find RGB halo colours consistent with
metallicities similar or higher than [Fe/H] = −1.2 dex. In addition,

we find a wide range in stellar halo colours (from 0.9 to 1.3) which
translate into metallicities between −0.6 dex and −1.7 dex.

We explore this further in Fig. 15 where the median colour of
the stellar haloes at 30 kpc and slopes of their colour gradients are
plotted as a function of both Vmax (maximum rotational velocity)
and total stellar mass for all the eight massive disc galaxies for
which this information is available, i.e. the six GHOSTS galaxies
presented in this work in addition to the MW and M31. The median
colour values at 30 kpc for the MW and M31 were estimated using
the Streich et al. (2014) relationship, assuming [α/Fe] = 0.3. The
metallicity at 30 kpc of M31’s halo is from Gilbert et al. (2014)10

and the metallicity at 30 kpc of the MW’s halo is the mean metallic-
ity between the value reported in Sesar et al. (2011) and Xue et al.
(2015), i.e. [Fe/H] = −1.7 dex. Stellar masses for the GHOSTS
galaxies were estimated using K-band luminosities, coupled with a
typical K-band mass-to-light ratio of M/L = 0.6, typical of massive
spiral galaxies, following Bell & de Jong (2001) using a universally
applicable Chabrier (2003) stellar IMF. Luminosities were calcu-
lated using K-band total magnitudes from Jarrett et al. (2003), in

10 We note that the [Fe/H] reported in Gilbert et al. (2014) were derived
assuming no alpha enhancement. We have corrected their reported [Fe/H]
metallicities for the assumed [α/Fe] = 0.3.
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conjunction with the distances presented in Table C1. Such masses
carry at least 30 per cent uncertainties, and potentially suffer from
larger systematic error if assumptions underlying their calculation
are incorrect, e.g. if the stellar IMF varies from galaxy to galaxy.
Despite these uncertainties, these masses are useful in order to
build intuition about how these galaxies compare to larger samples
of galaxies, e.g. from the SDSS (e.g. Kauffmann et al. 2003) that
have stellar mass estimates but lack accurate measures of rotation
velocity. Stellar masses for the MW and M31 are from Bovy & Rix
(2013) and Sick et al. (2015), respectively. We find that there is a
factor of 5 scatter in stellar halo metallicity and a significant scatter
in metallicity gradient amongst these eight galaxies, illustrating a
considerable diversity in halo properties in a narrow range of galaxy
mass and rotation velocity. There is no correlation between Vmax and
colour/metallicity and a possible weak trend between the colour gra-
dient and Vmax. The Spearman rank correlation coefficient between
the Vmax and colour/metallicity is −0.0952 whereas the coefficient
is −0.6429 when the colour gradient is plotted against Vmax. This
indicates a larger correlation of Vmax with colour gradient although,
from its significance of 0.12, there is an ∼10 per cent probability
that these quantities are drawn from an uncorrelated data set. Cor-
relation of the same quantities with total stellar mass is even weaker
(bottom panel of Fig. 15).

So far, we have information about the colour/metallicity profiles
of eight disc galaxies: MW, M31, and the six GHOSTS disc galaxies
presented here. Four out of eight stellar haloes show clear negative
metallicity gradients whereas three present rather flat profiles, and
one (our own MW) may or may not have a stellar halo metallicity
gradient. Regardless of whether there is a metallicity gradient or not,
the average colour of all stellar haloes considered implies a higher
average metallicity than that of the MW’s halo, although a recent
work by Janesh et al. (2015) indicated that there are a significant
number of stars in their SEGUE halo sample with [Fe/H] > −1.
In addition, one should keep in mind that comparing the results
obtained from different observations is not always straightforward.
These arise generally from different sample of halo stars (or different
halo tracers), methodology and techniques used to derive the results
and often even the definition of what is considered the stellar halo
of the galaxy varies. All these differences may complicate a direct
comparison of results from the literature.

We conclude from this comparison that the haloes of mas-
sive disc galaxies appear to show a great diversity in their
colours/metallicities as well as in the behaviour of their
colour/metallicity profiles. In addition, notwithstanding the mod-
est sample size, there is no strong correlation between their halo
colour/metallicity or gradient with galaxy’s properties such as rota-
tional velocity or stellar mass.

6.2 Comparison with models of stellar halo formation

In Monachesi et al. (2013), we have quantitatively compared the
colour profile obtained for NGC 3031 with the cosmologically mo-
tivated models from Bullock & Johnston (2005, hereafter BJ05).
The stellar haloes in BJ05 are built entirely from the merger and
disruption of satellite galaxies within an �CDM cosmology, thus
they only have an accreted component. The BJ05 models are so-
called hybrid models. Star particles in subhaloes generated using
high-resolution N-body simulations are painted on to pure dark
matter particles such that their luminosity function follows a King
profile. A cosmologically motivated semi-analytic model of galaxy
formation is used to assign stellar properties to the painted particles
(see also Robertson et al. 2005; Font et al. 2006a).

In order to have a faithful comparison between the models and
our observations, we converted the star particles of BJ05 into stars
and built synthetic CMDs of the 11 stellar haloes generated us-
ing Padova luminosity functions (Marigo et al. 2008; Girardi et al.
2010) and the IAC-STAR code (Aparicio & Gallart 2004), as explained
in detail in Monachesi et al. (2013). We excluded from our analy-
sis stellar populations that belong to surviving satellites, i.e. stellar
particles that are still bound to their original progenitor. We then
built HST-like fields along different directions and different pro-
jected distances on the sky of each stellar halo and simulated the
observational effects in each synthetic HST-like CMD per field us-
ing the results from the ASTs. We constructed colour profiles and
colour distribution functions in the exact same way as done with
the observations and we averaged the results obtained from each of
the 11 realizations. We refer the reader to Monachesi et al. (2013)
for a detailed description of this process.

In each panel of Fig. 13, we show the resulting average colour
profile from the BJ05 models as a black-dashed line. The shaded
area indicates the 1σ model-to-model deviations from the aver-
age. The BJ05 models do not predict a colour gradient in the stel-
lar halo. This may not be incredibly surprising, since it is known
that the metallicity profiles of B&J models lack large-scale gradi-
ents (Font et al. 2006b). Nevertheless, given the wide age spread
that there is in the BJ05 models as well as the pencil-beam na-
ture of our observations, a quantitative direct comparison of the
models with our data using colour profiles of RGB stars was
required.

