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In this paper we discuss the realization of motion control systems in the sliding mode control (SMC) frame-
work. Any motion control system design should take into account the unconstrained motion (generally perceived
as a trajectory tracking) and motion of the system in contact with unknown environment (perceived as force con-
trol and/or compliance control.) In the SMC framework control is selected to enforce certain preselected depend-
ence among system coordinates, what is interpreted as forcing the system state to stay in selected manifold in
state space. In this paper it has been shown that such a formulation allows a unified treatment of the both un-
constrained and constrained motion control and, due to the Lyapunov based design, it guaranty the stability of
the motion. Moreover control design in this framework allows extension of the solution to control design in in-
terconnected dynamical systems (like mobile robots or bilateral systems).
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1 INTRODUCTION

The most salient feature of the Sliding Mode
Control (SMC) is the possibility to constrain a sys-
tem motion in selected manifold in the state space.
Such motion in general results in a system perfor-
mance that includes disturbance rejection and ro-
bustness to parameter variations [1]. Restriction of
a system motion in a selected manifold, e.g. enfor-
cing sliding mode, forces system states to satisfy se-
lected algebraic constraint, thus reducing order of
the system's motion. The development of SMC has
gone through oscillations with both very enthusia-
stic claims and the skepticism regarding the achi-
eved results. In some cases researchers contributed
to the confusion, especially in the case of so-called
chattering phenomena, through incomplete analysis
and design fixes [2, 3, 4, 5].

The complexity and nonlinear dynamics of mo-
tion control systems along with high-performance
operation require complex, often nonlinear control
system design, to fully exploit system capabilities.
Basic goal for motion control systems is to achieve
smooth stable motion in the presence of unstruc-
tured environment, which may consists of another
systems being in motion or stationary, with which
plant under control can be in interaction (actual or
virtual). The contact among systems is resulting in
the appearance of the interaction force that should
be controlled at the certain level or at least limited
to avoid damage. As well known, the mathematical
model of motion system with and without contact

with environment is different and that requires dif-
ferent controllers in order to ensure desired beha-
vior of the system in both cases. In robotics related
publications the solution is found in socalled hybrid
position/force framework [6], which has been as a
concept widely used with numerous modifications
[6]. Apparent impedance control [7] is another ap-
proach that can ensure the predicted behavior of
the system in contact with environment, which in
the same way as hybrid control appears in litera-
ture with many modifications [7]. In both frame-
work the transient from position control to for-
ce/impedance control may cause problems related
to oscillation and may lead to instability. Both fra-
meworks when combined with acceleration control-
ler may provide very good behavior of the system.

In this paper we will demonstrate a generalized
framework for sliding mode approach in the fully
actuated mechanical motion control systems with or
without interaction with environment. Due to the
fact that sliding mode represents a framework for
acceleration control [8] implementation the solu-
tion we will discuss thus offers all advantages of
the acceleration control, like robustness to the pa-
rameters uncertainties, the robustness to external
disturbances and unique feature of the SMC de-
sign the enforcement of desired algebraic constraint
among system coordinates. We will demonstrate
that hybrid position/force control scheme and the
impedance control scheme can be unified and trea-
ted in the same way while avoiding the structural
change of the controller and thus guarantying sta-
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ble behavior of the system. It will be shown that
this framework can be naturally extended to con-
trol of mechanical systems in interaction. This new
framework may be useful in designing bilateral sys-
tems or in mobile robotics.

The paper is organized as follows. In section 2
the basic results of SMC and design of position
and force control for motion control systems in
SMC are discussed, in section 3 the new SMC
based algorithm that realizes the hybrid position/
force and impedance control is presented, in section
4 the extension of the results obtained in section 3
to bilateral control and mobile robotics will be dis-
cussed and in section 5 simulation and experimen-
tal results will be shown. 

2 SLIDING MODES IN MOTION CONTROL
SYSTEMS

So-called sliding mode motion is represented by
the state trajectories being forced to stay in the se-
lected state space manifold (sliding mode manifold)
with finite time convergence to it. In the continu-
ous time the control that guaranties above proper-
ties happens to be discontinuous with high frequen-
cy switching, while in the discrete-time the control
that guaranty the motion in sliding mode manifold
is continuous in the sense of discrete-time systems
[9–14]. 

