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Preliminary communication

In the design of model reference adaptive control (MRAC) schemes, adaptive laws have been developed based
on Lyapunov stability theory. Over the past few decades, it has been a common practice to use Quadratic Lya-
punov Functions (QLF). In contrast to such development, using a new Non-Quadratic Lyapunov Function (NQLF),
this paper presents new adaptive laws for the MRAC. These new laws have the same advantage of assurance of
stability of the overall system, as the earlier adaptive laws developed using the QLF. Over and above, they have
an additional advantage of improved performance: in fact, the use of NQLF improved the system output error
signal converging to zero. Finally, this paper also presents simulation results supporting the arguments.
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1 INTRODUCTION

Since the introduction of Lyapunov stability
approach to ensure stability of model reference
adaptive control (MRAC) by Shackloth and But-
chart [1], use of Quadratic Lyapunov Functions
(QLF) to develop adaptive control laws in the
design of MRAC has become a common practice.
Later, many modifications to this approach have
been suggested during 70's and 80's. All this deve-
lopment was well documented by Narendra and
Annaswamy in [2]. For the disturbance-free case,
adaptive control schemes with stable adaptive laws
were developed by 1980. In the literature, they
have been called as ideal (standard) adaptive laws.
All this development used quadratic Lyapunov func-
tions in the design of MRAC, yielding adaptive
laws with the output error e1 signal [3]. 

During 1990's, for the disturbance-free case, Rao
and his co-workers [4, 5], introduced. The use of
Non-Quadratic Lyapunov Functions (NQLF) in  the
design of adaptive control and identification sche-
mes. Recently, for the disturbance present case,
Donnelly and Hassan [7, 8] presented the use of
Non-Quadratic Lyapunov Functions (NQLF) and
new adaptive laws, which gave better convergence
of the error signal, namely, error signal going to
zero as time evolves.

In a similar spirit, for the disturbance-free case,
this paper employs a Non-Quadratic Lyapunov
Function (NQLF) and presents new adaptive laws.
These new laws have an advantage of improved

performance – less oscillatory and faster decay of
the error signal. The simulation results support the
mathematical arguments. 

This paper is organised as follows. Section II
describes the first order plant and MRAC for it.
Then, section III describes for the disturbance-free
case the Model Reference Adaptive Control
(MRAC) scheme for an nth order plant with relati-
ve degree 1; later, it presents adaptive laws using
QLF and NQLF. Then, section IV presents the si-
mulation results of MRAC on a second order plant
Finally, Section V presents a conclusion.

2 A 1ST ORDER PLANT: DISTURBANCE-FREE 

CASE – ADAPTIVE LAW USING QLF AND NQLF

A. MRAC: First Order System 

This section describes how Lyapunov stability
theory is used for the design of adaptive control
systems. For ease of exposition, consider a simple
first order system is in this paper; the work on a
higher order system will, however, be presented in
future papers. First, the mathematical description
of the MRAC system is given. Next, the quadratic
Lyapunov function and the so-called standard adap-
tive law are presented. Then, the non-quadratic
Lyapunov function and the new adaptive law are
presented. The scheme of MRAC system is shown
in Figure 1.      

The plant to be controlled and the reference
model are described by the differential equations:
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Plant:

(1) 

Reference model:

(2)

ap is the constant plant parameter that is unknown;
ap can be positive or negative. The reference model
is apriori designed by choosing am to prescribe the
desired response of the plant controller combina-
tion. The reference input r is a piecewise-continu-
ous and bounded function of time. From Figure 1,
control input u is defined by

(3)

where θ(t) is the adjustable controller parameter
and v is the disturbance. Now, it can be shown as in
Narendra and Annaswamy (1989) that there exists
an ideal controller parameter, namely, θ∗ = (−am− ap)
such that the error e1 = yp − ym satisfies the differen-
tial equation:

with controller parameter error, (4)

Then, for the control problem, the aim is to deter-
mine a bounded control input u so that all the sig-
nals remain bounded; and further as time progres-
ses, the system error e1 tends to zero in the distur-
bance-free case.

B. Lyapunov Functions and Adaptive laws

This section presents first (in) the standard adap-
tive laws using quadratic Lyapunov function (as
available in the literature) in the absence of distur-
bances. Next (in and) it presents new adaptive laws
using new non-quadratic Lyapunov functions – again
in the absence of disturbances.  

1) Standard Adaptive law using Quadratic Lyapunov
Function (Q.L.F.) with e1 signal

Consider the quvcadratic Lyapunov function V1
given by

∗= −φ θ θ .

+= − + →φ& R Rm pe a e y e1 1 1; :

= +θ( ) pu t y r

+= − + →& R Rm m m my a y r r y, : .

