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OSCILLATION AND NONOSCILLATION OF QUASILINEAR

DIFFERENCE EQUATIONS OF SECOND ORDER

E. Thandapani and L. Ramuppillai, Tamil Nadu, India

Abstract. In this paper the authors establish conditions for the oscillatory and nonoscillaiory be
havior of solutions of second order quasi linear difference equations

and

~(an_d~Yn_lla-l~Yn_d + qn!(Yn-).) = 0

when {qn}, {an} and the function! satisfy different type of conditions. Examples are inserted to illustrate
our results.

1. Introduction

This paper is concerned with the oscillatory and nonoscillatory behavior of
quasilinear difference equations of the forms

(1)

and

~(an_ll~Yn_t1a-l~Yn_l) + qnf(Yn-d = 0, n = 1,2".. (2)

where ~ is the forward difference operator defined by ~Yn = Yn+l - Yn, {an}

is a positive real sequence, {qn} is a real sequence, f : R --4 R is continuous,
nondecreasing and f( u) > 0 for u i=- 0, a > 0 and A is a positive integer.

By a solution of equation (1) {(2)} we mean a nontrivial sequence {Yn} satis
fying equation (1) {(2)} for all n ~ 1 {n ~ 1 - I}. A solution {Yn} is said to be
nonoscillatory if it is either eventually positive or eventually negative and osillatory
otherwise.

The problem of oscillation and nonoscillation of solutions difference equations
has received a great deal of attention in the last few years, e.g. see [1,2,6,8,12] which
cover a large number of recent papers. In particular, we refer to [4,5,13-21] where
oscillations of equations similar to equations (1) and (2) have been studied.
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Our aim in this paper is to obtain oscillation and nonoscillation results for the
equations (1) and (2) when {qn} is nonnegative and f(u) = lula-1u or {qn} may
change sign infinitely often. Some of our results include, as special cases, known
oscillation criteria for second order difference equations. Examples dewelling upon
the importance of our theorems are also included.

2. Preliminaries

Here we present some lemmas which are interesting in their own right and will
be used in proofs of our main results.

For simplicity, we list the conditions used in the sequel as:

(i) {qn} is a nonnegative real sequence with infinitely many positive terms,

(ii) {qn} may change sign infinitely often for n ~ 1,
00

(iii) -00 < L qn < 00,
n=I

n-I 1
(iv) Rn,no= L I/a' Rn,no --+ 00 and Rn = Rn,l,s=noas

00 1
(v) Pno = L l/a < 00,n=noan

(vi) lim If(u)1 = +00.
lul->oo

LEMMA 1. Assume that conditions (i) and (iv) hold. If {Yn} is a solution of
equation (1) such that Yn > Of or n ~ N ~ 1 then ti.Yn> Of or n ~ N.

Proof Since {anlti.Ynla-1ti.Yn} is non increasing by equation (1), we see that
{ti.Yn} is eventually of constant sign, that is ti.Yn > 0 for n ~ N ~ 1 or there is
N1 > N such that ti.Yn < 0 for n ~ N1. If ti.Yn < 0 for n ~ N1 we have

a~/ati.Yn ~ a~a ti.YN2 < 0, for n ~ N2 > Nl.

Dividing the last inequality by a~/a and summing from N2 to n, we obtain

As n --+ 00 we see that Yn --+ -00, a contradiction. This completes the proof of the
lemma.

LEMMA2. Assume conditions (ii) and (iii), (iv) and (vi) hold. If {Yn} is a
nonoscillatory solution of equation (1), then

an Iti.Ynla-1ti.Yn ~ ~ aMYiJa-1ti.yiti.f(Yi)( ) = L...J qi + L...J () ( , n ~ 1.f Yn+l i=n+l i=n+l f Yi f Yi+d

For the proof see Theorem 1 of Thandapani, Manuel and Agarwal [15] and also
see Lemma 2.2 of Zhang and Chen [21].
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(3)

LEMMA 3. Suppose conditions (i) and (v) hold. If {Yn} is a nonoscillatory

solution of equation (1) then {Yn} is boundedfor n ;;::N together with

p~an Ii1Ynla-1 i1Yn

IYnla-IYn

Moreover

(4)

(5)

