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Vol. 35(55)(2000), 161 – 177

COMPACT EMBEDDINGS OF VECTOR-VALUED SOBOLEV
AND BESOV SPACES

Herbert Amann
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Abstract. The main result of this paper is a generalization and sharp-
ening of the Aubin-Dubinskii lemma concerning compact subsets in vector-
valued Lebesque spaces. In addition, there are given some new embedding
results for vector valued Besov spaces.

1. Introduction and Main Results

Let E, E0, and E1 be Banach spaces such that

(1.1) E1 ↪−↪→ E ↪→ E0 ,

with ↪→ and ↪−↪→ denoting continuous and compact embedding, respectively.
Suppose that p0, p1 ∈ [1,∞] and T > 0, that

(1.2) V is a bounded subset of Lp1

(
(0, T ), E1

)
,

and that

(1.3) ∂V := { ∂v ; v ∈ V } is bounded in Lp0

(
(0, T ), E0

)
,

where ∂ denotes the distributional derivative. Then the well-known ‘Aubin
lemma’, more precisely, the ‘Aubin-Dubinskii lemma’ guarantees that

(1.4) V is relatively compact in Lp1

(
(0, T ), E

)
.

This result is proven in [Aub63, Théorème 1] and also in [Lio69, Théorème
I.5.1], provided E0 and E1 are reflexive and p0, p1 ∈ (1,∞). It has also been
derived by Dubinskii [Dub65] (see [Lio69, Théorème I.12.1]) with the same
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restrictions for p0 and p1, but without the reflexivity hypothesis. (In fact,
Dubinskii proves a slightly more sophisticated theorem in which the Lp1-norm
in (1.2) is replaced by a more general functional.)

A proof of (1.4), given assumptions (1.2) and (1.3) only, is due to Si-
mon (see [Sim87, Corollary 4]). In fact, this author oberves that (1.3) can be
replaced by

(1.5) lim
h→0+

‖v(· + h) − v‖Lp1 ((0,T−h),E0) = 0 , uniformly for v ∈ V ,

(see [Sim87, Theorem 5]). Note that the integrability exponents in (1.2) and
(1.5) are equal.

Compactness theorems of ‘Aubin-Dubinskii type’ are very useful in the
theory of nonlinear evolution equations and are employed in numerous re-
search papers. Typical situations are as follows: (uk) is a sequence of approx-
imate solutions to a given nonlinear evolution equation. If it is possible to
bound this sequence in Lp1(X,E1) and if one can bound the sequence (∂uk)
in Lp0(X,E0), then the Aubin-Dubinskii lemma guarantees that one can ex-
tract a subsequence which converges in Lp1(X,E). If it is then possible to
pass to the limit in the approximating problems, whose solutions are the uk,
and if the limiting equation coincides with the original evolution equation,
then the existence of a solution to the original problem has been established
(cf. [Lio69] for an exposition of this technique). In many concrete cases it is
rather difficult, if not impossible, to pass to the limit in nonlinear equations if
(∂uk) is only known to converge in Lp1(X,E). Convergence in ‘better spaces’,
whose elements are more regular (in space or in time), is needed. Even if
convergence in Lp1(X,E) is sufficient, it is often important to know that the
limiting element belongs to a space with more regularity.

It is the purpose of this paper to prove compact embedding theorems
of ‘Aubin-Dubinskii type’ involving spaces of higher regularity. For this we
observe that in most practical cases it is possible to squeeze an interpolation
space between E and E1 (see Remark 7.4). Thus we replace assumption (1.1)
by the slightly more restrictive condition:

(1.6) E1 ↪−↪→ E0 and (E0, E1)θ,1 ↪→ E ↪→ E0 for some θ ∈ (0, 1) ,

where (·, ·)θ,q denote the real interpolation functors (cf. [BL76] or [Tri78] for
the basic facts of interpolation theory; also see [Ama95, Section I.2] for a
summary). Note that the compactness assumption in (1.6) is weaker than
the one in (1.1). Moreover, it is well-known that (E0, E1)θ,1 ↪→ E ↪→ E0 iff
E1 ↪→ E ↪→ E0 and

‖x‖E ≤ c ‖x‖1−θ
E0

‖x‖θ
E1

, x ∈ E1 ,

(e.g., [BL76, Theorem 3.5.2] or [Tri78, Lemma 1.10.1]). Here and below c de-
notes positive constants which may differ from formula to formula. Intuitively,
the parameter 1 − θ measures the ‘distance’ between E1 and E.
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In order to formulate our main result involving assumptions (1.2)
and (1.6) we need some notation. Throughout this paper it is always as-
sumed that p, p0, p1 ∈ [1,∞], unless explicit restrictions are given, and that
0 < θ < 1. Then

1

pθ
:=

1− θ

p0
+

θ

p1
.

