View metadata, citation and similar papers at core.ac.uk

ISSN 0005-1144
ATKAAF 43(3-4), 168/I-VI (2002)

Symbian Operating System for Mobile Phones

New mobile devices require powerful hardware and software to support customer’s needs which grew rapidly in
the last few years. Demanding user interface depends of the operating system, and Symbian created operating sys-
tem that seems powerful enough to support forthcoming burst of data services in the mobile world.

Symbian OS is the common core of application programming interfaces (APIs) and technology that is shared
by all Symbian OS phones. Symbian OS includes a multi-tasking kernel, middleware for communications, data
management and graphics, the lower levels of the GUI framework, and application engines.

Key words: Symbian, operating system, mobile phones, multi-tasking, Bluetooth, Java MIDP, GPRS, ARM RISC

processor

1 INTRODUCTION

Mobile phone networks are beginning to offer af-
fordable and reliable data services in addition to
their more traditional voice services. Supporting
these data services is challenging for the mobile
phone handset vendors. They have to provide timely
production of feature-rich, innovative, and fashion-
able handsets to the mass market at reasonable
prices. Symbian OS is the proven advanced data-en-
abled operating system for mobile phones and is
structured to ease the integration of hardware and
software.

Unlike PC design, mobile phone design puts con-
straints on a suitable operating system similar to
those of advanced PDAs and more. The operating
system has to have low memory footprint and low
dynamic memory usage, an efficient power manage-
ment framework, and real-time support for commu-
nication and telephony protocols. Furthermore,
users often have a more cavalier attitude to mobile
phones than to PCs. For instance, when removing
the battery while the phone is still switched on a
user still expects device and data integrity.

Symbian OS is designed for the mobile phone
environment. It addresses constraints of mobile
phones by providing a framework to handle low
memory situations, a power management model,
and a rich software layer implementing industry
standards for communications, telephony and data
rendering. Even with these abundant features, Sym-
bian OS puts no constraints on the integration of
other peripheral hardware. This flexibility allows
handset manufacturers to pursue innovative and
original designs.

This article focuses on several key aspects of
Symbian OS that make it the optimal choice for a
mobile phone platform. It covers:

AUTOMATIKA 43(2002) 3-4, 168/I-VI

— typical mobile phone platforms and the require-
ments of Symbian OS,

— Symbian OS software architecture,
— hardware integration methods,

— porting and customization for mobile phone
handset manufacturers,

— an open architecture for third party developers.

2 MOBILE PHONE CORE PLATFORM

Central to data-enabled mobile phones is a fast,
low power, low cost CPU core, which has compact
code and can be highly integrated with peripherals.
A system-on-chip (SoC) contains the CPU core and
vital peripherals for the functioning of the phone
operating system. The family of ARM architecture
RISC processors, which have been incorporated
with core peripherals into a standard package, is
particularly suited for mobile phones. The system-
-on-chip is then placed on a PCB with the remain-
ing peripherals to produce a phone.

Symbian OS is a 32-bit, little-endian operating
system. It has been ported to many flavors of ARM
architecture chips with V4 instruction set or higher.
Further requirements of Symbian OS are for the
CPU to have an integrated memory management
unit (MMU) and a cache, to operate in various
privileged access modes, and to handle interrupts
and exceptions. The CPU, MMU and cache along
with timers and hardware drivers, all reside on the
system-on-chip. These SoCs are often commercially
available and are sometimes custom built by hand-
set manufactures.

Symbian OS has been ported to many ARM
cored system-on-chips. These include the PrimeXSys
platform from ARM, the StrongARM and XScale
architectures from Intel, the OMAP platform from

168/1

-

-~
brought to you by ;i CORE

https://core.ac.uk/display/14380758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Symbian Operating System for Mobile Phones

CPU core

ARM architecture CPLUL

MU CPU core
Caches w

Chip

System-on-chip Chip

Timers

Inkarrupt controlkar
DA controller
UARTs

GPI0 ports

Phone PCB

Phone PCB
LCD, keypad
Audio codec
b

Dagitizer ADC

Radio

Fig. 1 Mobile phone hardware can be divided into three logical la-

yers: the CPU core, the SoC and the PCB. Symbian OS also con-

forms to this layering. This enables easy porting of Symbian OS as

the code for particular CPU core or SoC can be reused in many
products

Texas Instruments and the Dragonball platform
from Motorola.