+= + →& R Rp p p py a y u u y, :

with its time derivative 

(5)

Now, using Equation (4) and choosing the standard
adaptive law as

(Ideal law) (6)  

leads to the derivative of V1 as

(7) 

From Equation (8), it can be shown that e1 ∈ L2.
The stability analysis follows the steps given by Na-
rendra and Annaswamy (1989). The state of the
system, described in the earlier Equations (4) and
(6), is uniformly stable. This feature implies that
for bounded initial values, the signals e1(t), and φ(t)
remain bounded for all time t > 0. Further, for a
piecewise-continuous and bounded input r(t), the
right hand side of Equation (4) is bounded; there-
fore, the derivative of error is bounded. Now, since
e1 ∈ L2 and the derivative of e1 is bounded, follo-
wing the Barbalat Lemma given in Narendra and
Annaswamy (1989), leads to the fact that e1 → 0 as
time t → ∞. Finally, this feature implies that yp
asymptotically becomes ym.

2) Non-quadratic Lyapunov function and adaptive
law, using e1

3 signal

Consider the non-quadratic Lyapunov function,
used by Rao [4] (1998) 

with its time derivative

(8)

As earlier, using Equation (4) and choosing the
adaptive law as: 

(9)  

leads to the derivative of V3 as                     

(10)

From Equation (12), it can be shown that e ∈ L4.
However, it is a well known fact given in Spiegel
(1969) that any L4 ⊂ L2. Therefore, the e∈ L2. Thus,
the stability analysis follows the steps given by Na-
rendra and Annaswamy (1989) as given in the ear-
lier section. Briefly, the state of the system descri-
bed in the equations (4) and (6) is uniformly stab-
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pe x31
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Fig. 1 Scheme of the MRAC System with First Order Plant



le. Again here, this feature implies that for boun-
ded initial values, the signals e1(t) and φ(t) remain
bounded for all time t > 0. Again, following the
Barbalat Lemma leads to the fact that e1 → 0 as
time t→ ∞.  Finally, this feature, again, implies that
xp asymptotically becomes xm.

3 AN nth ORDER PLANT:  DISTURBANCE – 

FREE CASE – ADAPTIVE LAWS USING QLF

AND NQLF

This section shows how Lyapunov stability theory
is used to the design of adaptive control systems.
An nth order plant is described in this section for
the disturbance-free or ideal case. The mathemati-
cal description of this MRAC system is given.
First, the Quadratic Lyapunov Function (QLF) and
the so-called ideal/standard adaptive laws are pre-
sented for this ideal case. These are available in
[2]; however, for coherence in development, they
are presented here. Then, the new Non-Quadratic
Lyapunov Function (NQLF) and new adaptive laws
are presented. 

A System Description 

Following the steps and notation given in [2, 3],
the system is described as given in Figure 2. Con-
sider the adaptive control of an nth order unknown
plant.

Plant:

(11)

where u: R+ → R is the input, yp: R
+ → R is the out-

put, and xp: R
+ → Rn is the n-dimensional state vec-

tor of the plant. This plant has a transfer function,
given by

(12)= − =
p pT

p p p p
p

k Z s
W s h sI A b

R s

( )
( ) ( ) ,

( )

= + =& T
p p p p p p px A x b u y h x; ,

where Zp(s) and Rp(s) are monic coprime polyno-
mials of degrees m and n(> m), respectively, and
Zp(s) is Hurwitz. The sign of kp and values of m
and n are specified, but the coefficients of Zp(s)
and Rp(s) unknown constants. 

Reference model:

A reference model is set up with a transfer func-
tion:

(13)  

with where r: R+ → R is the input, ym:  

R+ → R is the output, and xm: R
+ → Rn is the n-di-

mensional state vector of the reference model;
Zm(s) and Rm(s) are chosen stable polynomials of
degree m and n respectively. A piecewise continu-
ous uniformly bounded reference input r(t) to the
reference model yields the desired output ym(t). The
adaptive control problem is to determine a bounded
control input u to the plant so that the output er-
ror e1(t) goes to zero together with all the other
signals remain bounded. 

Controller:

The adaptive controller is described by the equa-
tions:

(14)

with

(15)

where θ1, θ2, w1 and w2 are (n − 1)-dimensional
vectors, Λ is chosen as an asymptotically stable
(n − 1) × (n − 1) matrix; (Λ, l) is controllable, and θ
is the 2n-dimensional vector. When θ = θ*, where θ*
is a constant vector, the transfer function of the
plant together with the controller matches that of
the reference model shown in Figure 2, exactly. The
control problem, therefore, can be restated as the
determination of the adaptive law for adjusting θ(t)
so that e1(t) (defined as yp − ym) goes to zero toget-
her with all other signals remain bounded.

From the above description, the plant and con-
troller combination can be written as:

(16)

where
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Fig. 2 The general structure of the MRAC system



(17)

When φ = θ − θ* = 0, a non-minimal representation
of the reference model can be given by

(18)  

where and the 

Amn is a (3n − 2) × (3n − 2) matrix and hmn and bmn
are (3n − 2)-dimensional  vectors.