2.1 Mathematical Formulation of Control Plant

For »fully actuated« mechanical system (number
of actuators equal to the number of the primary
masses) mathematical model may be found in the
following form

(1)

where stands for vector of generalized posi-
tions, stands for vector of generalized veloci-
ties, stands for vector of generalized posi-
tions of environment (obstacle), stands for
vector of generalized velocities of environment (ob-
stacle), is generalized positive definite
inertia matrix with bounded parameters hence 

, represent vector
of coupling forces including gravity and friction
and is bounded by , with 

is vector of generalized input forces and
the external forces and stands 
for the system disturbance. It should be noted that
external force, being a result of the system (1) con-
tact with environment or another system thus de-
pending on the generalized coordinates of both sy-
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stems . M−, M+, N+ and F0
are known scalars. In system (1) vectors 
and satisfy matching conditions [12].
External force is a result of the system's interac-
tion with environment and as such depends on the
coordinates of both the system and the environ-
ment and it can be interpreted as an interaction
force. In this framework the environment can be
presented by another mechanical system in motion
or can be a virtual force perceived to act between
systems (like between mobile robots) and not nec-
essarily by a stationary obstacle. Such an interpre-
tation will allow us to formulate approach that en-
compasses all such problems in one framework.  

2.2 Control Problem Formulation

Vector of generalized positions and generalized
velocities defines configuration of a me-
chanical system [13, 14]. Generally the control tasks
for system (1) can be formulated as a selection of
the generalized force input, which would force sys-
tem to execute a desired motion in task space. In
robotics, desired motion is usually specified as po-
sition tracking, control of force resulting from an
interaction of system with environment or as a
problem obtaining desired apparent impedance of
the mechanical system against external force acting
on it due to an interaction with environment (sys-
tem having desired mass-spring-damper dynamics
against external force). In the framework of mobile
robots the desired task may be specified as a requi-
rement to move without collision or if more robots
are present to form certain configuration represen-
ted by virtual forces maintained between robots. In
order to apply sliding mode framework these con-
trol tasks should be defined in the form of a re-
quirement to enforce motion such that configura-
tion of mechanical system tracks desired 
reference configuration , where 
stands for reference generalized position and velo-
city respectively. This formulation can be expressed
in the form in which vector quantity
is forced to have zero value. This can be interpre-
ted as enforcement of some functional relation

between generalized coordinates of
the system. In general can be ei-
ther linear or nonlinear function of the system's ge- 
neralized coordinates and time dependent reference
configuration such that by enforcing
the reference configuration is reached and main-
tained under control. Due to the fact that system
configuration ζζ cannot be discontinuous 
should be also selected as a continuous function
and consequently the reference configuration should
be continuous function of time as well. Without loss
of generality, in this paper we will assume that
function is linear combination of gene-( , )r=σσ ζζ ζζ
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ralized coordinates and their references, as depic-
ted in (2). This format is used in most of the lite-
rature related to SMC control of mechanical sys-
tems, but as we will demonstrate later in the paper
selection of as nonlinear function is also
acceptable and may lead to very interesting control 
configurations for system (1).

(2)

where stands for the reference configu-
ration of the system and is assumed to be known
bounded continuous function with bounded ele-
ments and their first order time derivatives, ΛΛ is ap-
propriate composition of matrices G and H. In the
sliding mode framework requirement (2) is equiva-
lent to enforcing sliding mode in manifold (3)

(3)

It is easy to determine the projection of the mo-
tion of system (1) into manifold (3) in the follo-
wing form . Selecting 
as diagonal, the elements of vector function
are independent and projection of the system's mo-
tion in manifold (3) can be represented by a set of

n first order equations , i =  

= 1,2,..,n. The particular solution will then depend
on the selection of vector function thus
it can be modified by reference vector . 