We can see from Fig. 13 that the colour profiles of most of the mas-
sive disc GHOSTS galaxies are broadly consistent with that of the
BJ05 models. Half of our galaxies lack a detectable colour gradient,
and the predicted ages and metallicities of the models yield colours
that broadly agree with the colours of GHOSTS galaxies. Cooper
et al. (2010) presented six stellar haloes generated using a different
type of hybrid method than BJ05 and from higher resolution N-body
dark matter simulations, also found mostly flat metallicity profiles
in the stellar haloes (see also Gómez et al. 2012). They show, how-
ever, that a diversity of metallicity profile behaviour can be obtained,
from flat to gradients or sharp changes, when a stellar halo is built
purely from accretion of satellite galaxies. The differences in the
metallicity profiles originate from the different accretion histories
of the simulated galaxies. In general, there is little or no metallic-
ity gradient when many satellites contribute comparably in mass
to the final halo, whereas metallicity profiles show gradients or
sharp variations when only one or two massive systems contribute
significantly to the final halo.

On the other hand, cosmological hydrodynamical simulations of
galaxies that model both dark matter and baryon particles, i.e. these
galaxies contain an in situ as well as an accreted component, predict
generally strong negative gradients in their metallicity profiles. Font
et al. (2011) have analysed ∼400 massive disc galaxies using the
cosmological hydrodynamical simulations Galaxies-Intergalactic
Medium Interaction Calculation of moderate resolution and showed
that, on average, the stellar halo metallicity gradually decreases out
to ∼60 kpc, with the deepest decline over the range of 20 < R <

40 kpc and a decrease of only 0.1 dex from 60 kpc out to 200 kpc.
They argue that the change in slope at R ∼ 30 kpc is associated with
the transition region at which the accreted component of stellar
haloes starts to dominate over the in situ component (dominant at R
< 30 kpc). The strong metallicity gradient as an ubiquitous feature
of the simulated galaxies by Font et al. (2011) is not supported by
our observations. Only half of our galaxies show colour gradients,
which reflect metallicity gradients.
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Tissera et al. (2013, 2014) analysed a suite of six highly resolved
MW-mass galaxies in a cosmological hydrodynamical simulation.
Although all their metallicity profiles present gradients within the
inner ∼20 kpc, which are not seen in some of the GHOSTS haloes,
two out of six show flat metallicity profiles outside this range and out
to ∼100 kpc whereas the remaining four continue to have negative
gradient metallicity over the entire radii. Tissera et al. also showed
that the transition radius between inner and outer halo populations
(divided according to an energy criteria) is at R ∼ 15–20 kpc. They
moreover indicated that differences in the features exhibited in the
metallicity profiles obtained reflect their galaxy different assem-
bly history. According to their simulations, metallicity differences
between the inner and outer haloes would generally require a con-
tribution of in situ stars. However, metallicity differences between
inner and outer regions can also be observed if only accreted stars
are considered, in the case of a halo whose assembly history has
contributions from massive satellites. In addition, they find that the
fraction of accreted stars in the inner 20 kpc of their haloes varies
from ∼30 to ∼60 per cent. They then predict that the system-to-
system scatter in the in situ mass fraction is large and spans over a
factor of 4.

Pillepich, Madau & Mayer (2015) have presented a very high-
resolution cosmological hydrodynamic simulation of a late-type
spiral galaxy, ‘Eris’, close MW analogue. They find a positive metal-
licity gradient between the inner, r < 20 kpc, and outer halo, with
a median metallicity of [Fe/H] = −1.5 dex within 20 kpc from the
centre and [Fe/H] = −1.3 dex beyond this radius. This seems to be
in contrast with most of the MW observations and the authors claim
that this difference may be due to the different assembly history
between Eris and the MW.

We note that the simulations by Tissera et al. and Pillepich et al.
seem to reproduce well some of the observations. The difference
between their and Font et al. (2011) predictions might be due to reso-
lution. It is thus encouraging that the observations are a closer match
to the higher resolution (and therefore likely more realistic) sim-
ulations. Nevertheless, with only six simulated stellar haloes from
high-resolution hydrodynamical models it is not possible to assess
the relevance of these results against the possibility of large halo-
to-halo variations. Large statistics of high-resolution cosmological
hydrodynamical simulations, such as the recently generated Evo-
lution and Assembly of GaLaxies and their Environments (Schaye
et al. 2015) and Illustris (Pillepich et al. 2014)11 simulations, are re-
quired to be able to quantify the scatter in halo-to-halo properties. A
faithful comparison between the results from such simulations and
our observations must be done in order to assess how important the
in situ component of stellar haloes is and what fraction of galaxies
show a large contribution from in situ halo stars.

6.3 Panoramic view of GHOSTS galaxies

We gain exquisite information about the stellar populations as well
as robust detection of halo stars when using HST observations to
study stellar haloes of nearby galaxies. However, mapping an entire

11 Although we note that the Illustris, Eris, and Tissera et al. (2014) stellar
haloes are much more massive than observed haloes (see e.g. Bell et al.
2008 for the MW and Ibata et al. 2014 for M31), carrying typically more
than 20 per cent of a galaxy’s mass, in some cases even half of it. While the
successful simulation of such a large ensemble is a tremendous achievement,
such simulations appear to be far from the large dynamic range required to
successfully model stellar haloes accurately.

stellar halo from space is not yet feasible; only small-pencil beam
regions can currently be explored. Given the abundant substruc-
ture observed (see e.g. Bell et al. 2008; McConnachie et al. 2009;
Martı́nez-Delgado et al. 2010; Ibata et al. 2014) and predicted to be
in stellar haloes (see e.g. BJ05 Cooper et al. 2010), our view of their
stellar properties may be biased if only one small region is sampled
(e.g Mouhcine et al. 2005b). In other words, observations of tiny
regions around galaxies may not necessarily represent the global
picture of their stellar halo. This situation is worse when we look at
the nearest galaxies, where each HST FoV represents a few kpc2.

The GHOSTS observations attempt to overcome this issue by
placing several HST pointings along the different axes of each
galaxy such that our results are representative of a relatively large
portion of the stellar halo. It is thus very unlikely that all our obser-
vations would only sample, e.g. the properties of one single stellar
stream. For the farthest galaxy in this study, NGC 7814, each HST
FoV covers a 14 kpc × 14 kpc area.