(6)

and

I" p~anli1Ynla-li1Yn ~ 0
1m sup I I -I "'"n~oo Yn a Yn

Proof We may assume thatYn > 0 for n ;;::N ;;:: 1. Since {anli1Ynla-li1Yn} is
non increasing by equation (1), we see that i1{Yn} is eventually of fixed sign, that is,
i1Yn > 0 for n ;;::N or there is NI > N such that i1Yn < 0 for n > NJ, and that

al/ai1y ~al/ai1y for s>-n>-N.s s",,= n n ""

Dividing the last inequality by a;/a and summing it from n to j - 1 gives
j-I

I/a ~ 10< Yj ~ Yn + a i1Yn ~~, j;;:: n;;:: N.
s=n as

If i1Yn > 0 for n ;;::N, then we have from (6)

0< Yj ~ Yn + a~/ai1YnPn, j > n > N,

which shows that {Yn} is bounded for n ;;:: N. If i1Yn < 0 for n ;;:: NI then {Yn} is
clearly bounded and lettingj -> 00 in (6), we have

o ~ Yn + a~/a i1YnPn, n;;:: N.

In either case, we obtain

P aI/ai1Yn >- -1 >- Nnn "-' n,.-,
Yn

of which (4) is an immediate consequence.
The relation (5) clearly holds if i1Yn < 0 for n ;;:: NJ, since in this case the

function (3) itself is negative for n ;;:: NI' If i1Yn > 0 for n ;;:: N, then there exist
positive constants CI and C2 such that Yn > CI and anli1Ynla-1 i1Yn ~ C2 for n ;;:: N,

which implies
an Ii1Ynla-1 i1Yn C2
------~ -, n;;::N.

IYnla-IYn cr
Since Pn -> 0 as n -> 00, we then conclude that

lim p~anli1Ynla-I i1Yn = O.
n~oo IYnla-IYn

This proves (5) and the proof of the lemma is complete.

Finally, we need the following well known inequality due to Hardy, Littlewood
and Polya [7, Theorem 41].
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LEMMA4. Ifx,y ~ o then XV - yV ~ vxv-I(x - y)for v ~ 1 andxv _ yV ~

vyV-I(X - y)forO < v < 1.

3. Oscillation and nonoscillation of equation (1)

In this section we establish criteria for the nonoscillation and oscillation of

solutions of equation (1) subject to the condition f(u) = lula-I u.

It is convenient to rewrite the equation (1) in the form

n ~ 1 (7)

by introducing the notation

za* = Izla-1zn = Izla sgnz, a> O. (8)

THEOREM1. Assume conditions (i), (iii) and (iv) hold. Then equation (7) has

nonoscillatory solution if and only if there is a sequence {un} which satisfies

00

+ L qi; for n ~ N ~ 1. (9)
i=n+l

Proof Assume that there is a sequence {un} satisfying (9) for n ~ N. In view
of conditions (i) and (iii) we have Un > 0 for alln ~ N. Taking difference operator
on both sides of (9) shows that {un} is a solution of

n [ (U _l)lla*]for n ~ Nand Yn = IT 1 + _s_ gives a nonoscillatory solution of
s=n+l as-l

equation (7) for n ~ N, where the meaning of * is defined by (8).
Let {Yn} be a nonoscillatory solution of equation (7) and suppose that Yn > 0

for n ~ N since a similar argument holds if we suppose Yn < 0 for n ~ N. It can
tJ. a*

be easily verified that Un = an ( ~) satisfies equation (10) for n ~ N. Let n beYn

fixed but arbitrary and sum (10) from n + 1 to}, we obtain

{[(IUi_II)Ila ]a }j j IUi-II -.- +1-1
~ ~ a,-l 0Uj-un+ LJ qi+ LJ I I II = ,

i=n+I i=n+I [( Ui-I) a + 1ra,-I

} > n ~ N. (11)
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We claim that

227

If

(12)

then, in view of (11), there is NI ~ n large enough such that

forj ~ NI, or

(13)

It follows that AYj < 0 for j ~ NI, a contradiction to Lemma 1. Therefore (12) must
hold.

We now letj ---+ 00 in (11). Using (12) and the summability of {qn}, we find
that Uj tends to a finite limit UOO' But Uoo must be zero, since otherwise (12) would
fail to hold. Thus we are led to the equality (9). This completes the proof of the
theorem.