The MMU is used for several purposes. It pro-
tects process data from access by other processes,
enforces protection of application and kernel code,
and isolates the hardware from application code.
The MMU is a crucial component in the design of
the protected mode system, which enhances both
the security and stability of the platform. A stan-
dard two-level page tabled MMU allows small 4
KB pages for efficient memory usage, while fast re-
-mapping speeds can be achieved with large first-le-
vel pages of 1 MB. Both data and instruction ca-
ches are required to produce acceptable performan-
ce. On-chip timers provide the real-time clock for
the system tick timer, and millisecond scale timers
are needed for use with hardware drivers.

While some memory will be available on the
chip most will be provided off-chip. This off-chip
memory has three major functions: storage of the
Symbian OS image; persistence of user data in a
file system; and storage of processes’ data at run-
time. Speed of memory access, cost of the memory
chips and persistence of the data must be conside-
red when choosing the memory for each of these
three functions.

One option is for the operating system image to
be located in ROM. ROM is cheap but cannot be
reprogrammed, any change to the software at a la-
ter date would have to be performed by providing a
patch in another persistent storage and inserting
this into the image by reorganizing the MMU.
Flash is more versatile than ROM allowing the ima-
ge to be changed, but the cost is greater. Images
can also be placed in RAM and marked as read-
-only by the MMU, however this doubles the

168/11

amount of memory needed and increases the time
to boot, as a bootloader has to copy the image
from ROM to RAM at boot time. Flash is the most
commonly adopted solution for mobile phones.

3 SYMBIAN OS IMAGE

The Symbian OS image is a compact collection of
executable code and various data files. The image
consists mainly of dynamically linked libraries (DLLs)
and other required data, including configuration fi-
les, bitmaps, fonts and other file-resident resources.

The image code is execute-in-place. However,
where speed is critical libraries in the image can be
marked to be executed from RAM and hence will
be copied there before being used. As libraries are
expected to be resident in non-writeable memory,
they must contain no writeable static data. Symbian
OS does, however, provide a mechanism for DLLs
to store a small amount of data associated with a
particular thread.

By having almost all the code as DLLs, there is
only a single copy of each library required regard-
less of the number of applications linked to it. To
keep the size of the libraries down, application co-
de is linked to DLLs by the ordinal position of the
functions within the DLL. It is key for library deve-
lopers to maintain the order of functionality within
the DLL to maintain the binary compatibility of
other software linked to that DLL.

Symbian OS makes extensive use of a specific
type of DLL, called a polymorphic DLL, which has
a known exported function at the first ordinal posi-
tion. This exported function must return a class of
well-known type (or a derivation thereof). Polymor-
phic DLLs act very much like factory classes and
have the benefit of providing an interface that file-
-based plug-in systems can use. This type of DLLs
is used throughout the operating system. One ex-
amples of a polymorphic DLL is the application
DLL, which exports a single function called New-
Application(), to create an instance of an applica-
tion. In the Symbian OS device driver model, de-
vices are created by calling the CreateLogical-
Device(), which in turn calls a polymorphic device
driver DLL.

All executables within the image are assigned
unique identifiers (UIDs) that serve as a form of
identification to associate files with their owning ap-
plication and to protect against loading an incor-
rect type or version of a DLL.