Nevertheless, even with information from various halo regions,
HST pencil-beam observations should ideally be complemented
with a panoramic view of each studied galaxy to have a global pic-
ture of the corresponding stellar halo. We note that panoramic view
observations of stellar haloes from ground-based telescopes suffer
from strong foreground and background contamination. Most of
the panoramic view of galaxies are obtained with integrated light
instead of resolved stars, with which is not possible to constrain
the halo stellar populations. Ground-based observations of resolved
stellar populations, on the other hand, are heavily contaminated from
unresolved background galaxies which, due to the lower resolution
of these observations, are difficult to distinguish. The lower resolu-
tion leads generally also to severe crowding issues (see e.g. Bailin
et al. 2011, most of the RGB stars they detected from ground-based
observations of NGC 0253 were blends). It is also difficult to reach
deeper, hence fewer RGB stars per kpc2. Therefore, their surface
brightness sensitivity is effectively lower than the one reached by
HST observations and constraining the stellar populations of faint
features as the extended stellar halo is compromised when using
ground-based observations. In what follows, we discuss the sample
of GHOSTS galaxies presented in this work with complementary
panoramic imaging and briefly highlight the findings from wide-
field imaging. NGC 4945 and NGC 4565 currently lack panoramic
imaging of their haloes.

(i) NGC 0253 has been observed using the Visible and In-
frared Survey Telescope for Astronomy telescope (Greggio et al.
2014). These observations resolve individual AGB and RGB
stars that belong to the halo of NGC 0253 out to ∼40 kpc
along the galaxy’s minor axis. Their stellar map shows a promi-
nent southern shelf (also observed in Beck, Hutschenreiter &
Wielebinski 1982; Davidge 2010; Bailin et al. 2011) and a newly
discovered symmetrical feature on the north side. From the 14 HST
fields probing the halo of NGC 253 (from Field 7 to Field 20), only
three fall in substructures. Fields 9 (R ∼ 6 kpc on the minor axis)
and 10 (R ∼ 10 kpc on an intermediate axis) are on the southern
shelf and Field 13 (R ∼ 33 kpc on the minor axis) falls on the north
substructure. We show in a follow-up paper that there is an over-
density in the star counts that we obtain from GHOSTS in Field 13
(Harmsen et al., in preparation) although its colour does not seem
to deviate from that of the other fields.

(ii) Mouhcine et al. (2010) presented a panoramic view of NGC
0891. They resolved RGB stars and constructed a surface density
map of NGC 0891 across the surveyed area, covering 90 kpc ×
90 kpc. Abundant stellar substructure was found in the outskirts of

MNRAS 457, 1419–1446 (2016)



The colour profiles of stellar haloes 1439

the survey, including a giant stream and four other arcing streams
that loop around the galaxy extending up to ∼40 kpc west and
∼30 kpc east. In addition, they observed a thick cocoon-like stellar
structure surrounding the galaxy extending along the minor axis (or
vertically) up to ∼15 kpc and along the major axis (or radially) up
to ∼40 kpc. Our GHOSTS fields are placed on the east side of the
galaxy, thus avoiding the giant stream and other streams that extend
up to 40 kpc on the west. Fields 5 (R ∼ 30 kpc on the minor axis)
and 6 (R ∼ 20 kpc on the minor axis), however, overlap with two
regions of streams (one stream each field). Fields 12 (R ∼ 25 kpc
on the major axis) and 13 (R ∼ 30 kpc on the major axis) likely
contain material from the giant stellar stream along the major axis
(Holwerda et al., in preparation). In addition, Field 1 (R ∼ 6 kpc)
along the minor axis and all the fields along the major axis, except
Field 13, overlie in the extended envelope surrounding the galaxy,
which seem to be present out to ∼10 kpc along the minor axis. We
see a distinct colour difference between major and minor axes at a
given radius out to 30 kpc, where the colour on the major axis at
30 kpc is similar to the colour on the minor axis at 10 kpc. This
might suggest that the ‘cocoon’ extends out to 30 kpc along the
major axis and 10 kpc along the minor axis.

(iii) A wide field of resolved stars covering an area of ∼0.3 deg2

in the northern half of NGC 3031 (M81) was presented by Barker
et al. (2009). The resolved RGB star counts allowed them to detect
a faint, extended component beyond the bright optical disc. No
stellar streams have been reported or shown in this study, although
recent Hyper Suprime-Cam data show evidence of a stellar stream
of RGB stars connecting M81 with its neighbouring galaxy M82
(Okamoto et al. 2015). Our GHOSTS Fields 2, 3, 4, 13, and 14
along the major axis of M81 would show contributions from such
stream material. Nevertheless, we do not use the fields along the
major axis to obtain conclusions about the colour gradient of M81’s
stellar halo.

(iv) NGC 7814 was observed with small (telescope aperture D =
0.1–0.5 m) robotic telescopes Martı́nez-Delgado et al. (2010) and
panoramic view does not show any signs of tidal streams (Martı́nez-
Delgado, private communication).

7 SU M M A RY A N D C O N C L U S I O N S

We analyse the halo stellar populations of six MW-mass disc galax-
ies. New HST/ACS and HST/WFC3 data from the GHOSTS survey
are used in this work as well as HST/ACS data introduced in the
GHOSTS data paper by R-S11. Several fields along the principal
axes of each galaxies were imaged and we were able to construct
CMDs of these fields showing halo populations out to ∼50 kpc and
in some cases out to ∼70 kpc along the minor axis. The 50 per cent
completeness level of the CMDs are reached at one to two mag-
nitudes below the TRGB, depending on the galaxy’s distance. The
RGB region of the CMDs used for our analyses are mostly free
of contaminants such as background unresolved galaxies and fore-
ground MW stars, after selective cuts are applied to the source
catalogues.

Using the RGB stars as halo tracers, we obtain their colour dis-
tribution in each field/galaxy which provides information on both
the dominant colour and the range of colours in each field. We
use only RGB stars that are above the ∼50 per cent or 70 per cent
completeness level in each galaxy for this analysis. The stellar halo
colour profile of each galaxy is derived by utilizing only the median
colour information of fields along each galaxy’s minor axis, which
are assumed to be as clean as possible from disc contaminants. We

compare our results with other observations and with models of
galaxy formation in a cosmological context.

Here, we summarize our findings and conclusions.

(i) All of the galaxies studied in this work have halo stars out to at
least 50 kpc and some out to ∼70 kpc. Thus, our observations show
that massive disc galaxies (Vmax � 170 km s−1) have very extended
stellar envelopes beyond the region where the disc dominates.

(ii) The colour distributions exhibit differences in the range of
colours as well as in the dominant colour for different galaxies and
even from field to field within a galaxy in some cases (e.g. NGC
0891, NGC 4565).

(iii) The colour profiles, obtained computing the median colour
of RGB stars within a magnitude range as a function of radius,
indicate field to field variations in colour within each galaxy. This
variation cannot be explained solely by systematic uncertainties
(since the differences in many cases are larger than the errorbars
which include the systematic uncertainties) and thus most likely
reflect stellar population variations as a function of galactocentric
distance.