2.3 Equations of motion in sliding mode

If sliding mode is enforced in manifold (3) then
equivalent control, being solution of

under the assumption that are constant
and H−1 exists, is determined as

and the equations of motion for system (1) with
sliding mode in manifold (3) can be derived in the
form 
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Which, after some manipulations may be written as

(5)

The sliding mode motion (5) in manifold (3) for
fully actuated mechanical system (1) depends only
on the selection of the manifold (matrices G, H)
and the reference configuration of the system 

. The sliding mode motion in sliding mo-
de in manifold (3) is equivalent to the acceleration
control [8] with desired acceleration being expres-
sed as in (5). After initial transient, defined by the
matrices G and H, the steady state solution is de-
termined by the selection of the reference configu-
ration. By selecting reference configuration 
one can expect to be able to attain different con-
trol tasks.

Motion in sliding mode is robust against the
plant parameter changes and the generalized dis-
turbance vector as long as
actual control resources satisfy condition .
The structure of the sliding mode control system is
depicted in Figure 1.
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Fig. 1 (a) The structure of the SMC motion control system and (b) 
the structure of equivalent closed loop system (5)

In sliding mode on manifold (3) system (1) reali-
zes an acceleration controller with desired accelera-
tion being . This indicates

that results attained in acceleration control frame-
work may be realized in sliding mode framework 
as well. In the sliding mode framework desired con-
figuration of the system can be realized while all
advantages of the acceleration control framework
can be retained. The fact that the closed loop sys-

d
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tem motion (5) is the same as the equation of slid-
ing mode manifold is due to the specifics of fully
actuated mechanical system's dynamics (1).

In order to complete design the selection of the
control input and the selection of the reference
configuration for different tasks should be dis-
cussed.  

2.4 Selection of control input

Design of control inputs for system (1), (2) with
sliding mode in manifold (3) may follow different
approaches. All approaches have common require-
ment to derive the control input such that the sta-
bility of the solution is enforced. This
could be satisfied if one can derive a control input
which guaranty that Lyapunov stability conditions
are satisfied. Since control system requirements are
met if is stable solution for system (1) 
a Lyapunov function candidate may be selected as
as with its first time derivative being

. To ensure stability the Lyapunov function 
derivative is required to be negative semi-definite
and . This can be guarantied if deriva-
tive of Lyapunov function has specific form so to
ensure that . Then one can

derive and consequently con- 

trol should be selected to satisfy

Obviously the structure of control will depend on
the selection of vector function ΨΨ(σσ), which should
be selected such that guaranties that 
solution σσ = 0 is reached in finite time. In literature
this function is most often selected as 

and the resulting control is disconti-
nuous , i = 1,..., n

[13]. Such a control is simple but in me-
chanical systems may be hard to realize due to the
fact that forces are continuous function, and in ad-
dition to that discontinuous control may excite high
frequency dynamical terms thus causing chattering.
In literature on SMC [14] many different solutions
are proposed to deal with this problem. In the fol-
lowing paragraph a solution suitable for application
in discrete-time systems will be discussed. 

2.5 Discrete-time sliding mode control

It had been shown that in discrete-time systems
sliding mode could be enforced by continuous con-
trol input [14]. Below one way of achieving such
control in system (1) is based on enforcing sliding
mode in manifold (3) by selecting
so that the discrete-time control, with sampling in
terval T, can be expressed as  
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where sat(•) stands for saturation function with
bounds being ±F0. 

Control (6) is continuous (in a sense that due to
the fact that σσ(ζζ,ζζr) = 0nx1 is continuous its inter-
-sampling change is o(T) order) but it still requires
information on systems parameters and external
disturbances for calculation of equivalent control

It has been shown in [15] that by applying sam-
ple and hold process with sampling interval T, the
discrete-time realization of control (6) can be ap-
proximated as depicted in (7)

(7)

Implementation of algorithm (7) requires infor-
mation on distance from sliding mode manifold and
inertia matrix. Application of control (7) to system
(1), (3) leads to the

(8) 

In [10] and [15] it is proven that for diagonal
matrix D and TD ≤ I (8) presents necessary and suf-
ficient condition for existence of sliding mode in
manifold (3) for system (1) and that reaching phase
takes finite time. 

Since (7) is an approximation of (6) the error
introduced by this approximation can be deter-
mined as

(9)

This shows that the motion of the system has an
error of the o(T2) order under the assumption that
the disturbance d(t) is continuous. 