THEOREM2. Assume conditions (i), (iii) and (iv) hold. Then all solutions of
equation (7) are oscillatory if

00

lim supR~ '" qi> 1.n-+ 00 L...,;
i=n+I

(14)

Proof Suppose to the contrary that equation (7) has a nonoscillatory solution
{Yn}' Without loss of generality we may assume that Yn > 0 for n ~ N, since the
proof for the case {Yn} is eventually negative is similar. By Lemma 1, AYn > 0 for
n ~ N, so that the equation (7) can be written as

A(an_I(AYn_d'X) + qnY~ = 0, n ~ N. (15)
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(16)

Divide (15) by Y~ and use summation by parts formulae [1, Lemma 1.7.4]' we have

aj(t1Yj)a _ an(t1Yn)a ~. ~ ai-l (t1Yi-dat1yf_l _ 0a a + LJ ql + LJ a a -
Yj Yn i=n+l i=n+l Yi Yi-l

(17)11 ~ N,

for} ~ n + 1 ~ N. Let 11 be fixed but arbitrary and let} -> 00. Because of the

summability of {qn}, iffollows from (16) that (12) holds and the limit lim aj(t1~j )a
j-->OO Yj

exists and is finite. This limit must be zero, for, otherwise (12) would fail to hold.
Hence we obtain

(a~Jat1Yn)a _ ~ . ~ ai-l (t1Yi-dat1yf_l--- - LJ ql + L-J ex ex '

Yn i=n+l i=n+l Yi Yi-l

which implies that

( IJa A )aan nYn----~
Y~

00

Lqi,
i=n+l

n~N ( 18)

(19)n ~ N.

since the second sum in (17) is positive. From (15), we see that {a~Jat1Yn} is
non increasing for 11 ~ N and so we have

n-l IJa

"'"" ai t1Yi IJaYn = YN + LJ IJa ~ an t1YnRn,N,
i=N ai

00

Combining (18) and (19) give 1 ~ R~,N 2: qi,11 > N, from which it follows that
i=n+l

00

lim supR~ 2: qi::;; 1. This contradicts (14) and the proof is complete.
n-->oo i=n+l

Remark 1. If an == 1 then Theorems 1 and 2 are discrete analogue of Theorem
1 of Kusano and Yoshida [9] and Theorem 2.2 of Kusano, Yuki and Akio [10]
respectively.

Example 1. Consider the difference equation

t1(2n~IIt1Yn-da-lt1Yn-l) + 3(2a-n) IYnla-1Yn = 0, n ~ 1 (20)

where a > O. All conditions of Theorem 2 are satisfied and hence every solution of
equation (20) is oscillatory. In fact {Yn} = {(-1 )n} is such a solution of equation
(20).

Remark 2. The results obtained in [5, 14-19] cannot be applied to equation
(20) to get our results.

THEOREM 3. Suppose conditions (i) and (v) hold. 1f
00

Lp~+lqn = 00
n=l

(21 )
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then every solution of equation (7) is oscillatory.

229

Proof Let {Yn} be a nonoscillatory solution of equation (7). Define

anl~Ynla-1 ~YnUn=-----
IYnla-1Yn

then {un} is a solution of (10) for n ~ N, we now multiply (10) by p~+l and
summing from N + 1 to n, we obtain

n n

p~+l Un - p~+l UN + L Us( _~p~+l) + L p~+l qs
s=N+I s=N+I

(22)

In view of boundedness of p~Un (cf. Lemma 3), we see that

By mean value theorem

By Lemma 4, we have

I a+lll I (IUS_11)lla00 Ps Us-I a
L: as-l

s=N+I (IUs-rl)lla+1as-l

if a ~ 1

I a+lll I (IUS_11)lla00 Ps Us-I a
as-l

S=~l [CUs-rl) lla +1ras-l

if 0 < a < 1

Since (Ius-II) lla + 1 > 1, the above inequality yieldsas-l
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Therefore, letting n -+ 00, we find that
00 00

p~+1 UN = L p~+1 qn + L lln( -flp~+I)
n=N+I n=N+I

00 p~+llun-d{ [(~)I/a + lr -I}
+ L [(IUn_I!)I/a]a

s=N+I -- + 1
an-I

From the last equation, we obtain
00

L p~+lqn < 00
n=N+I

a contradiction to (21). This completes the proof of the theorem.

Remark 3. Theorem 3 is discrete analogue of Theorem 2.4 of Kusano and Naito

[11] .

Exal~ple 2. Theorem 3 implies that all solutions of the difference equation

fl(n2a!flYncda-IflYn_l) + n2a+I!Ynla-IYn = 0, n ~ 1 (23)

are oscillatory.
In the following we establish oscillation criteria for equation (1) when fl/a is

of superlinear type.