(iv) The stellar halo colour profiles obtained using the minor axis
fields of three out of six galaxies display a negative gradient, with
gradually bluer colour in the outer regions. Three galaxies show flat
colour halo profiles (NGC 0253, NGC 3031, NGC 4945) reflecting
negligible halo population variations as a function of galactocentric
distances.

(v) Given the direct relation between RGB colours and metal-
licities, we can estimate the metallicity that the measured colours
correspond to. We assume [α/Fe] = 0.3 to estimate the halo metal-
licity and find that the GHOSTS galaxies have a large range of
stellar halo median metallicities at 30 kpc from [Fe/H] ∼ −0.8 dex
to [Fe/H] ∼ −1.5 dex.

(vi) Since there is a wide range in halo colours and metallicities
for disc galaxies of similar mass and luminosity, this implies that
the colour–luminosity relation derived by Mouhcine et al. (2005c)
must have a large scatter in colour. Moreover, we find no strong
correlation between the stellar halo median colours/metallicities and
either Vmax or total stellar mass of the galaxy. There may be a trend
between colour/metallicity gradient and Vmax such that galaxies
with larger Vmax have more significant colour/metallicity gradients,
although the statistics are poor and there is a 10 per cent probability
for these quantities to be drawn from an uncorrelated distribution.

(vii) When comparing our results with cosmologically motivated
models of galaxy formation in which stellar haloes are purely built
up from accretion events, we find a general good agreement with
the observations.

(viii) Cosmological hydrodynamical simulations with varying
importance of in situ populations dominating to 20 kpc from the
disc reproduce some of the observations. They predict that most or
all galaxies should have strong negative metallicity gradients, which
seems in conflict with half of our sample with little to no metallicity
gradient. However, the gradients presented in these simulations are
obtained from spherically averaged metallicities. A more appropri-
ate comparison would be between our minor axis colour profiles
and the minor axis colour and metallicity profiles of hydrodynami-
cal models; this will be presented in a future work.

We conclude that the haloes of disc massive galaxies appear
to show great diversity in their colours/metallicities as well as in
the behaviour of their colour/metallicity profiles. This reflects the
scatter in the halo-to-halo properties predicted by cosmological
simulations due to the stochastic process of galaxy formation.
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A P P E N D I X A : IN F O R M AT I O N A B O U T EAC H
N E W IN D I V I D UA L F I E L D A N D D O L P H OT

PA R A M E T E R S

We present in Table A1 relevant information regarding each field
observed for the GHOSTS galaxies studied in this work. Some
of those fields were already introduced in R-S11 (indicated with
footnote a).

Table A2 indicates the DOLPHOT processing parameters that were
used in the GHOSTS pipeline when running DOLPHOT through all
the data. The only difference in the inputs between ACS and WFC3
data is the PSF. Tiny Tim synthetic PSFs (Krist 1995; Hook et al.
2008; Krist et al. 2011) were used for ACS data whereas Jay An-
derson PSFs (ISR ACS 2006-01) were used for the WFC3 data. As
explained above, we find that using Anderson PSFs on WFC3 data
reduced the systematic offsets between the magnitudes of coinci-
dent stars in overlapping regions (see Williams et al. 2014, for a
discussion on systematics due to PSF).

A P P E N D I X B : AU TO M AT E D S E L E C T I O N
C R I T E R I A D E T E R M I NAT I O N
FOR W FC3 FI ELDS

We describe here the method employed for determining the best
selection criteria, i.e. ‘photometry culls’, in order to reduce at maxi-
mum the unresolvable background galaxies that appear as detections
in the WFC3 DOLPHOT photometric outputs. At the same time, the
culls must have minimal impact on the true stellar detections. The
method employed for determining the ACS culls is described in
R-S11.

We used several deep WFC3/UVIS exposures of five fields from
the HST archive that are far from any nearby galaxy, and thus we call
‘empty’ archival WFC3 fields (see Table B1). These observations
should be free of resolvable stars others than the MW foreground
stars. We chose exposures that have similar exposures times to
our observed data and thus are ideal for understanding the back-
ground galaxy contaminants of our fields. We ran DOLPHOT on these
‘empty’ fields using the same processing parameters as those used
on the GHOSTS observations, indicated in Table A2. We then re-ran
DOLPHOT after injecting ∼300 000 artificial stars in them, distributed
approximately to recreate a typical GHOSTS CMD.

Having the DOLPHOT outputs from both the ‘empty’ archival fields
and the ASTs on those fields, we ran a Metropolis–Hasting type
Markov Chain Monte Carlo (MCMC) algorithm (Haario et al. 2006)
over a range of possible selection criteria that we apply to both the
empty field detections and AST output. The MCMC code then
searches to minimize the number of unresolved galaxies that pass
the culls while maximizing the number of artificial stars that pass the
same culls. Specifically, the MCMC code minimizes the negative
log-likelihood function:

L = −1/2 × (a2 + b2), (B1)

where a as the fraction of artificial stars that fails to pass the culls and
b the fraction of detections in the archival fields that passed the culls
in each field. The range of possible selection criteria was chosen
based on our experience with ACS culls (see R-S11). We search
for values that are close to the ACS culls, which used parameters
from the DOLPHOT diagnostic output described in Section 3. The final
selection criteria for WFC3 fields, or ‘WFC3 culls’ are

−0.19 < sharpnessF606W + sharpnessF814W < 1.50

crowdingF606W + crowdingF814W < 0.20

S/NF606W > 5.1, S/NF814W > 3.2.

In addition, we select detections for which DOLPHOT reports an
object type 1, which indicates a clean point source, as well as an
error flag of 2 or less, which indicates that there are not many bad
or saturated pixels.

The effect of the WFC3 culls can be seen in Fig. B1. The top
panels in this figure show the CMDs of DOLPHOT detections after
performing photometry on the empty fields. The sources in these
CMDs are mostly unresolved background galaxies and some fore-
ground MW stars. The bottom panels show the CMDs after the
WFC3 culls have been applied to the source catalogues of the same
fields. Foreground MW stars remain as well as some unresolved
background galaxies that passed the culls. After applying the selec-
tion criteria on the empty fields, ∼95 per cent of the contaminants
have been removed. Note that the number of unresolved galaxies
that remain fluctuates slightly from field to field depending mainly
on the exposure time of the observations.
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Table A1. Information on each field of the HST/ACS HST/WFC3 observations.