4 HARDWARE INTERFACES

The Symbian OS kernel is a compact pre-emp-
tive multitasking operating system with very little

AUTOMATIKA 43(2002) 3-4, 168/1-VI

Symbian Operating System for Mobile Phones

dependence on peripherals. The core kernel exe-
cutable — of less than 200 KB - fully supports the
multi-threaded operating system. Peripheral hard-
ware integration is added to the kernel in several
ways. Hardware support is usually implemented in
separate DLLs associated with particular hardware
to allow the easy insertion and removal of hard-
ware and to facilitate code reuse.

The MMU is configured so that all hardware re-
gisters can only be accessed in privileged mode.
The kernel always executes in privileged mode and
hence has access to all the hardware registers.
Applications interface to kernel services through an
API provided by the User library. Because all ap-
plications run in unprivileged mode, operations that
require hardware access must either switch momen-
tarily into privileged mode while maintaining the
context of the application or issue a request to the
kernel server, which involves a switch in context to
that of the kernel process.

User] = | E
Privileged [= =
B 1 | g E
5 B
= [
g &

DE';I'iDE AP

L T v L

Peripheral hardware

Fig. 2 All access to hardware occurs from, or through the kernel.

There are several software frameworks that support hardware access,

direct kernel access for vital hardware, kernel extensions for hard-

ware associated with user input, and device drivers for further peri-
pheral hardware exposed to applications and server

The kernel library includes support for all peri-
pheral hardware that is resident on the chip (e.g.,
the ASIC or SoC) and that is essential to the opera-
ting system. The peripheral hardware includes such
things as timers, DMA engines, interrupt controllers
and UART serial ports. The kernel library is custo-
mized for a particular chip. Applications are not
permitted to access peripheral hardware directly.
Instead applications must link to the User library
whose functions may invoke peripheral control
through the kernel.

AUTOMATIKA 43(2002) 3-4, 168/I-VI

Peripherals associated with user input can be
packaged as a separate DLL, called a kernel exten-
sion. User input simply provides events that are
consumed by the kernel. Different kernel exten-
sions can be written for keyboard, keypad, digitizer,
and navigation button and wheels. The appropriate
kernel extensions are added into the image, where
the kernel detects their presence at boot time and
initializes them. The kernel itself has no dependen-
cy on the extensions, and no kernel extension func-
tionality is accessible to applications.

Device drivers expose an API to applications to
allow control of hardware that is not essential to
running the operating system. Device drivers can be
loaded and unloaded at anytime. A device driver
consists of two parts: a library providing the de-
vice’s API to which applications can link; and one
or two libraries, running in privileged mode, kernel-
-side, to access the hardware.

The kernel side library is often split into two li-
braries: a logical (LDD) and a physical (PDD) de-
vice driver DLL. The LDD encapsulates the logical
functions of a device e.g., on and off, and read and
write. The PDD carries out the functions on a spe-
cific device. The LDD contains all the complexity
of typical device usage usually in the form of a sta-
te machine. If the choice of hardware part is chan-
ged in prototyping a phone or the progression of a
product line, only the PDD needs to be replaced.
For example, the media server uses a standard ap-
plication-side API and a logical device driver so on-
ly a physical device driver has to be provided for a
particular codec chosen for a phone.

Both logical and physical kernel-side device dri-
vers are polymorphic DLLs. The device drivers
must be loaded by the application-side before ac-
cess to the hardware can be obtained. The applica-
tion-side library uses a message passing mechanism
to communicate to the hardware libraries through
the kernel. The devices can be used synchronously
or asynchronously, though asynchronous use is pre-
ferred, wherever possible, as it is more CPU effi-
cient.

Support for file system media is also provided
through a device driver. A file system drive consists
of two components, a file system and a media dri-
ver. The file system is typically FAT but not neces-
sarily if the system is internal to the phone and
would benefit from a different format. The media
driver is a physical device driver performing all the
functions that the file server expects. By construc-
ting drives with these two components, the file ser-
ver conforms to a plug-in model where new media
drivers and file systems can be plugged into the OS
without affecting the core code in the file server. If
the need arises for a ROM patch, device drivers

168/111

Symbian Operating System for Mobile Phones

are used to implement the patch because they have
access to the MMU, which has been protected by
the kernel.