THEOREM4. Assume conditions (ii)-(iv) and (vi) hold. If
00

J du0< fl/a(u)'
£

00

J dufl/a(u) < 00,
-£

for any E > 0, (24)

and

a is a ratio of odd positive integers,

lim t(~f= qi) I/a = 00n-+cx:> s=l as ;=s+l

(25)

(26)

then every solution of equation (1) is oscillatory.

Proof Assume that equation (1) has a nonoscillatory solution {Yn} and we
may suppose that {Yn} is eventually positive. Under our assumption Lemma 2 is
true. Since f is nondecreasing, the second sum in Lemma 2 is nonnegative. Hence

IflYn_Ila-lflYn 1 ~----- >- - ~ q.
f(Yn+l) 7 an i=n+1 I

or

( 00 ) I/a

1
- Lqi
an i=n+1



QUASlLINEAR DIFFERENCE EQUATIONS OF SECOND ORDER 231

(27)

(29)

(28)

Summing the last inequality from N ~ 1 to n, we get

n n ( 00 ) l/et
'" !1ys '" 1 '"LJ l/et ~ LJ - LJ qi
s=N f (Ys+d s=N as i=s+l

Define r(t) = Yn + (t - n)!1Yn, n ~ t ~ n + 1. If !1Yn ~ 0 then Yn ~ r(t) ~ Yn+1
and

!1Yn r'(t) !1Yn

jI/et(Yn+d ~ fl/et(r(t)) ~ jI/et(Yn)'

If !1Yn < 0, then Yn+1 ~ Yn and (28) also holds. From (27) and (28) we obtain

Joo du NJ+I dr(t) n (1 00 ) I/etjI/et(u) ~ jI/et(r(t)) ~ ~ as.~ qi
r(N) N s-N l-s+1

00 du

Let G(s) = { jI/et(u)' then (29) implies that

t (~,,ft, q) 'fa "G(,(N))
which contradicts condition (26). Similarly, one can prove that equation (1) does
not possess eventually negative solutions. This completes the proof.

Remark 4. When a = 1 and an = 1 then Theorem 4 reduces to Theorem 3.1

of Zhang and Chen [21].

Example 3. The difference equation

!1( -et(!1 )et) 2et((n + l)et + net) f3 = 0 1 (30)
n Yn-I + net(n+ l)et Yn , n ~

where f3 > a > 1 and a, f3 are ratio of odd positive integers, satisfying all conditions
of Theorem 4, and hence all of its solutions are oscillatory. In fact, {Yn} = {(_1)n}

is such a solution of equation (30).
We conclude this section with another oscillation criteria for the equation (1)

whenf(u) = julf3sgnu.

THEOREM 5. With respect to the difference equation (1), assume that a < f3
00

and conditions (ii)-(iv) hold. IfQn = L qs ~ Of or all n ~ N ~ 1 and
s=n+1

(31)

then all solutions of equation (1) are oscillatory.

Proof Assume that equation (1) has a nonoscillatory solution {Yn} and we
may suppose that {Yn} is eventually positive. From the proof of the Theorem 4, we
have

!1Yn >- (Qn)l/et >- 0f3/et"'" a"""
Yn+1 n



232 E. THANDAPANI AND L. RAMUPPILLAI

Summing the above inequality from N to n and using (28) we obtain

(32)

since a < 13. Again from Lemma 2, we have

an(AYn)a ~ ai(AYi)a Ayffl ~ ~ fl fl '
Yn+1 i=n+1 (Yi )(Yi+I)

and hence

for n ~ N,

(AYn)a >- ~ f QiAY;, n ~ N.
Yfl r an y,.n+1 i=n+1

By mean value theorem

and therefore

Using (34) in (33) we obtain

(AYn)a >- ~ ~ Qsf3l-IAys >- ~n ~ QsAysfl r ~ fl r P ~
Yn+l an i=n+1 Ys an i=n+1 Ys+1

13 00 (Qs)lfa fJ~a~- L Qs - Ys+I' n ~ N
an s=n+1 as

13 fJ~a 00 (Qs)lfa~ -YN+l L Qs - for n ~ N,
an s=n+1 as

or

(33)

(34)

AYn ( fJ~a) Ifaflfa ~ f3YN+l
Yn+l

As above we obtain

for n ~ N.