Galaxy Field Proposal α2000 δ2000 Position Observation Camera tF606W tF814W

ID (◦) (◦) angle date (s) (s)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

NGC 0253 Field-01a 10915 11.9013 −25.2789 139.99 2006-09-13 ACS 1508(2) 1534(2)
Field-02a 10915 11.9461 −25.2457 140.89 2006-09-09 ACS 1508(2) 1534(2)
Field-03a 10915 11.9908 −25.2126 159.21 2006-09-15 ACS 1508(2) 1534(2)
Field-04a 10915 12.0356 −25.1794 139.99 2006-09-08 ACS 1508(2) 1534(2)
Field-05a 10915 12.0803 −25.1463 144.99 2006-09-19 ACS 2283(3) 2253(3)
Field-06a 10523 12.1479 −25.0881 51.04 2006-05-19 ACS 680(2) 680(2)
Field-07a 10523 12.2311 −25.0104 113.60 2005-09-01 ACS 680(2) 680(2)
Field-08a 10523 11.8080 −25.1696 60.16 2006-06-13 ACS 680(2) 680(2)
Field-09a 10523 11.9376 −25.3697 134.79 2005-09-13 ACS 680(2) 680(2)
Field-10a 10523 11.8456 −25.4283 190.72 2005-10-24 ACS 680(2) 680(2)
Field-11 12213 11.6372 −25.0007 256.45 2010-12-18 WFC3 1076(2) 1219(2)
Field-12 12213 11.6034 −24.9781 256.45 2010-12-18 ACS 843(2) 1182(2)
Field-13 11613 11.5346 −24.8585 60.75 2010-06-11 ACS 800(2) 680(2)
Field-14 11613 11.4304 −24.8312 60.75 2010-06-11 WFC3 725(1) 1175(2)
Field-15 12213 11.3479 −24.6810 234.97 2010-11-04 WFC3 1076(2) 1218(2)
Field-16 12213 11.3074 −24.6711 234.97 2010-11-04 ACS 842(2) 1182(2)
Field-17 12213 11.2291 −24.5825 240.26 2010-11-18 WFC3 1076(2) 1218(2)
Field-18 12213 11.1897 −24.5693 240.26 2010-11-18 ACS 842(2) 1182(2)
Field-19 12213 11.0445 −24.3522 234.97 2010-11-04 WFC3 1076(2) 1218(2)
Field-20 12213 11.0041 −24.3424 234.97 2010-11-04 ACS 842(2) 1182(2)

NGC 0891 Field-01a 9414 35.6779 42.3283 243.99 2003-02-19 ACS 7711(9) 7711(9)
Field-02a 9414 35.7070 42.3803 244.28 2004-01-17 ACS 7711(9) 7711(9)
Field-03a 9765 35.6618 42.4043 244.01 2004-02-18 ACS 676(2) 700(2)
Field-04a 9414 35.7358 42.4318 244.62 2004-02-17 ACS 7711(9) 7711(9)
Field-05a 10889 35.6523 42.3473 17.23 2006-10-22 ACS 3170(3) 3080(3)
Field-06 12213 35.7843 42.3048 246.63 2011-02-12 ACS 2506(6) 3366(6)
Field-07 12213 35.8278 42.2970 246.63 2011-02-12 WFC3 2890(6) 4032(6)
Field-08 12213 36.0332 42.2355 246.72 2011-02-12 ACS 2100(5) 2740(5)
Field-09 12213 36.0767 42.2277 246.72 2011-02-12 WFC3 1786(4) 2688(4)
Field-10 12196 35.6612 42.3940 337.99 2011-11-08 WFC3 3134(2) 4754(6)
Field-11 12196 35.6845 42.4359 337.99 2011-11-08 WFC3 3134(6) 4754(6)
Field-12 12196 35.6612 42.3940 337.99 2011-11-08 ACS 3471(6) 3647(6)
Field-13 12196 35.6845 42.4359 337.99 2011-11-08 ACS 3471(6) 3647(6)

NGC 3031 Field-01a 9353 148.8541 69.0202 272.79 2002-05-28 ACS 834(2) 1671(3)
Field-02a 10915 148.6446 69.2804 89.81 2006-11-16 ACS 24232(10) 29953(12)
Field-03a 10523 148.5963 69.3323 84.98 2005-12-06 ACS 700(2) 700(2)
Field-04a 10523 148.4984 69.4162 120.25 2005-10-26 ACS 720(2) 720(2)
Field-05a 10523 149.3217 69.1081 117.08 2005-10-31 ACS 710(2) 710(2)
Field-06a 10523 149.5187 69.1478 117.32 2005-10-31 ACS 735(2) 735(2)
Field-07a 10523 149.7178 69.1783 162.14 2005-09-07 ACS 730(2) 730(2)
Field-08a 10523 149.1630 69.3748 70.08 2005-12-20 ACS 740(2) 740(2)
Field-09a 10136 148.5689 69.0932 297.00 2005-04-13 ACS 5354(4) 5501(4)
Field-10a 10584 149.1176 68.9110 69.76 2005-12-09 ACS 1580(3) 1595(3)
Field-11a 10584 149.2538 68.9315 69.76 2005-12-06 ACS 1580(3) 1595(3)
Field-12a 10604 148.2633 68.8676 160.11 2005-09-11 ACS 12470(10) 22446(18)
Field-13 11613 148.5480 69.4435 266.00 2010-06-03 WFC3 735(1) 1225(2)
Field-14 11613 148.3369 69.5085 266.00 2010-06-03 ACS 850(2) 690(2)
Field-15 11613 148.3377 69.6583 219.74 2010-07-16 WFC3 735(1) 1225(2)
Field-16 11613 148.0555 69.6497 219.74 2010-07-16 ACS 850(2) 690(2)
Field-17 11613 147.9212 69.7207 40.64 2009-12-31 ACS 830(2) 680(2)
Field-18 11613 147.6379 69.7141 40.64 2009-12-31 WFC3 725(1) 1200(2)
Field-19 11613 149.7859 69.2047 35.13 2010-01-18 WFC3 735(1) 1225(2)
Field-20 11613 150.0595 69.2207 35.13 2010-01-18 ACS 850(2) 690(2)
Field-21 11613 150.3768 69.2199 356.93 2010-02-25 WFC3 725(1) 1200(2)
Field-22 11613 150.3953 69.2675 215.87 2010-07-22 ACS 850(2) 690(2)
Field-23 11613 150.4575 69.3234 49.55 2010-01-23 WFC3 735(1) 1225(2)
Field-24 11613 150.5644 69.2926 356.93 2010-02-25 ACS 830(2) 680(2)
Field-25 11613 150.670 69.2827 215.87 2010-07-22 WFC3 735(1) 1225(2)
Field-26 11613 150.7350 69.3147 49.55 2010-01-23 ACS 850(2) 690(2)
Field-27 11613 147.7289 68.8632 108.28 2009-11-09 WFC3 735(1) 1225(2)
Field-28 11613 147.8496 68.7749 108.28 2009-11-09 ACS 850(2) 690(2)
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Table A1 – continued