The error model:

The state error e = x − xmn satisfies the differential
equation, with e1 as the output error

(19)

From this error model, it is possible to develop
adaptive laws for several cases [2, 3].

B Lyapunov Functions and Adaptive Laws

This section presents the QLF, NQLF and adap-
tive laws due to them for the MRAC system descri-
bed in section A.

1) Quadratic Lyapunov Function and adaptive laws:

Consider the Lyapunov function V1 [2, 3] given by

(20)

Differentiating Equation (10) with respect to time,
using Lemma 5.1 in [2] and choosing the adaptive
laws for controller parameters in the vector θ in
Equation (5), as

(21)

leads to the (22)

Since e1 ∈ L2 and its derivative is bounded from
Equations (18, 19), the error signal e1 → 0 as time
t→ ∝. Thus, stability of the system is assured as in
[2].

2) Non-Quadratic Lyapunov Function and Adaptive
Laws:

Consider the new Non Quadratic Lyapunov func-
tion V3 given by
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where and, for example, when

Thus, with 

(24) 

Differentiating Equation (13) with respect to time,
using Lemma 5.1 in [2] and choosing the adaptive
laws for the controller parameters in vector θ of
Equation (5), as

(25)

Gives with (26)

(27)

Since e ∈ L4 ⊂ L2 [6] and its derivative is boun-
ded from Equations (18, 19), the error signal e1 → 0
as time t → ∝. Thus, stability of the system for
this case is also assured as shown in [2, 7, 8, 9].
Detailed development of this section is given in [8].  

4 SIMULATION RESULTS

For the simulation study, the SIMNON (Simu-
lation of Nonlinear Systems) package has been
used, which was originally developed at the Lund
Institute of Technology in Sweden. For this study,
an example is presented for a second order system.
The responses of the system error are obtained,
using adaptive laws based on QLF and the new
NQLF. 

Example:

This example is similar to that given in [2]. The
plant and the reference model parameters are:
ap1 = −2, ap0 = 2; am1 = 2, am0 = 1; bm0 = bp0 = 1; λ0 = l =
= 1 leading to θ*o = −4 and θ*2 = 5. Thus, initially the
plant was unstable. Response of the system error
signal e1 in the adaptive system is shown in Figure
3, for using: 1) the adaptive laws based on QLF;
and 2) the adaptive laws based on NQLF.

The initial values chosen were: e1(0) = 2 and
θo(0) = 1.0 and θ2(0) = 1.0. The reference input r = 5.
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It can be seen from Figure 3 that the new adaptive
laws improve the response of the system.

5 CONCLUSION

This paper considers the development of adap-
tive laws for an nth order plant (with n* = 1) in the
MRAC system, for the disturbance-free case. It de-
velops these laws using first Quadratic Lyapunov
Function (QLF) and next using a recently develo-
ped Non-Quadratic Lyapunov Function (NQLF).
While Quadratic Lyapunov Function (QLF) had led
to the use of the system output error signal in the
adaptive laws, the new Non-Quadratic Lyapunov
Function (NQLF) leads to the use of the cube of
the same error signal in the adaptive laws.  Mathe-
matical arguments offer improved convergence of
the system error signal to zero; simulation results
support these arguments. Thus, Non-Quadratic Lya-
punov Function and the new adaptive laws seem to
offer improvement to MRAC systems in general.
There appears to be some scope for further work

on developing MRAC schemes for plants with rela-
tive degree n* ≥  2 and for plants in the presence of
disturbances.
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Fig. 3 Example system error responses: 1) using e1 signal; 2) using  

e
1
3 signal

Novi zakoni adaptivnog upravljanja referentnim modelom zasnovani na nekvadratnoj Ljapunovljevoj funkciji.
Za projektiranje sustava adaptivnog upravljanja referentnim modelom (MRAC) razvijeni su adaptivni zakoni koji se
zasnivaju na Ljapunovljevoj teoriji stabilnosti. U zadnjih se nekoliko desetlje}a uobi~ajeno koristi kvadratna Lja-
punovljeva funkcija (QLF). Suprotno tome, u ovome se radu zakoni upravljanja referentnim modelom izvode na
osnovi nove nekvadratne Ljapunovljeve funkcije (NQLF). Za izvedene je nove zakone upravljanja cjelokupni sus-
tav stabilan, kao i kod prija{njih zakona adaptivnog upravljanja kvadratnom Ljapunovljevom funkcijom. Povrh toga
predlo`enim novim zakonima upravljanja NQLF funkcijom pobolj{ava se konvergencija izlaznog signala pogre{ke
prema nuli. Na kraju su u radu predstavljeni rezultati simulacija koji podupiru navedene tvrdnje.

Klju~ne rije~i: adaptivno upravljanje, adaptivni zakoni, adaptivno upravljanje referentnim modelom, Ljapunovljeva
funkcija, adaptivno upravljanje referentnim modelom po Ljapunovu
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