3 THE GENERALIZATION OF SMC IN MOTION 
CONTROL

3.1 Modification of System Configuration in SMC

By changing vector function ζζr(t), which plays a
role of the reference configuration in (5), the sys-
tem configuration could be modified so that system
specifications are met. This offers a possibility to
solve different control problems by adopting differ-
ent structure of the reference configuration ζζr(t).
Since trajectory tracking is one of the tasks in ro-
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botic systems it will be natural to assume that func-
tion ζζr(t) depends on the desired trajectory of the
system. In addition, while in contact with environ-
ment, due to the interaction forces motion system
is required to modify its trajectory in order to satis-
fy the safety of the interaction with environment.
One possible structure of function ζζr(t) that in-
cludes both requirements may be selected as fol-
lows in (10)

(10)

where stands for desired generalized position
and velocity respectively, matrices G and H specify
the reference trajectory, matrix ΓΓ may modify de-
sired trajectory and vector function ϕϕ(t) might shift
reference trajectory without its modification. By ap-
plying control (6) or (7) the motion of the system
(1) during reaching phase becomes

(11)

(12)

what represents second order system transient de-
termined by the design parameters ΓΓ, G, H and D.

Based on (5), (10) and (11) it is apparent how
to derive a unifying framework for control of fully
actuated mechanical system (1) in SMC framework.
In steady state thus the
actual configuration of system (1) under control (6)
will track reference configuration modulated by ma-
trix ΓΓ with offset defined by vector valued function
ϕ(t). By selecting ΓΓ = I and ϕ(t) = 0 the trajectory
tracking mode is attained. If, on the other hand,
ΓΓ = I, ϕ(t) ≠ 0 is selected, trajectory tracking will be
achieved with error defined by particular solution
of (11) and reaching phase motion (11), (12) de-
fined as
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This can be interpreted as if system under con-
trol acts as a mass-spring-damper with equivalent
mass being Me = H, Equivalent spring Kp = GD and
equivalent damper Kd = G + DH as depicted in Fi-
gure 2.

After reaching sliding mode manifold motion of
the system (13) is described by σσ = 0 or

(14)

The behavior can be interpreted as a spring-
-damper system in contact with environment acting
with force Fe = ϕ(t) as depicted in Figure 3. Since
reaching stage is defined by design parameter D
one can shape the overall transients of the system
by selecting D. If D is selected large enough the
reaching stage is short and the motion of the sys-
tem is defined by (14). 

( ) ( ) ( ), .d d tϕ− + − = =HH qq qq GG qq qq II& & ΓΓ
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Fig. 2 The interpretation of the SMC in reaching phase

Fig. 3 The interpretation of the SMC closed loop system in contact
with environment

In order to illustrate above results, motion of
single d.o.f. system defined as in (15) and (16) is
simulated

(15)
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The reference trajectory is selected to be sinuso-
idal with frequency 1 Hz and amplitude 0.3 m. The
controller is selected as

u(k + 1) = sat(u(k) + η((1 − dT)σ(k) − σ(k − 1))),

with parameters of the controller have been selec-
ted d = 100 and η = 120, and sliding mode manifold
is determined as σ = C∆ x + ∆ν − ϕ(t) with C = 100
and ϕ(t) = 10 sin(31.4 t). All controller parameters
are kept constant for all experiments. 

In Figure 4 the position x and its reference xr,
the reference σr = Cxr + νr and actual value σ = Cx + ν,
position error ε(t) = xr − x and force in contact with
environment (assumed to be at the position defined
by reference xr) are depicted for different values of
the parameter ϕ = {−10,10}. 



The contact force is defined by Fe = 1000(x − xr) +
+ 50(ν − νr). For better presentation force is depic-
ted with gain 0.002.

The behavior of the system is as expected. De-
spite the large changes of the system parameters
and disturbance the motion of the system is track-
ing reference and modulation of the system motion
by function ϕ(t) is fully confirmed. In the contact
with environment the controlled system reacts as
virtual impedance creating a force Fe due to the
contact and this force depends on form and value
of ϕ(t).

By selecting ϕ(t) = 10 sin(31.4 t) − αFe the motion
of the system (15), (16) under the same control as
applied in Figure 4 is as depicted in Figure 5. As
expected the trajectories of the system in compari-
son with these presented in Figure 4 are modified
during the time when tip is in contact with obstac-
le. The modification of the system trajectory is due
to the interaction force in contact with environ-
ment. 

