SYMMETRIC $(36,15,6)$ DESIGN HAVING U(3,3) AS AN AUTOMORPHISM GROUP

DEAN CRNKOVIC

Abstract

Up to isomorphism there are four symmetric $(36,15,6)$ designs with automorphisms of order 7. Full automorphism group of one of them is the Chevalley group $G(2,2) \cong U(3,3): Z_{2}$ of order 12096 . Unitary group $U(3,3)$ acts transitively on that design.

1. Introduction and preliminaries

A symmetric (v, k, λ) design is a finite incidence structure (\mathcal{P}, B, I), where \mathcal{P} and \mathcal{B} are disjoint sets and $I \subseteq \mathcal{P} \times \mathcal{B}$, with the following properties:

1. $|\mathcal{P}|=|\mathcal{B}|=v$,
2. Every element of \mathcal{B} is incident with exactly k elements of \mathcal{P},
3. Every pair of elements of \mathcal{P} is incident with exactly λ elements of \mathcal{B}.

Let $\mathcal{D}=(P, B, I)$ be a symmetric (v, k, λ) design and $G \leq A u t \mathcal{D}$. Group G has the same number of point and block orbits. Let us denote the number of G-orbits by t, point orbits by $\mathcal{P}_{1}, \ldots, \mathcal{P}_{t}$, block orbits by $\mathcal{B}_{1}, \ldots, \mathcal{B}_{t}$, and put $\left|\mathcal{P}_{r}\right|=\omega_{r},\left|\mathcal{B}_{i}\right|=\Omega_{i}$. We shall denote points of the orbit \mathcal{P}_{r} by $\mathcal{P}_{r}=$ $\left\{r_{1}, \ldots, r_{\omega_{r}-1}\right\}$. Further, denote by $\gamma_{i r}$ the number of points of \mathcal{P}_{r} which are incident with the representative of the block orbit \mathcal{B}_{i}. For those numbers the following equalities hold:

$$
\begin{align*}
\sum_{r=1}^{t} \gamma_{i r} & =k \tag{1}\\
\sum_{r=1}^{t} \frac{\Omega_{j}}{\omega_{r}} \gamma_{i r} \gamma_{j r} & =\lambda \Omega_{j}+\delta_{i j} \cdot(k-\lambda) \tag{2}
\end{align*}
$$

Definition 1. The $(t \times t)$-matrix ($\gamma_{i r}$) with entries satisfying properties (1) and (2) is called the orbit structure for parameters (v, k, λ) and orbit distribution $\left(\omega_{1}, \ldots, \omega_{t}\right),\left(\Omega_{1}, \ldots, \Omega_{t}\right)$.

Key words and phrases. symmetric design, automorphism group, orbit structure.

Definition 2. The set of indices of points of the orbit \mathcal{P}_{r} indicating which points of \mathcal{P}_{r} are incident with the representative of the block orbit \mathcal{B}_{i} is called the index set for the position (i, r) of the orbit structure.

2. Construction of the design

Let ρ be an automorphism of a symmetric design. We shall denote by $F(\rho)$ the number of points fixed by ρ. In that case, the number of blocks fixed by ρ is also $F(\rho)$.

Lemma 1. Let ρ be an automorphism of a symmetric $(36,15,6)$ design. If $|\rho|=7$, then $F(\rho)=1$.

Proof It is known that $F(\rho)<k+\sqrt{n}$ and $F(\rho) \equiv v(\bmod |\rho|)$. Therefore, $F(\rho) \in\{1,8,15\}$. If $F(\rho)=8$, then the fixed structure must be a symmetric $(8,8,6)$ design. Such a design doesn't exist, therefore $F(\rho) \neq 8$. The case $F(\rho)=15$ can be eliminated in the similar way.

Lemma 2. Up to isomorphism there are exactly two orbit structures for cyclic automorphism group of order 7 and a symmetric $(36,15,6)$ design. Those structures are:

OS1	1	7	7	7	7	7	OS2	1	7	7	7	7	7
1	1	7	7	0	0	0	1	1	7	7	0	0	0
7	1	4	1	3	3	3	7	1	4	1	3	3	3
7	1	1	4	3	3	3	7	1	1	4	3	3	3
7	0	3	3	5	2	2	7	0	3	3	4	4	1
7	0	3	3	2	5	2	7	0	3	3	1	4	4
7	0	3	3	2	2	5	7	0	3	3	4	1	4

Theorem 3. Up to isomorphism there are four symmetric $(36,15,6)$ designs with automorphism of order 7 . Let us denote them by $\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}$ and \mathcal{D}_{4}. Full automorphism groups of those designs are: $A u t \mathcal{D}_{1} \cong A u t \mathcal{D}_{2} \cong$ Frob $_{21}$, $A u t \mathcal{D}_{3} \cong G(2,2), A u t \mathcal{D}_{4} \cong \operatorname{Frob}_{21} \times Z_{2}$.