Given s ∈ R+ := [0,∞), we denote by W s
p

(
(0, T ), E

)
the Sobolev-Slobodeckii

space of order s of E-valued distributions on (0, T ), which is defined in analogy
to the scalar case (see Section 2). We also put c0

(
[0, T ], E

)
:= C

(
[0, T ], E

)
;

and cs
(
[0, T ], E

)
is, for 0 < s < 1, the Banach space of all s-Hölder-continuous

E-valued functions on [0, T ] satisfying

lim
r→0

sup
0<x,y<T

0<|x−y|<r

‖u(x) − u(y)‖
|x− y|s = 0 ,

the ‘little Hölder space’ of order s.

Theorem 1.1. Let (1.2) and (1.6) be satisfied. Suppose that either

(1.7) s0 := 1 and (1.3) is true,

or

(1.8)
0 < s0 < 1, p0 ≤ p1, and

‖v(· + h) − v‖Lp0((0,T−h),E0) ≤ chs0 , 0 < h < T, v ∈ V .

}

Then V is relatively compact in

(1.9) W s
p

(
(0, T ), E

)
if 0 ≤ s < (1−θ)s0 and s−1/p < (1−θ)s0−1/pθ ,

and in

(1.10) cs
(
[0, T ], E

)
if 0 ≤ s < (1 − θ)s0 − 1/pθ .

Let (1.2), (1.3), and (1.6) be satisfied. In [Sim87, Corollary 8] it is shown
that V is relatively compact in

(1.11) Lp

(
(0, T ), E

)
if 1 − θ ≤ 1/pθ < 1/p ,

and in

(1.12) C
(
[0, T ], E

)
if 1 − θ > 1/pθ .

Note that (1.9) implies in this case that V is relatively compact in Lp

(
(0, T ), E

)
if

1/pθ − (1 − θ) < 1/p .

Hence we can admit values p > pθ if 1 − θ < 1/pθ, in contrast to (1.11) where
p < pθ is required. Furthermore, (1.9) implies in the present situation that



164 HERBERT AMANN

V is relatively compact in

W s
pθ

(
(0, T ), E

)
if 0 ≤ s < 1 − θ .

Since (1.10) shows that V is relatively compact in cs
(
[0, T ], E

)
if

0 ≤ s < 1 − θ − 1/pθ, we see that Theorem 1.1 is a substantial improve-
ment over Simon’s extension of the Aubin-Dubinskii lemma, provided con-
dition (1.6) is satisfied.

In [Sim87, Theorem 7] it is also shown that V is relatively compact in
Lpθ

(
(0, T ), E

)
if (1.2), (1.5), and (1.6) are true. Theorem 1.1 gives a consid-

erable sharpening of this result, provided (1.5) is replaced by its quantitative
version (1.8).

Suppose that V and H are Hilbert spaces such that V
d
↪−↪→ H. Then, iden-

tifying H with its (anti-)dual H ′, it follows that V
d
↪−↪→ H

d
↪−↪→ V ′. It is known

(e.g., [LM72]) that H = (V ′, V )1/2,2. Hence, letting (E0, E1) := (V ′, V ) and
E := H , condition (1.6) is satisfied with θ := 1/2. Setting p0 := p1 := 2, we
infer from (1.9) that V is relatively compact in Lp

(
(0, T ), H

)
for 1 ≤ p <∞.

It is also known that V is continuously — but not compactly — injected in
C
(
[0, T ], H

)
(see [Mig95]). This shows that Theorem 1.1 is sharp. It should be

noted that Simon’s result (1.11) guarantees only that V is relatively compact
in Lp

(
(0, T ), H

)
for 1 ≤ p < 2.

Theorem 1.1 is a special case of much more general results which are also
valid if (0, T ) is replaced by a sufficiently regular bounded open subset of Rn.
Its proof is given in Section 5.