Galaxy Field Proposal α2000 δ2000 Position Observation Camera tF606W tF814W

ID (◦) (◦) angle date (s) (s)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

NGC 4565 Field-01a 10889 189.1069 26.0161 119.15 2006-12-13 ACS 7350(7) 7192(7)
Field-02a 10889 189.1499 25.9707 118.00 2006-12-15 ACS 7350(7) 7192(7)
Field-03a 10889 189.1703 26.0700 118.78 2006-12-14 ACS 7350(7) 7192(7)
Field-04a 9765 189.0306 26.0324 337.78 2004-04-15 ACS 676(2) 700(2)
Field-05 12213 189.2549 26.1107 336.98 2011-04-21 WFC3 7763(7) 10479(7)
Field-06 12213 189.2810 26.1556 336.98 2011-04-21 ACS 8883(7) 7878(7)
Field-07 12196 188.9776 26.1016 100.97 2011-01-24 ACS 8265(6) 7340(6)
Field-08 12196 188.9776 26.1016 100.97 2011-01-24 WFC3 5795(5) 9880(6)

NGC 4945 Field-01 11613 196.5884 −49.3066 155.49 2010-03-17 ACS 830(2) 680(2)
Field-02 11613 196.6422 −49.2146 155.49 2010-03-17 WFC3 725(1) 1205(2)
Field-03 11613 196.7622 −49.1803 275.91 2010-06-24 ACS 830(2) 680(2)
Field-04 11613 196.8563 −49.2572 275.91 2010-06-24 WFC3 725(1) 1205(2)
Field-05 11613 196.9382 −49.0558 157.13 2010-03-20 ACS 830(2) 680(2)
Field-06 11613 196.9957 −48.9649 157.13 2010-03-20 WFC3 725(1) 1205(2)
Field-07 11613 196.1443 −49.4310 315.79 2010-08-25 WFC3 725(1) 1170(2)
Field-08 11613 196.1474 −49.3325 315.79 2010-08-25 ACS 800(2) 680(2)
Field-09 11613 196.0315 −49.3653 318.17 2010-08-28 WFC3 725(1) 975(1)
Field-10 11613 196.0418 −49.2676 318.17 2010-08-28 ACS 830(2) 680(2)
Field-11 11613 195.8408 −49.1319 263.61 2010-06-08 WFC3 725(1) 1170(2)
Field-12 11613 195.7240 −49.0698 263.61 2010-06-08 ACS 800(2) 680(2)

NGC 7814 Field-01a 10889 0.8017 16.1263 30.15 2006-08-26 ACS 5211(5) 5215(5)
Field-02a 10889 0.8512 16.0994 25.98 2006-09-13 ACS 5211(5) 5215(5)
Field-03a 10889 0.7976 16.1451 46.96 2006-07-24 ACS 5211(5) 5215(5)
Field-04a 10889 0.7468 16.0699 27.99 2006-09-12 ACS 5211(5) 5215(5)
Field-05a 10889 0.8139 16.0715 22.98 2006-09-15 ACS 5211(5) 5215(5)
Field-06 12213 0.6484 15.9835 339.98 2010-09-29 ACS 9656(8) 8108(8)
Field-07 12213 0.6105 15.9126 339.98 2010-09-29 WFC3 8348(8) 11088(8)

aField presented in R-S11.
Notes. (1) NGC identifier; (2) field number. Fields are numerically labelled outwards following the identification in R-S11, i.e. first along one side of the major
axis, then along one side of the minor axis, then any axis in between the major and minor before labelling the remaining fields by distance from the galaxy
centre; (3) HST Proposal ID of the observation; (4) and (5) right ascension and declination in degrees; (6) the HST PA_V3 angle, which records the projected
angle on the sky eastwards of north that the observatory was rotated; (7) observation date; (8) HST camera; (9) and (10) the total time of the exposures in
seconds for the F606W and F814W filters. The number of exposures observed in each filter is indicated in brackets.

A P P E N D I X C : TR G B D I S TA N C E S
O F A L L G H O S T S G A L A X I E S

We derive the TRGB distances of NGC 4945, NGC 0247, NGC
4631, and NGC 5023. NGC 4945 and NGC 0247 were not in the
sample of GHOSTS galaxies presented in R-S11 and therefore we
measure their TRGB distances for the first time. We re-measure
the distances to NGC 4631 and NGC 5023 because our previous
observations have only fields on top of their discs and the severe
crowding as well as the high contamination from younger more
metal-rich stars prohibited an accurate measurement of the TRGB
apparent magnitude. The new data for these galaxies have fields
further out from their discs and allow us to get a better estimate of
such measurement. We detect the TRGB for fields with enough stars
within 0.2 mag of the TRGB and that are not heavily contaminated
by young stars as well as not too crowded.

As mentioned in Section 4, the I magnitude of the TRGB is almost
constant for old populations with metallicities [Fe/H] < −0.7 only
weakly dependent on metallicity, providing the best way to derive
distances to nearby galaxies. The metallicity dependence, however,
can be identified using the colour of TRGB stars (Bellazzini et al.
2001). Rizzi et al. (2007), used HST observations of five Local
Group galaxies to calibrate the TRGB absolute magnitude as a
function of TRGB colour. They have scaled the apparent magnitude
of the TRGB to an assumed luminosity for the horizontal branch,

whose absolute magnitude depends on metallicity (Carretta et al.
2000), and obtained the following relation that we use to determine
the TRGB absolute magnitude:

MF814W = −4.06 + 0.20[(F606W − F814W ) − 1.23]. (C1)

We measure the apparent magnitude of the TRGB following a
method similar to that of Makarov et al. (2006), but simultaneously
fitting multiple fields for each galaxy. In this method, an unbinned
maximum likelihood fit is performed to the F814W luminosity func-
tion (LF) near the visually estimated TRGB. The model LF for all
stars is a weighted sum of the model LF for each field, which con-
sists of two power laws joined together at a discontinuous jump
convolved with a magnitude-dependent Gaussian whose width and
zero-point correspond to the photometric uncertainty in that field.
Formally, if the array of LF parameters is x = (mTRGB, a, b, c), then
the model LF ϕ(m) is

ϕ(m|x) =
∑

f

kf ϕf (m|x), (C2)

where the individual field model LF for field f is

ϕf (m|x) =
∫

ψ(m′|x) ef (m|m′) dm′, (C3)
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Table A2. DOLPHOT processing parameters.