The only exception to this model of peripheral
access controlled by the kernel is the screen buffer,
which is copied via DMA to the LCD display. The
screen buffer is usually given read/write permissions
to all threads, for applications to provide fast draw-
ing routines through a graphics API. This increases
speed as no switch to privileged mode and back is
required.

5 SYMBIAN OS SYSTEM SOFTVARE

Symbian OS contains an extensive and rich col-
lection of libraries to implement many industry
standards. This layer of system software, in Version
6, includes support for networking (TCP/IP, PPP,
TSL, SSL, IPSec, FTP), communications (Blue-
tooth, IrDA, Obex), Security (DES, RSA, DSA,
DH), messaging (POP3, IMAP4, SMTP, SMS,
BIO), browsing (HTML, HTTPS, WAP, WML),
telephony (GSM, GPRS, fax), graphics, multimedia
(WAV, AU, WVE, JPEG, BMP, MBM, GIF) and
many more.

Vendor applications

Vendor GUI
Application engines)
Ul suppart |
System software

| Telephony H Mutlimedia H Networking |

Fig. 3 The rich layer of system software for industry standard sup-
port is part of Symbian OS

Access to these services and resources is coordi-
nated through a standard client-server framework.
Servers run as unprivileged threads. Any applica-
tion thread can be a client connecting to a server
by name and passing messages through a standard
interface imposed by the kernel. The framework is
constructed through inheritance from server and
session classes. The kernel support for the client-
-server framework is optimized for low memory use
and speed; it also keeps a record of objects in the
system such that any thread death results in all the
memory being recovered.

168/1V

The uses of the client-server architecture in Sym-
bian OS include the file server, media server, tele-
phony server and many more. The media server is a
good example of a hardware resource, accessed
through a device driver, which can be synchronized
through the client-server framework.

Key

User] s 5
Privieged i E e
| £ b
e o
& E

O
i b
Media serv Addio

egpl ||

Audio codec

Fig. 4 Most standards are implemented as system servers. The ser-

vers can make use of device drivers to access the hardware required

for particular services. For example the multimedia server can be
used to play standard audio clips

The top layer of Symbian OS provides support
for applications. This includes application engines
for common Symbian OS phone applications: con-
tacts (an address book), agenda (a diary applica-
tion), and jotter (a document producing applica-
tion). This layer also includes skeleton support for
graphical user interface (GUI) components, however
handset manufacturers provide the actual user in-
terface. This allows the phones to maintain the uni-
que look, feel and branding of each manufacturer.

6 APPLICATION SUPPORT

Symbian OS is fully multi-tasking. To ensure the
system to run in an efficient and secure manner,
some properties are imposed on applications. All
applications run in a virtual machine (VM) envi-
ronment. One benefit is that software can be fixed-
-up (built with predefined run-time memory configu-
ration) such that the environment is exactly as ex-
pected. This saves memory, because the library does
not need to have any relocation information associ-
ated with it. Also if there are two copies of the ap-
plication running they can execute the same code.

The VM is made possible by use of the MMU to
move data around in the virtual address space. An
application consists of a single process, the unit of
memory protection, in which one or more threads

AUTOMATIKA 43(2002) 3-4, 168/I-VI

Symbian Operating System for Mobile Phones

are running. When an application is loaded from its
polymorphic DLL, the application is given pages
for the process data, and the thread data in the
outer page table of the two-level MMU. When a
context switch occurs to this process, the kernel ad-
justs the MMU configuration by moving all the
pages to a pre-defined location in the virtual memo-
ry map. Execution continues in the appropriate
thread.

