
ISSN 0005–1144
ATKAAF 45(1–2), 19–22 (2004)

Vladimir B. Ryabov

Stability of Microwave and Electronic Devices: an Approach

from Dynamical Systems Theory

UDK 621.37.01
IFAC IA 5.8.0;4.1.4

Original scientific paper

The general problem of stability of microwave and RF devices and circuits in the presence of multi-fre-
quency or broadband signals is addressed. The problem is formulated in terms of the system of nonlinear
non-autonomous differential equations for generalized coordinates in the phase space that can be attributed
to, e.g., amplitudes of electric currents in circuits with lumped elements or mode amplitudes of the electro-
magnetic field in the distributed systems. An approach to the stability analysis is proposed that allows pre-
dicting the appearance of various kinds of instabilities including the deterministically chaotic motion. The new
criterion based on the analysis of Lyapunov exponents is discussed that establishes the relation between maxi-
mal stable amplitude of oscillations and the levels of nonlinearity and damping in the system. The exam-
ples of one- and two-mode oscillators have been considered in detail.
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1 INTRODUCTION

The analysis of the structure of electromagnetic
field in electronic devices or complex transforma-
tion of broadband signals in RF circuits can be
reduced in many cases to the study of interacti-
on between several coupled oscillators. Such clas-
sical problems of circuit theory as generation of
oscillations, frequency conversion, parametric am-
plification, etc. can be efficiently formulated and
solved in terms of temporal variation of amplitu-
des and phases of generalized modes. From the
mathematical viewpoint, such a description requi-
res solving a set of deterministic differential equa-
tions for the time evolution of the generalized co-
ordinates controlled by the set of external and in-
ternal parameters (physical properties of the sys-
tem). It should be noted, that the equations de-
scribing the dynamics of the system are typically
nonlinear, therefore, the solutions cannot be ex-
pressed in elementary or special functions and so-
me approximate or numerical methods have to be
used.

The issue of stability plays a key role in the
theory of nonlinear oscillations, due to its impor-
tance in applications in the development and uti-
lization of concrete devices and systems. Until ve-
ry recently, the stability analysis in nonlinear dy-
namical systems was based on the assumption that
only periodic and quasiperiodic motion can exist in
the stationary regime. Under such an assumption,
the final goal of predicting the stability of the
given system at the given values of controls can
be reached by the Floquet-type analysis [1, 2] of
linearized equations in the vicinity of a stationary

periodic or quasiperiodic oscillation. Nowadays, with
the discovery of the phenomenon of deterministic
chaos, it became clear that the traditional met-
hods of stability analysis have to be revised with
taking into account the possibility for the chaotic
motion to appear. On the other hand, the burst of
activity in the field of nonlinear dynamics spurred
by this discovery in the middle of 60-s, has led to
the invention of new powerful methods of analy-
sis that can be efficiently applied for predicting
the raise of instabilities in dynamical systems of
virtually any physical origin, including various elec-
tronic devices and circuits [3].

In this paper we apply a recently proposed met-
hod of stability analysis [4] based on the notion
of Lyapunov exponents for predicting the general
kind of instability in oscillatory systems. From a
slightly different perspective, the method establishes
the threshold of stability in terms of the amplitu-
de of oscillations that guarantees the stable opera-
tion of the devices or circuits described by simi-
lar sets of differential equations. Lyapunov cha-
racteristic exponents (LCE) provide a quantitative
measure of stretching and contracting deforma-
tions of an infinitesimally small phase space sphe-
re in the vicinity of an arbitrary trajectory in a
dynamical system. So defined, they also characte-
rize the divergence (convergence) rates of two ini-
tially close trajectories residing on an attractor and
serve as indicators of the stability of motion. To-
tal number of Lyapunov exponents that a system
possesses is equal to the dimension of the phase
space, or, in other words, the number of indepen-
dent variables necessary to fully characterize the
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holds all the time, the system is asymptotically
stable, i.e. all the perturbations are exponentially
shrinking with time and, hence, unstable motions
are precluded. From the inequality (6), together
with Equations (2), (3), it appears possible to ob-
tain the relation between the control parameters
and phase space coordinates which guarantees
that the system is »safe« in the sense that, if the
trajectory never leaves the region with negative
values of µ1, no instability appears. The goal is
reached by analyzing the structure of the functi-
on P1(ϕ1(t), ϕ2(t), ..., ϕn−1(t)), together with soluti-
ons of Equation (2), which define the dynamics
of angles ϕm through Equations (5). It should be
however noted that a straightforward calculation
of the function P1 does not always lead to the
explicit equation for the border of the asymptotic
stability area in the phase space. This happens due
to the presence of both the expanding and con-
tracting directions around a typical trajectory that
is a consequence of the affine character of the
phase flow in the vicinity of a generic stable fixed
point. Fortunately, the particular form of the func-
tion P1 depends on the choice of coordinates, and
in many cases it turns out possible to obtain the
borders of the asymptotic stability area by introdu-
cing a linear change of coordinates diagonalizing
the linear part of the flow F(x, t) in the vicinity of
an arbitrary point in the phase space. This kind
of transformation is known to be a standard tool
in the analysis of differential equations [7].