(35)
( fJ~a) Ifa [n (1 n Q/1iza)]f3YN+l ~ as /~l a:fa < 00

since a < 13. Combining (35) and (32) give a contradiction to (31). This completes
the proof.

Remark 5. Theorem 5 is a discrete generalization of an oscillation theorem of
Butler [3] for the superlinear discrete Emden-Fowler equation (1) (a= 1 and 13 > 1)
subject to the condition Qn ~ O.
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4. Oscillation theorems for equation (2)

(36)

Here, we shall obtain sufficient conditions for all solutions of equation (2) to
be oscillatory.

THEOREM6. Assume conditions (i) and (iv) hold. If

Jim inflf(u) I ~ d > 0,lul---ooo ua

there exists a positive sequence {hn} such that
n

lim '" hsqs = +00,n-oo L..J
s=I

(37)

and

(38)

n~N+1

then every solution of equation (2) is oscillatory.

Proof Let {Yn} be a nonoscillatory solution of equation (2), say Yn > 0 for
n ~ N ~ 1, since the proof for the case Yn < 0 for n ~ N is similar. Let

an-I(~Yn-r)a
Zn-l =-----

Y~-I

since ~Yn-l > 0 by Lemma 1. Then

A_ _ _ f(Yn-l) _ an(~Yn)a ~ ail.(,n-I - qn a a a Yn-I
Yn-I Yn+I-IYn-1

and hence

(39)for n ~ N + I.A_ + Zn~Y~_1 + f(Yn-l) - 0il.(,n-l a qn a -,
Yn-I Yn-I

Since ~Yn > 0 for n ~ N + 1, lim Yn exists (finite or infinite). If hm Yn = b,n-oo n---+oo

then lim f(Yn-l) = fb(b) > O. If Jim Yn = +00 then, in view of condition (36),n--+oo y~_[ a n--oo

hm inff(Y;-I) = dI ~ d > O. Let b* = min(~,tb(b)), from (39) we haven---ooo Yn-I 2 a

~Y~-I *
&n-l + Zn-a- + b qn ::;;0, n ~ N + I.

Yn-I

From the mean value theorem, we have

a { ay~:) ~Yn-I if a ~ 1
~Yn-I ~ a I

aYn;I_I~Yn-1 if 0 < a < 1

(40)

(41)
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for n ~ N + I. Hence from (40) and (41), we obtain

f'l.Yn-l *&n-I +Zna-- +b qn:::;0, a ~ 1.
Yn-/

and

(42)

(44)

A a-I AuYn+l_/uYn-/ *
&n-l+Zna a +bqn:::;O,O<a<1. (43)

Yn-/

Since {Yn} is nondecreasing, we have from (42) and (43)

znf'l.Yn-/ *
&n-l + a --- + b qn :::;°

Yn+l-/

fora> Oandn ~ N+l+ 1. Sincef'l.(an_l(f'l.Yn_l)n) :::;0, we havean-I (f'l.Yn_da ~
an-l (f'l.Yn_l)a and so (44) gives

Multiply (45) by !In and summing, we obtain

This gives contradiction to conditions (37) and (38) and the proof is complete.

Remark 6. When a = 1, Theorem 6 reduces to Theorem 1 of Yang and W.
Zhang [20].

Example 4. The difference equation

where /3 ~ a and /3, a are ratio of odd positive integers and I is an even positive

integer, satisfy all conditions of Theorem 6 if we take !In = ~l' and hence all ofna+

its solutions are oscillatory. In fact, {Yn} = {(-1)n} is such a solution of equation
(46).
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Next assume that conditions (i) and (iii) are satisfied. Let

235

00

ho(n) = L qi and
i=n+I

If~~)I ~ M > 0 for lul ~ 8 > O.

Define

and

00 hI+Ija

hj(n) = Ma-:,' ex L j~~~) + Mho(n), j = 1,2, ...
i=n+I ai-1

(47)

(48)

n 1
En = L Ija

i=I ai-1

THEOREM7. Assume conditions (i), (iii) and (iv) hold. Further assume that

If(u) I(vii) ~ ~ M > 0 for lul > 8 > 0

and that one of the following conditions hold.
00

(CI) L: qn = +00, that is ho(O) does not exist;
n=I

(C2) there exists a positive integer j such that hk(n) is defined for k

0, 1,2, ... ,j - 1 but hj(O) does not exist;
(C3) there exists a nonnegative integer j such that hA 0) exists and

lim supE~ja+Ihj(n) > (Mjex)aja+I.n---+oo

Then every solution of equation (2) is oscillatory.