Finally let us analyze the influence of the pa-
rameter ΓΓ on the system behavior. For system (15),
(16) the sliding mode manifold is selected in the
following form

(17)

with β = 0.85(1 + 0.25 sin(12.56 t)). The transients
under the same control as in Figure 4 and Figure
5 are depicted in Figure 6. The changes in the sys-
tem trajectory are easy to detect thus showing the
possibility to modulate the motion by changing pa-
rameter ΓΓ. In order to verify transient behavior of
the system in last diagram in Figure 6 the changes
in sliding mode manifold are depicted. It can be
seen that the controller (6) is forcing the value of
sliding mode manifold to stay at zero despite the
parameter changes and the changes in manifold pa-
rameters. 

3.2 General Form of Sliding Mode Manifold

In order to unify the control tasks for system (1)
one should modify (10) in order to include the tra-
jectory tracking, the force control and the compli-
ance. In the previous example we demonstrated

( ) ( ) ( )ref ref
eCx v Cx v t Fσ β ϕ α= + − + − −
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Fig. 4 The transients for different values of the parameter ϕ(t) =
= 10 sin(31.4t) and σ = (Cx + v) − (Cxref + vref) − ϕ(t) − αFe in (14)

Fig. 5 The transients for different values of the parameter α = 0.25,
ϕ(t) = 10 sin(31.4t) − αFe and σ = (Cx + v) − (Cxref + vref) − ϕ(t) − αFe

in (17)

Fig. 6 The transients for different values of the parameter ϕ(t) =
= 10 sin(31.4 t) − αFe , β = 0.85(1 + 0.25sin(12.56 t)) , α = 0.25 and 

σ = (Cx + v) − (Cxref + vref) − ϕ(t) − αFe in (17)



that by changing matrix ΓΓ and vector ϕϕ the system
motion could be modified. 

One way of implementing hybrid control frame-
work is to change the position reference whenever
system is in contact with environment in such a way
that the interaction force is maintained at desired
profile. Since in SMC the reference is defined as
a desired system configuration 

the modification of the system
configuration due to the interaction force Fe can be
made by making matrix ΓΓ a function of the diffe-
rence between desired and actual force profile. On
the other hand the one can ask for combining the
modification of the system trajectory in contact
with environment proportional to the force Fe. Ta-
king all in account the modification of the system
motion due to the interaction force in SMC frame-
work can be achieved by making reference configu-
ration of the system as in (18)

(18)

and selecting control to enforce the configuration
of the system to track its reference, 
or in other word enforcing sliding mode in mani-
fold (19)

q+ =HHqq GGqq& σσ

∆= + −&( ) ( )( )r d d
e et F GGqq HHqq FFζζ ΓΓ αα

( ( ) ( ))r rt t= +GGqq HHqq&ΓΓ
( ) ( )r

r t t= =σσ ΓΓΛΛζζ

which contact force should be controlled propor-
tional to force error is a sufficient (but not the best
way) of controlling the contact force. In the direc-
tions where forces should not be maintained at the
required level but either trajectory tracking or com-
pliance control coefficients of matrix ΓΓ(∆Fe) should
be kept at 1. The structure of such a controller is
depicted in Figure 7.
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Fig. 7 The structure of the SMC system that ensures the stability of
system (1) in manifold (19) under control (7)

The Sliding mode controller is the same as de-
picted in (7) and the closed loop transient is de-
scribed by (11). In the directions in which compli-
ance is maintained the system acts as a damper
spring system and the dynamics is defined by

The behavior of the generalized system with a
sliding mode manifold (19) and control (7) is simu-
lated for single axis system described by (15) and
(16). Parameters of the controller have been selec-
ted C = 200 and D = 250 and are kept constant for
all experiments. The results are depicted in Figure
8. 