3. NON AUTONOMOUS PASSIVE NONLINEAR

OSCILLATOR

As an example of a particular system governed
by the equations of the type (1), we take the sin-
gle nonlinear oscillator (motion in a potential well 

with a potential U(x) defined by )

(7)

that has been used as a basic model in many
problems of mechanics, electronics, optics, electro-
magnetic field theory, etc. 
By introducing the variables x1 = x′, x2 = d x/dt the

system (7) is transformed to the standard form

(8)

and the variational equations (3) in the vicinity
of an arbitrary trajectory x*(t) for this system
look like
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where y1, 2 are the components of the perturbation
vector y,

Then, after the coordinate transform recasting the
linear part of Equation (8) to the canonical (dia-
gonal) form, the explicit expression for the growth
rate µ1 follows directly from its definition and the
equation for the norm of ||y|| = ρ in the polar co-
ordinates:

Under the assumption that ϕ can take any value
in the interval [0;2π] we obtain the explicit formu-
las for the border of the asymptotic stability area 

V1 < εV(x) < V2 (10)
where

Inequalities (10) thus define the limits of varia-
tion for the function V(x) and, hence, for the coor-
dinate x of the nonlinear oscillator (7), ensuring
the asymptotic stability of motion. 

4 TWO COUPLED OSCILLATORS

Two nonlinear oscillators with a diffusive coup-
ling is a classical system in the circuits theory. It
constitutes a natural generalization of a single-de-
gree-of-freedom nonlinear oscillator to a more
complex dynamical system, necessary for understan-
ding the multi-mode interactions in the spatially
distributed devices, like, e.g., optical wave-guides
or electronic tubes. In the simplest case of identi-
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Fig. 1 Areas of asymptotic stability (shaded) for the case of
cubic potential (Duffing oscillator)



cal oscillators with cubic nonlinearity (N(x) = βx3)
and linear coupling, the system is described by the
following equations

where κ stands for the coefficient of coupling bet-
ween the oscillators. The direct application of the
approach given above combined with the canoni-
cal linear coordinate transform results in the follo-
wing equation for the largest local expansion rate:

d d

dd

d d

dd

2
2 31 1
0 1 1 2 12

2
2 32 2
0 2 2 1 22

( )

( )

x x
x x x f t

tt

x x
x x x f t

tt

ω β δ κ

ω β δ κ

+ + + + =

+ + + + =

change of harmonic to bifrequency excitation in an
equation of class (7) results in considerable lowe-
ring of the instability onset in the intensity of the
external force. A natural question stems from these
findings: what is the lowest possible level of exci-
tation that can result in a destabilization of the
system? As we have demonstrated with several
examples of nonlinear oscillators, the analysis of
asymptotic stability in terms of LCE allows answe-
ring this question and estimating the maximal sta-
ble amplitude of motion, and thus provides a ne-
cessary condition for any bifurcation to occur. We
would like to stress that the method we propose is
independent from the type of external force and
dimensionality of the dynamical system, therefore,
it yields a fundamental limit for all types of insta-
bilities, including chaotic motion, to appear in a
broad class of nonlinear circuits and systems.
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where 

φ, ϕ, θ are the angles in Equation (5). Then, the 
condition of absolute stability (6) can be formu-
lated for this system as

Therefore, the stability of the system of two cou-
pled oscillators as a whole is defined by the am-
plitude of oscillations of each of its subsystems.

5 CONCLUSION

It has been recently recognized that in many
oscillatory systems the threshold of instability may
strongly depend on the frequency content of the
external signal. As it was shown, e.g., in [8], the
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Stabilnost mikrovalnih i elektroni~kih aktivnih elemenata: Analiza primjenom teorije dinami~kih sustava.
Razmotren je op}eniti problem stabilnosti mikrovalnih i radiofrekvencijskih aktivnih elemenata i sklopova u pri-
sutnosti vi{efrekvencijskih ili {irokopojasnih signala. Problem je formuliran kao sustav nelinearnih neautonom-
nih diferencijalnih jednad`bi u poop}enim koordinatama faznog prostora koje se mogu pridru`iti npr. amplitu-
dama elektri~nih struja u sklopovima od elemenata s koncentriranim parametrima ili amplitudama modova elek-
tromagnetskog polja u sustavima s raspodijeljenim parametrima. Predlo`ena je analiza stabilnosti koja omogu}ava
predvi|anje razli~itih vrsta nestabilnosti uklju~uju}i deterministi~ko kaoti~no gibanje. Razmotren je novi kriterij
koji se osniva na analizi Ljapunovljevih eksponenata. Taj kriterij uspostavlja vezu izme|u najve}e stabilne ampli-
tude oscilacija te razina nelinearnosti i prigu{enja u sustavu. Podrobno su analizirani primjeri jednomodnog i
dvomodnog oscilatora.
Klju~ne rije~i: kaos, Ljapunovljevi eksponenti, mikrovalni sklopovi, oscilatori, nestabilnost