Description Parameter Value

Photometry aperture size RAper 3
Photometry type PSFPhot 1
Fit sky? FitSky 2
Inner sky radius RSky0 15
Outer sky radius RSky1 35
χ -statistic aperture size Rchi 2.0
Spacing for sky measurement SkipSky 2
Sigma clipping for sky SkySig 2.25
Second pass finding stars SecondPass 5
Searching algorithm SearchMode 1
Sigma detection threshold SigFind 2.5
Multiple for quick-and-dirty
photometry

SigFindMult 0.85

Sigma output threshold SigFinal 3.5
Maximum iterations MaxIT 25
Noise multiple in imgadd NoiseMult 0.10
Fraaction of saturate limit FSat 0.999
Find/make aperture corrections? ApCor 1
Force type 1/2? Force1 0
Use WCS for initial alignment? useWCS 1
Align images? Align 4
Allow cross terms in alignment? Rotate 1
Centroid box size RCentroid 1
Search step for position iterations PosStep 0.25
Maximum single-step in position
iterations

dPosMax 2.5

Minimum separation for two stars for
cleaning

RCombine 1.415

PSF size RPSF 10
Minimum S/N for PSF parameter fits SigPSF 3.0
Make PSF residual image? PSFres 1
Coordinate offset Psfoff 0.0
Flag setting to remove poor objects
from final phot

FlagMAsk 4

Use the DOLPHOT CTE correction UseCTE 0

Table B1. Empty WFC3 archival fields.

Field number PID l b tF606W tF814W

(◦) (◦) (s) (s)

1 13352 200.56 −30.41 2500 2500
2 13352 9.94 +41.97 1200 1650
3 13352 302.55 +60.52 2400 2400
4 13352 223.73 +29.15 2200 2200

the theoretical LF is

ψ(m|x) =
{

10a(m−mTRGB)+b m ≥ mTRGB

10c(m−mTRGB) m < mTRGB,
(C4)

and the Gaussian error kernel for field f is

ef (m|m′) = 1√
2πσf (m′)

e− 1
2 [m−m̄f (m′)]2

/σ 2
f . (C5)

The photometric uncertainty σ f(m) and the median output magni-
tude m̄f (m) at F814W=m were derived from exponential fits to the
AST results for field f over the range 22 ≤ F814W ≤ 26. Note that
unlike Makarov et al. (2006), we neglect the completeness, which
is negligible due to the depth of the data.

The weights normalize the model LFs to the number of observed
stars near the TRGB in each field, and are formally defined as

kf = Nf∫
ϕf (m|x) dm

, (C6)

where Nf is the number of selected stars in field f.
Stars were selected within ±1 mag of an initial mTRGB estimate,

and which satisfied a colour cut to remove both blue MS and redder
AGB stars. For most fields, the colour cut was 0.3 < F606W −
F814W < 1.6, but colours redder than 0.3 were required as the
lower limit in some fields that were particularly metal rich, or where
helium-burning sequences were prominent, and a colour bluer than
1.6 was required as the upper limit in NGC 4945 due to foreground
contamination.

Figure B1. Results from applying the WFC3 culls to the empty archival fields. The top panels show the CMDs of detections obtained from DOLPHOT on empty
WFC3 archival fields. Most of these detections are unresolved background galaxies that occupy the RGB region of the field galaxies, mostly contaminating
the more distant galaxies whose TRGBs are fainter than F814W ∼ 25.5. The bottom panels show the CMDs after the final WFC3 culls have been applied.
Foreground MW stars remain as well as some background galaxies that passed the culls. Red boxes indicate the region between colours −0.2 and 0.75. Galaxies
such as NGC 4565 and NGC 7814 have detections that passed the culls within these colours, which may be due to remaining background galaxies/quasars.
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Table C1. TRGB distances to all galaxies in the GHOSTS survey obtained in this work and in R-S11.

Name F814WTRGB (F606W − F814W)TRGB (m − M)TRGB D
(VEGAmag) (VEGAmag) (mag) (Mpc)

(1) (2) (3) (4) (5)

NGC 0247 23.76+0.012
−0.008 1.25 ± 0.35 27.82 ± 0.07 3.66 ± 0.1

NGC 0253a 23.65 ±0.03 1.26 ± 0.20 27.70 ± 0.07 3.50 ± 0.1
NGC 0891a 25.76 ± 0.03 1.34 ± 0.25 29.80 ± 0.09 9.1 ± 0.4
NGC 2403a 23.43 ± 0.02 1.14 ± 0.10 27.51 ± 0.07 3.2 ± 0.1
NGC 3031a 23.71 ± 0.02 1.14 ± 0.15 27.79 ± 0.07 3.6 ± 0.1
NGC 4244a 24.12 ± 0.02 1.09 ± 0.10 28.21 ± 0.11 4.4 ± 0.2
NGC 4565a 26.32 ± 0.02 1.25 ± 0.21 30.38 ± 0.05 11.9+0.3

−0.2

NGC 4631 25.29+0.007
−0.009 1.15 ± 0.50 29.36 ± 0.15 7.46 ± 0.5

NGC 4736a 24.21 ± 0.03 1.90 ± 0.50 28.14 ± 0.13 4.2 ± 0.3

NGC 4945 23.72+0.014
−0.016 1.35 ± 0.50 27.76 ± 0.12 3.56 ± 0.2

NGC 5023 24.99+0.015
−0.016 1.16 ± 0.33 29.06 ± 0.07 6.5 ± 0.2

NGC 5236a 24.38 ± 0.03 1.25 ± 0.30 28.41 ± 0.11 4.8 ± 0.2

NGC 5907a 27.05 ± 0.04 1.14 ± 0.29 31.13 ± 0.1 16.8+0.8
−0.7

NGC 7793a 23.79 ± 0.03 1.15 ± 0.13 27.87 ± 0.08 3.7 ± 0.1
NGC 7814a 26.74 ± 0.03 1.27 ± 0.25 30.80 ± 0.10 14.4+0.7

−0.6
IC 5052a 24.72 ± 0.05 1.34 ± 0.22 28.76 ± 0.1 5.6+0.3

−0.2

aTRGB distance calculated by R-S11.
Notes. (1) NGC identifier; (2) averaged values of the TRGB magnitude are listed using the individual
TRGB detections of each field used per galaxy, except for IC 5052 and NGC 7793, where the TRGB
detection has been done for only one field, and for the TRGB magnitudes derived in this work which are
calculated using information about all fields used (see text for a detailed description). The uncertainties
on these fields are combined in quadrature for each galaxy, and where three or more measurements exist
this is also combined in quadrature with an estimate of the standard deviation of the results; (3) averaged
values of the colour at the TRGB using the colour estimate per field. Each field colour at the TRGB
is estimated by fitting a Gaussian to the distribution of stars within 0.2 mag of the TRGB, and errors
are the width of the Gaussian fitted across the distributions. The uncertainties on these measurements are
combined in quadrature for each galaxy, and where three or more measurements exist this is also combined
in quadrature with an estimate of the standard deviation of the results; (4) the distance modulus calculated
using the detection in Column 2, the colour in Column 3 and equation (C1). The reported error incorporates
the errors both in the TRGB magnitude and the colour; (5) distance to the galaxy in Mpc using Column 4.