∆ ∆+ − =& .eqq CC qq FF 00αα

Fig. 8 The trajectory tracking and force control in contact with un-
known obstacle and α = 1 in (19). Obstacle defined as xa = 0.1(1 +
+ 0.3sin(25t)), force in contact with environment is calculated as

Fe = 1000(x − xa) + 50(v − va)

{ }
{ }
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S
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eeqq,,qq FF FF 00

qq,,qq 00

HHqq GGqq HHqq GGqq

ΓΓ ))σσ ζζ σσ ζζ αα ζζ ζζ

σσ ζζ ζζ ζζ

σσ σσ

(19)

Matrix αα can be interpreted as a compliance pa-
rameter. This matrix is diagonal with elements hav-
ing nonzero value in the directions in which com-
pliance is to be maintained and having zero value
in the directions in which either contact force or
trajectory tracking should be maintained. 

The effectiveness of changing matrix ΓΓ(∆Fe) is
demonstrated in the previous example in Figure 6
but a design procedure is yet to be established. In
sliding mode in manifold (19) with motion of sy-
stem (1) can be represented by (ΓΓ(∆Fe)σσr − σσq) −
−  ααFe = 0 what can be rewritten in the following
form (20)

(20)

Motion (20) can be interpreted as depicted in
Figure 3 – a spring damper system in contact with
environment that reacts with force (for αα = 0) equal
to Fe = (I − ΓΓ(∆Fe))σσr. By selecting matrix ΓΓ(∆Fe) as
diagonal with diagonal elements in the directions in

∆

∆

− − − − =

− = + −

( ) ( ( ))

( ) ( ( )) .

r q e r

r q e r

ee

ee

FF II FF 00

FF II FF

σσ σσ αα ΓΓ σσ

σσ σσ αα ΓΓ σσ



The effectiveness of the proposed control is con-
firmed. The proposed control (7) enforces the exi-
stence of sliding mode in manifold (19) and the
change of the mode of control (position/force/com-
pliance) is smooth due to the fact that all controls
are realized by position controller with constant
structure and change of the mode is reflected in the
change reference configuration. 

Another solution of position/force/compliance
control in the SMC framework can be devised by
putting ΓΓ = I and selecting vector ϕϕ as a function
of force control error as well as the compliance co-
efficient. The reference configuration of the system
can be then defined as in (21) 

(21)

The sliding mode manifold now has a form as in
(22)

(22)

Under control (7) expected behavior of the sys-
tem should be the same as in the previous case.
Indeed simulation of the behavior of the system
(15), (16) with control (7) and sliding mode en-
forced in manifold (21) with the same parameters
for references and the controller as in case present-
ed in Figure 8 is depicted in Figure 9. No visible
differences in the system behavior are observed as
expected from the theoretical analysis.

{ }∆ = − − + = = 


= + = + 

&

& &      

: ( )
.

;

q r e e

d d
r q

S qq,,qq FF FF 00

GGqq HHqq GGqq HHqq

σσ σσ ββ αα σσ

σσ σσ

The same framework can be applied for bilate-
ral systems control. To demonstrate it master and
slave systems both as defined in (15), (16) are si-
mulated. The slave system is controlled to follow
the master system position while not in contact with
obstacle and while in contact with obstacle slave is
controlled to have certain compliance and/or to
limit contact force to certain constant level while
master is forced to track slaves position as a refer-
ence. Both master and slave are identical and have
identical controllers. The behavior is depicted in
Figure 10 and it shows that proposed approach may
be successfully used in this case too. 

The same structure may be applied for mobile
robots specifying interaction among them by a vir-
tual force that should be controlled. The systems
requirements in this case are similar as in previous
situation but this is out of the scope of this paper. 

3.3 Experimental verification

Experimental verification of the above results is
obtained in controlling of a single axis Piezome-
chanik's PSt150/5/60 stack actuator (xmax = 60 µm,
Fmax = 800 N, vmax = 150 Volt) connected to
SVR150/3 low-voltage, low-power amplifier. Force
measurement is accomplished by a load cell placed
against the actuator (Figure 11). 

The entire setup is connected to DS1103 module
hosted in a PC (Figure 12). 