Page directory before switch Page directory before switch
Process B is running Process A is running

Thread A2 data Thread A2 data
Thread A1 data Thread AT data
Process A data Process A data

Thread B1 data

Process B data

Thread B1 data

Process B dala

Thread A2 data
Runnin: i
B ¢ Thread A1 data

process 7| |hread B1 data '

i

Process B data Process A data

Fig. 5 The MMU is used for context switching allowing all proces-

ses to assume their data is resident at the same place. Here a con-

text switch is made between process B and process A, the memory is
moved by modifying the outer page table of the two-stage MMU

If the data cache is virtually tagged, then the
cache must be flushed every time a context switch
takes place. This introduces an inefficiency for ap-
plications, however for intensively used system ser-
ver processes a unique data area can be assigned to
them if they are only single copy. The file server is
such an example: if an application requests a ser-
vice from the file server, the context switch to the
file server does not involve any change in the
MMU or a cache flush and if the original applica-
tion is returned to the data in the cache is still
valid. Physically tagged caches do not have this
complication.

7 OPEN FOR INNOVATION

The ability for independent software vendors
(ISVs) to develop applications for mobile phones is
already bringing new uses to these small, connec-
ted, mobile platforms. Keeping the platform open
enables ISVs to focus on the expanding market of
mobile phone applications.

ISVs can develop Symbian OS software in C++
using a Windows emulator that runs on a PC and
maps Symbian OS calls to Win32 APIs. The mobile

AUTOMATIKA 43(2002) 3-4, 168/I-VI

phone manufacturers ship this emulator as part of
a Symbian OS software development kit (SDK).
Any application or library written with an SDK
links to the User library for kernel services and to
other core libraries for core system services. Sym-
bian OS features a Java virtual machine and sup-
ports applications written in Java.

Symbian OS also provides a framework designed
for programming when memory capacity is limited.
This framework consists of a clean-up stack onto
which any partially constructed objects are placed
until their construction has been completed. If the
phone runs out of memory it is possible to delete
the objects on this clean-up stack avoiding a memo-
ry leak and enabling the process to continue, with-
out potentially losing user data associated with this
process. This paradigm is used throughout Symbian
OS and exposed to third-party (in the SDKs) to en-
able safe low memory programming.

Third-party software is installed on Symbian OS
phones with an installation file (SIS file). This file
is a concatenation of all the libraries and resources
that are required by the application, which is then
made secure with a certification system. This ena-
bles the delivery of tamperproof files where the
software vendor can be identified. The installer popu-
lates the file system with the files from the SIS file
allowing the enclosed application to run.

8 SYMBIAN OS BLUETOOTH ARCHITECTURE

The Bluetooth profiles were the key initial dri-
vers for Symbian OS Bluetooth implementation.
Symbian OS Version 6.1 Bluetooth stack is designed
around supporting the Generic Access Profile, the
Serial Port Profile and the Generic Object Exchan-
ge Profile. Key design goals included:

— The ability to run multiple simultaneous logical
connections to multiple remote devices.

— The separation of the protocol stack from the
security policy as suggested by the Bluetooth Se-
curity White Paper.

— The ability to support any specification compli-
ant hardware through the Host Controller Inter-
face.

— From the outset use case analysis was used to
map required Bluetooth profile support to system
features.

In the Symbian OS Bluetooth architecture, core
stack functionality is implemented by two compo-
nents, HCI.DLL and the Bluetooth protocol module
(BT.PRT). The Host Controller Interface module
encapsulates the canonical set of HCI commands
and events. Currently the serial UART flavor of
HCI has been implemented using the Ericsson

168/V

Symbian Operating System for Mobile Phones

Bluetooth Development Kit, the DigiAnswer PCM-
CIA cards and most recently the Cambridge Silicon
Radio Casira modules as reference hardware. Sym-
bian is, however, able to support any HCI-compli-
ant Bluetooth hardware through a modular Host
Controller Transport Layer architecture.