Proof. Assume that {Yn} is a non oscillatory solution of equation (2) with
Yn > 0 for n > N + l. By Lemma 1, b.Yn > 0 for n ~ N + I. Now define

W _ an-I(b.Yn-dan-I - a
Yn-l

for n ~ N + I. Then from the proof of Theorem 6, we obtain

W~+Ija

b.Wn-I+ex~+Mqn::;O, n~NI~N+I+1.
an-1

Summing the last inequality from NI to n, we obtain

n W;+Ija n

Wn+ex L ~ +MLqs::; WN1-I.
s=N, as-1 s=N,

If f W;I+jIja = +00 then lim (1 + Wn I Ij ) ::; 0 or

a n---+oo n W + a
s=N1 as-1 ex '" _s __W Ija

s=N1 as-l

lim supn---+oo ::;-1
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00 WI+I/a

which contradicts Wn > O. Hence L: ~ < 00. On the other hand from (47),
s=N, as-1

we have AWn-l ~ 0 which imply lim Wn = c ~ O. If c > 0 then it would implyn-oo

that f -11/ < 00, a contradiction. Hence lim Wn = O.a n~~
n=N, an-1

(cd If ho(O) = +00, then from (48) we have
n

Wn ~ WN,-I-MLQs.
s=N,

This gives a contradiction.
(C2) If hk(n) is defined for k = 0,1,2, ... ,} - 1, letting n --+ 00 in (48), we

have

00 W;+I/a

Wn ~ a L --vrt + Mho(n).
s=n+l as_l

00 h1+I/a(s)
and hence Wn ~ Mho(n). If} = 1 then L 0 l/a

s=n+l as-l

00 which contradicts hI (0) = +00. If} > 1, then

(49)

(M/a)a+1
----. Then, for n sufficiently large

Wn

00 ( ) 00 WI+I/a
hl(n) = M1+I/aa L h~/~ + Mho(n) ~ a L -'-,-+ Mho(n) ~ Wn·

i=n+1 ai-1 i=n+l af-/

In a similar fashion, we can prove Wn ~ Izk(n) for k = 1,2, ... ,} - 1. Therefore

~ IzJ~:/a(i) 00 wl+l/aL.J l/a ~ L --vrt < 00
i=n+l ai_1 i=n+l ai-1

which contradicts (C2).

00 WI+l/a n WI+l/a

(C3) Since n"'f. ~ < 00, wehaveforsufficientlylargen: L ~ <-, an_1 s=N, as-1

M n 1

e;. Moreover, {Wn} is decreasing, we have from the above inequality W~+I/a L ~ <
s=N, as_1

M and hence [t II/a] a/a+1 <a s=Nt as-1

(M/a)a/a+l
IzJ·(n) ~ Wn ~ / or[En - EN,]a a+l

Ea/a+1 (M/a)a/a+1
Ea/a+11z.(n) ~ _n _

n J " [En _ ENt]a/a+1 .

Therefore

lim supE~/a+lhj(n) ~ (M/a)a/a+1,n-oo
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which contradicts (C3)' Thus the proof of the theorem is complete.

Remark 7. If {qn} is eventually negative in equation (2), then the oscillation
and nonoscillation of solutions are discussed in Wong and Agarwal [19].

We conclude this paper with the following example.

Example 6. Consider the difference equation

(1 a) 2U(2n2+2n+1) fJ!i. n" (!i.Yn-l) + n2(n + 1)2 Yn-{ = 0, n> 1 (50)

where f3 and a are quotient of odd positive integers. Clearly conditions (i), (iii),(iv)
and (vii) hold. Furthermore,

ex:> ex:> 2s2 + 2s ex:> 1 2a+1

ho(n) = '" qs ~ 2u '" ~( r = 2u+I '" = -- ~ 0LJ LJ s-s+1- LJ s(s+1) n+1s=n+ 1 s=n+ 1 s=n+ 1

and

Maci' a f (2U+I ) a~l

hl(O) = s=1 1 s + 1 + ho(O)

(s _l)I/u

a+' (a+I)" ~ (s _l)I/u=M-aa2-a-LJ( a+! +ho(1) =00.
s=1 (s + 1)-a

Hence condition (C2) is satisfied with j = 1. It follows from Theorem 7 that all
solutions of equation (50) are oscillatory. One such solution is {Yn} = {(-1 )n}.
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