In all experiments the parameters of the sliding
mode controllers are kept as C = 800, D = 2500. The
experiments include the trajectory tracking and a
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∆= + + −&( ) ( ) ( ) .r d d
e et GGqq HHqq FF FFζζ ββ αα

Fig. 9 The trajectory tracking and force control in contact with un-
known obstacle and αα = 1 in (21). Obstacle defined as xa = 0.1(1 +
+ 0.3sin(25t)), force in contact with environment is calculated as

Fe = 1000(x − xa) + 50(v − va)

Fig. 10 The trajectory tracking and force control in bilateral system
w/o contact with unknown obstacle force in contact with environ-

ment is calculated as Fe = 1000(x − xa) + 50(v − va)
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Fig. 11 Structure of the Experimental Setup

Fig. 12 Simplified Structure of the Experimental Setup

Fig. 14 Tracking of the sinusoidal reference for a PZT actuator.
Sliding mode control with disturbance compensation feedback

Fig. 13 Tracking of the sinusoidal reference for a PZT actuator. 
Sliding mode control with disturbance compensation feedback

Fig. 15.a Hybrid controller. Upper graph: tip position its reference
and lover graph force and its reference

Fig. 15.b Hybrid controller – transition from force to position trac-
king

Fig. 15.c Hybrid controller – transition from position to force trac-
king



combination of the trajectory tracking and force
control in accordance with algorithm (7). 

The behavior of the sliding mode controller de-
picted in Figure 13 and sliding mode controller
with disturbance observer depicted in Figure 14 are
similar but error for the system with disturbance
observer is about 50 % smaller. In addition the out-
put noise is much smaller in the system with dis-
turbance observer. This shows the effectiveness of
the application of the disturbance observer togeth-
er with SMC.

In Figures 15.a, b and c the experimental tran-
sients of hybrid control for PZT actuator with and
without contact with unknown obstacle are shown.
The capability of tracking both position and force
is demonstrated and the smooth transient from
force to position and from position to force track-
ing is shown. The behavior of the system is as theo-
retically predicted.  Very similar situations are de-
picted in Figure 16 with triangular force reference
in order to depict fast transients from one mode of
control to another. The smooth transients are ob-
served what confirms validity of the developed ap-
proach.

and interaction force control can be formulated in
the unified way. A general framework for the hy-
brid control in fully actuated mechanical systems is
proposed and its realization in two different forms
had been shown and stability has been proven. It
has been shown that proposed framework does not
require switching between position/force modes and
that transient between them is smooth. It also al-
lows natural extension to bilateral systems and con-
trol of virtual interaction in mobile robots. Propo-
sed method represents general solution in a sense
that allows application for interacting systems with
interaction being either actual or virtual force.
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Fig. 16 Hybrid controllers. Upper graph: tip position its reference
and lower graph force and its reference

4 CONCLUSIONS

In this paper the application of the discrete-time
sliding mode control framework in motion control
in is discussed. The closed loop system robustness
is proven and the equivalency with acceleration
control method is established. It has been demon-
strated that, due to the robustness property of the
systems in sliding mode and selected specific way
of defining the reference configuration of mechani-
cal systems, a general solution for position tracking
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Klizni re`imi u sustavima upravljanja gibanjem. U ovom se ~lanku razmatra realizacija sustava upravljanja
gibanjem zasnovana na kliznim re`imima. Pri sintezi bilo kojeg sustava upravljanja gibanjem treba uzeti u obzir
neometano gibanje, op}enito tretirano kao slije|enje trajektorije, i gibanje sustava u kontaktu s nepoznatom okoli-
nom, tretirano kao upravljanje silom i/ili upravljanje prianjanjem. Kod upravljanja zasnovanog na kliznim re`imima
upravlja~ki se signal odabire tako da odr`ava unaprijed zadanu ovisnost me|u varijablama sustava, tj. sustav se
giba po zadanoj hiperravnini u prostoru stanja. U ovom je ~lanku pokazano da takva formulacija problema uprav-
ljanja omogu}uje jedinstveno tretiranje i neometanog gibanja i gibanja u kontaktu s okolinom, a zbog sinteze za-
snovane na teoriji Ljapunova jam~i se stabilnost gibanja. K tome, sinteza sustava upravljanja zasnovana na
predlo`enoj metodologiji mo`e se pro{iriti i na me|uovisne dinami~ke sustave, kao {to su mobilni roboti i bila-
teralni sustavi. 

Klju~ne rije~i: sustavi upravljanja gibanjem, klizni re`imi, hibridno upravljanje, nelinearno upravljanje, sustavi s di-
nami~kim vezama
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