BTPRT encapsulates the Bluetooth L2CAP and
RFComm layers. As a Symbian OS protocol modu-
le, it provides a sockets API to these protocols.
BTPRT furthermore spawns distinct Bluetooth Ma-
nager and Service Discovery Protocol (SDP) server
threads. The Bluetooth Manager abstracts all User
Interface interactions and access to non-volatile sto-
rage. This allows for a future implementation of
flexible access policies to the range of services sup-
ported by a Symbian OS phone. The SDP server
handles SDP queries and responses. Serial port emu-
lation is supported by the Bluetooth comm server
module (BTCOMM.CSY) module which provides a
number of thin virtual serial ports for different
legacy services running over RFCOMM socket
functionality.

Both Symbian OS Bluetooth protocol module and
comm server module are based around the usage of
the State pattern.

8.1 Development evolution

Symbian OS Bluetooth will evolve as follows:

— Pre-Qualification against the v1.1 Bluetooth Spe-
cification.

— Symbian OS OBEX server implementation to
replace existing static library.

— Bluetooth 2.0 support through the addition of an
ad-hoc networking interface (IP over Bluetooth
Network Encapsulation Protocol (BNEP) over
L2CAP).

— Additional profile support.

The existing framework components will be en-
hanced to implement this support but the basic
stack APIs will not change. The addition of ad-hoc
networking via Bluetooth is a particularly exciting
area as it represents a genuine paradigm shift in
mobile computing, ushering in a new range of servi-
ces. Symbian OS is well-positioned to handle the
transition to this world of Personal Area Networ-
king and offers mobile phone maunufacturers uni-
que advantages. Support for Bluetooth has been de-
signed into the core platform from the outset.

9 CONCLUSION

Symbian OS is a robust multi-tasking operating
system, designed specifically for real-world wireless
environments and the constraints of mobile phones
(including limited amount of memory). Symbian OS
is natively IP-based, with fully integrated communi-
cations and messaging. It supports all the leading
industry standards that will be essential for this
generation of data-enabled mobile phones. Symbian
OS enables a large community of developers. The
open platform allows the installation of third party
software to further enhance the platform.

REFERENCES

[1] .., Forum Nokia white papers (http:/www.forum.nokia.hr)

[2] ..., Symbian.com (http://www.symbian.com)

[3] ..., The Bluetooth Security White Paper on the Bluetooth
SIG Members website

(http://www.opengroup.org/bluetooth)

[4] ..., Design Patterns (Ist Ed.); Gamma et al.; Addison-Wesley
Pub Co; ISBN: 0201633612; 15 January 1995

[5] ..., Sun Microsystems (http://java.sun.com)

[6] ... WAP Forum
(http://www.wapforum.org/what/technical.htm)

[7]1 ..., Open Mobile Alliance
(http://www.openmobilealliance.org/)

[8] ..., 3GPP official website (http://www.3gpp.org/)

Symbian operativni sustav za mobilne telefone. Novi mobilni uredaji moraju imati napredan hardver i softver
da bi mogli ispuniti korisnicke zahtjeve koji su znatno porasli u posljednjih nekoliko godina. Korisnicko sucelje
ovisi 0 operativnom sustavu, a Symbian je stvorio operativni sustav koji je dovoljno snazan da moze podrzati po-

rast podatkovnih usluga u mobilnom svijetu.

Symbian OS je zajednicka jezgra za aplikacijska sucelja (API — application programming interface) i tehnologi-
ju koju dijele svi Symbian OS telefoni. Symbian OS ukljucuje multitasking kernel, komunikacijske i podatkovne

protokole, graficko sucelje i aplikacijske strojeve.

Kljucne rije¢i: Symbian, operativni sustav, mobilni telefoni, multitasking, Bluetooth, Java MIDP, GPRS, ARM

RISC procesor

168/VI1

AUTHORS ADDRESS:

Zeljko Pavlakovi¢

Mobis electronic d.o.o.,

Heinzelova 96, 10000 Zagreb, Croatia
zeljko.pavlakovic@mobis.hr

AUTOMATIKA 43(2002) 3-4, 168/1-VI