In the next section we introduce vector-valued Besov spaces on R
n and

recall some of their basic properties. In particular, we prove an interpolation
theorem extending an earlier result due to Grisvard. In Section 4 we discuss
vector-valued Besov spaces on X and prove compact embedding theorems for
them. In Section 5 we derive an analogue of the Rellich-Kondrachov theo-
rem for vector-valued Sobolev spaces on X as well as a compact embedding
theorem for intersections of Sobolev-Slobodeckii spaces. The last section con-
tains a renorming result for Sobolev-Slobodeckii spaces. We close this paper
by commenting on the regularity assumptions for X .

We are indebted to E. Mâıtre for bringing [Mig95] to our attention.

2. Some Function Spaces

Let X be an open subset of Rn. Suppose that E is a Banach space,
that 1 ≤ p ≤ ∞, and m ∈ N. Then the Sobolev space Wm

p (X,E) is the Ba-
nach space of all u ∈ Lp(X,E) such that the distributional derivatives ∂αu
belong to Lp(X,E) for |α| ≤ m, endowed with the usual norm ‖·‖m,p. Fur-
thermore, BUCm(X,E) is the closed linear subspace of Wm

∞(X,E) consisting
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of all u such that ∂αu is bounded and uniformly continuous on X , that is,
∂αu ∈ BUC(X,E), for |α| ≤ m.

If 0 < θ < 1, put

[u]θ,p :=





[∫

X×X

(‖u(x) − u(y)‖E

|x− y|θ
)p d(x, y)

|x− y|n
]1/p

, p <∞ ,

sup
x,y∈X
x6=y

‖u(x) − u(y)‖E

|x− y|θ , p = ∞ .

Then we set

Wm+θ
p (X,E) :=

({
u ∈Wm

p (X,E) ; ‖u‖m+θ,p <∞
}
, ‖·‖m+θ,p

)
,

where

‖u‖m+θ,p := ‖u‖m,p + max
|α|=m

[∂αu]θ,p .

If p <∞ then Wm+θ
p (X,E) is a vector-valued Slobodeckii space, and

Wm+θ
∞ (X,E) = BUCm+θ(X,E) ,

the subspace of BUCm(X,E) consisting of all u such that ∂αu is uniformly
θ-Hölder continuous for |α| = m.

If m > 0 and 0 ≤ θ < 1 then W−m+θ
p (X,E) [resp. BUC−m(X,E)] is the

Banach space of all E-valued distributions u on X having a representation

u =
∑

|α|≤m

∂αuα

with uα ∈W θ
p (X,E) [resp. uα ∈ BUCθ(X,E)], equipped with the norm

u 7→ ‖u‖−m+θ,p := inf
( ∑

|α|≤m

‖uα‖θ,p

)
,

the infimum being taken over all such representations, and p being equal to ∞
if uα ∈ BUCθ(X,E). Thus the ‘Sobolev-Slobodeckii scale’ W s

p (X,E), s ∈ R,
is well-defined for each p ∈ [1,∞], as is the ‘Hölder scale’ BUCs(X,E), s ∈ R.
Moreover,

D(X,E) ↪→W s
p (X,E)∩BUCs(X,E) ↪→W s

p (X,E)+BUCs(X,E) ↪→ D′(X,E)

for s ∈ R. Here D(X,E) is the space of all E-valued test functions on X
endowed with the usual inductive limit topology, and D′(X,E) = L

(
D(X), E

)

is the space of E-valued distributions on X , with L denoting the space of
continuous linear maps, equipped with the topology of uniform convergence
on bounded sets.
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We also define the scale of ‘little Hölder spaces’ bucs(X,E), s ∈ R, by
setting

bucm(X,E) := BUCm(X,E)

and by denoting by

bucm+θ(X,E) the closure of BUCm+1(X,E) in BUCm+θ(X,E)

form ∈ Z and θ ∈ (0, 1). Then u ∈ BUCm+θ(X,E) belongs to bucm+θ(X,E) iff

lim
r→0

sup
x,y∈X

0<|x−y|<r

‖∂αu(x) − ∂αu(y)‖E

|x− y|θ = 0 , |α| = m ,

(cf. [Lun95, Proposition 0.2.1], for example).

Throughout the remainder of this paper we suppose that

X is a smoothly bounded open subset of Rn,

which means that X is a compact n-dimensional C∞-submanifold of Rn with
boundary. This assumption is imposed for convenience and can be consider-
ably relaxed (see the last paragraph of Section 7).