The maximum likelihood fit to the LF was determined by mini-
mizing the negative log-likelihood function

L(x) = −
∑

i

ln ϕ(mi |x) + N ln
∫

ϕ(m|x) dm, (C7)

with respect to the parameters x. The integrals in equations (C6)
and (C7) are over the 2 mag selected magnitude range, and N is the
total number of selected stars. Minimization was performed via the
L-BFGS-B algorithm (Zhu, Byrd & Nocedal 1997), which is good
for general-purpose minimization and allows for bounded solutions
to prevent mTRGB from becoming unphysical.

The uncertainty in the TRGB magnitude was calculated as the
16th and 84th percentiles of 500 bootstrap resamplings of the CMD.
Table C1 provides the TRGB distances to all GHOSTS galaxies.
The galaxies for which their TRGB distances have been measured
by R-S11 are indicated with superscript a.

APPENDIX D : POSSIBLE SYSTEMATIC
B I A S E S D U E TO VA RY I N G TH E
S E L E C T I O N B OX E S

As presented in Section 5.1, the selection boxes differ from galaxy
to galaxy. The different selection boxes can be divided in two
types; one that spans a large range in F814W magnitudes, between
∼1.5 and ∼2 mag below the TRGB for the three closer galaxies
NGC 0253, NGC 3031, and NGC 4945. The second selection box

Figure D1. CMDs of one field in NGC 0253 (left), NGC 3031(middle),
and NGC 4945 (right) showing the smaller selection box used here in order
to test for possible systematic biases. This selection box is the one used in
Section 5 for NGC 7814 and it is nearly the same as the one used for NGC
0891 and NGC 4565.

covers a much smaller range of F814W magnitudes, between ∼0.5
and ∼0.7 mag below the TRGB for the three more distant galaxies
NGC 0891, NGC 4565, and NGC 7814. The differences in the se-
lection boxes might be introducing systematic biases affecting the
resulting colour measurements, and therefore the colour profiles.
This may be a concern especially since the galaxies that show flat
colour profiles are the same ones for which a larger sample of RGB
stars was used to estimate the measured quantities.

There are two possible systematic biases on the measured colours
and colour distributions that could be introduced by the differences
in the selection boxes. First, the smaller selection boxes implies
measuring stars within a smaller range of magnitudes below the
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Figure D2. Colour profiles of NGC 0253 (left), NGC 3031 (middle), and NGC 4945 (right) obtained using the same smaller selection box, with stars selected
within 0.5 mag below the TRGB. Top panels: global colour profiles, i.e. using all the available fields. Red, blue, and black dots indicate fields along the major,
minor and intermediate axis, respectively. To be compared with Fig. 11. Bottom panels: stellar halo colour profiles, using only fields along the minor axis.
We find no significant differences in these colour profiles with those shown in Fig. 12 for these galaxies. In particular, no negative gradient is found when the
smaller selection boxes are used. There is however a redder colour in the outer fields of NGC 3031, along the minor axis, which may be indicative of halo
substructure.

TRGB. This is the most sensitive RGB region to metallicity varia-
tion and therefore where the RGB is broadest if there is a wide range
of metallicities in the stellar population. Given the steep luminosity
function of the RGB, the detection of a weak gradient may be hid-
den if a larger magnitude range of RGB stars is used, as in the case
of the larger selection boxes. Second, the fainter reddest boundaries
of the smaller boxes are very close to the 70 per cent or even to
50 per cent completeness in some cases, whereas the boundaries of
the larger boxes are above those completeness. This results in larger
photometric uncertainties for the redder stars within the smaller
selection boxes than for those selected within the larger selection
boxes.

To test these possible biases, we construct the colour profiles
presented in Figs 11 and 12 using the same small selection box for
all galaxies. This selection box spans a magnitude range of 0.5 mag
from the TRGB where there is a more sensitive metallicity variation
with colour, however many fewer stars per field. This is especially
so for the nearer galaxies, given the small physical area of each
HST field on the sky. In order to use a statistical sample of stars
to measure the median colour, we impose a minimum of 10 stars
per selection box (see Section 5.2). When this is not reached in
one field, we add together two fields in proximity, and along the
same axis, and calculate the median colour and colour distribution
of these two fields together instead. This was the case for the outer
fields in NGC 0253 and NGC 3031.

We show in Fig. D1 the CMDs with the smaller selection boxes
for NGC 0253, NGC 3031, and NGC 4945. We follow the exact
same steps as in Section 5 using these new selected stars and obtain

the median colours and colour distributions for these fields. The
resulting colour profiles using all fields and stellar halo profiles
using only the minor axis fields for these three galaxies are shown
in Fig. D2. We only show these three galaxies since there is no
difference in the profiles for the remaining galaxies, NGC 0891,
NGC 4565, and NGC 7814. The smaller selection box used here is
the box used in Section 5 for NGC 7814 and it is nearly identical as
the selection box used for NGC 0891 and NGC 4565. Other than the
larger uncertainties in the median colour values, due to the fewer
number of stars used, and a somewhat redder colour in some of the
fields, the colour profiles do not appear to show a negative gradient
with radius. For NGC 3031, however, there seems to be a redder
colour in the outer most fields along the minor axis, which might
be due to substructure in the halo.

In addition, we have checked that the differences in completeness
of our data does not have an impact in our results. When we use the
same smaller selection box for all galaxies, the completeness of the
stars in the closer galaxies within the smaller selection box is nearly
100 per cent whereas this is about 70 per cent or even 50 per cent for
some stars within the selection box for the more distant galaxies.
We have found no significant differences in the colour profiles when
these are corrected for incompleteness.

Thus, we conclude that the results presented are not driven by the
selection boxes.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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