Proof Indexing of the column and row correponding to the fixed point and block is trivial. Therefore, we shall take into consideration only rightlower (5×5) submatrices of orbit structures. Indexing of the structure $O S 1$ leads to designs $\mathcal{D}_{1}, \mathcal{D}_{2}$ and \mathcal{D}_{3}. Orbit structure $O S 2$ leads to the design \mathcal{D}_{4}. Index sets which could occure in the case of $O S 1$ are:

$$
\begin{gathered}
0=\{0\}, \ldots, 6=\{6\}, 7=\{0,1\}, \ldots, 27=\{5,6\} \\
28=\{0,1,2\}, \ldots, 62=\{4,5,6\}, \\
63=\{0,1,2,3\}, \ldots, 97=\{3,4,5,6\}
\end{gathered}
$$

$$
98=\{0,1,2,3,4\}, \ldots, 118=\{2,3,4,5,6\}
$$

Design \mathcal{D}_{3} is presented in terms of index sets as follows:

64	0	31	31	31
0	81	36	44	54
31	36	108	24	13
31	44	24	98	11
31	54	13	11	109

With the help of the computer program by V . Tonchev, we got followig orders of full automorphism groups: $\left|A u t \mathcal{D}_{1}\right|=\left|A u t \mathcal{D}_{2}\right|=21,\left|A u t \mathcal{D}_{3}\right|=$ $12096,\left|A u t \mathcal{D}_{4}\right|=42$. Using the GAP [5] we have determine that $A u t \mathcal{D}_{3} \cong$ $G(2,2)$ and $A u t \mathcal{D}_{4} \cong \operatorname{Frob}_{21} \times Z_{2}$.

Derived Chevalley group $G(2,2)^{\prime}$ is isomorphic to the unitary group $U(3,3)$ of order 6048. Simple group $U(3,3)$ acts transitively on the design \mathcal{D}_{3}.

We have also found out that automorphism groups Frob_{21} and Frob_{14} acts on the design \mathcal{D}_{3} with orbit distributions $(1,7,7,21)$ and $(1,7,7,7,14)$ respectively. It is interesting that $U(3,3)$ doesn't contain subgroup isomorphic to Frob ${ }_{14}$.

It is obvious that the design \mathcal{D}_{3} have null polarity. Therefore, it is possible to construct strongly regular graph corresponding to that design.

References

[1] M. Aschbacher, On Collineation Groups of Symmetric Block Designs, J. Combin. Theory 11 (1971), 272-281.
[2] F.C. Bussemaker, W.H. Haemers, J.J. Siedel, E. Spence, On (v, k, λ) Graphs and Designs with Trivial Automorphism Groups, J. Combin. Theory, Series A 50 (1989), 33-46.
[3] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Oxford, (1985).
[4] V. Ćepulić, On symmetric block designs ($40,13,4$) with automorphisms of order 5, Discrete Math. 128 (1994) no. 1-3, 45-60.
[5] GAP, Lehrstuhl D fuer Mathematik, RWTH Aachen.
[6] Z. Janko, Coset Enumeration in Groups and Constructions of Symmetric Designs, Combinatorics '90, (1992), 275-277.
[7] E. Lander, Symmetric Designs: An Algebraic Approach, Cambridge University Press (1983).
[8] M.-O. Pavčević, Symmetric designs of Menon series admitting an action of Frobenius groups, Glasnik Matematički, (1996), 209-223.
[9] W. D. Wallis, A. P. Street and J. S. Wallis, Combinatorics: Room Squares, Sum-Free Sets, Hadamard matrices, Springer Verlag, Berlin-Heidelberg-New York (1972).

Address: Odsjek za matematiku, Filozofski fakultet u Rijeci, Omladinska 14, 51000 Rijeka, Croatia
(Received: 19.3.1999.)