It follows that BUCs(X,E) = Cs(X,E) for s ∈ R+ by identifying
u ∈ BUCs(X,E) with its unique continuous extension u ∈ Cs(X,E). For this
reason we put

Cs(X,E) := BUCs(X,E) , cs(X,E) := bucs(X,E)

for all s ∈ R.

Henceforth, we always suppose that E, E0, and E1 are complex Banach
spaces. The real case can be covered by complexification. We also suppose
that s, s0, s1 ∈ R and put sθ := (1 − θ)s0 + θs1.

3. Besov Spaces on R
n

Fix a radial ψ := ψ0 ∈ D(Rn) := D(Rn,C) with ψ(ξ) = 1 for |ξ| < 1 and
ψ(ξ) = 0 for |ξ| ≥ 2. Put

ψk(ξ) := ψ(2−kξ) − ψ(2−k+1ξ) , ξ ∈ R
n , k ∈ N\{0} ,

and ψk(D) := F−1ψkF , where F is the Fourier transform on S ′(Rn, E) :=
L
(
S(Rn), E

)
and S(Rn) is the Schwartz space of rapidly decreasing smooth

functions on R
n. Then the Besov space Bs

p,q(R
n, E) of E-valued distributions

on Rn is defined to be the vector subspace of S ′(Rn, E) consisting of all u
satisfying

‖u‖s,p,q :=
∥∥(2sk ‖ψk(D)‖Lp(Rn,E)

)
k∈N

∥∥
`q
<∞ .

It is a Banach space with this norm, and different choices of ψ lead to equiv-
alent norms.
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In this section we simply write F for F(Rn, E) if the latter is a locally
convex space of E-valued distributions on Rn, that is, F(Rn, E) ↪→ D′(Rn, E),
and no confusion seems likely.

It follows that

(3.1) S ↪→ Bs1
p,q1

↪→ Bs0
p,q0

↪→ S ′ , s1 > s0 ,

and

(3.2) Bs
p,q0

↪→ Bs
p,q1

, q0 < q1 .

Moreover,

(3.3) Bs1
p1,q ↪→ Bs0

p0,q , s1 > s0 , s1 − n/p1 = s0 − n/p0 .

Besov spaces are stable under real interpolation, that is, if 0 < θ < 1 then

(3.4) (Bs0
p,q0

, Bs1
p,q1

)θ,q
.
= Bsθ

p,q , s0 6= s1 .

They are related to Slobodeckii and Hölder spaces by

(3.5) Bs
p,p

.
= W s

p , s ∈ R\Z ,

and

(3.6) Bm
p,1 ↪→ Wm

p ↪→ Bm
p,∞ , m ∈ Z , p <∞ .

Moreover, Bm
p,p 6= Wm

p for m ∈ Z unless p = 2 and E is a Hilbert space. Note
that (3.4)–(3.6) imply

(3.7) (W s0
p ,W s1

p )θ,q
.
= Bsθ

p,q , s0 6= s1 , p <∞ .

It is also true that

(3.8) Bm
∞,1 ↪→ BUCm ↪→ Bm

∞,∞ , m ∈ Z ,

and Bm
∞,∞ is the Zygmund space Cm form ∈ N\{0} (e.g., [Tri83] for the scalar

case). Hence we infer from (3.4) and (3.5) that

(3.9) (BUCs0 , BUCs1)θ,q
.
= Bsθ

∞,q .

The definition and the above properties of vector-valued Besov spaces are
literally the same as in the scalar case (for which we refer to [Tri78], [Tri83],
[Tri92], and [BL76]). The proofs carry over from the scalar to the vector-
valued setting by employing the Fourier multiplier theorem of Propostion 4.5
of [Ama97]. A detailed and coherent treatment containing many additional
results will be given in [Ama99]. For earlier (partial) results and different
approaches we refer to [Gri66], [Sch86], and [Tri97, Section 15], as well as to
the other references cited in [Ama97]. Embedding theorems for vector-valued
Besov and Slobodeckii spaces on an interval are also derived in [Sim90], but
with s, s0, and s1 restricted to the interval [0, 1].
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We define the little Besov space bsp,q to be the closure of Bs+1
p,q in Bs

p,q . Then

(3.10) bsp,q :=

{
Bs

p,q , p ∨ q <∞ , s ∈ R ,

bucs , p = q = ∞ , s ∈ R\Z ,

and

(3.11) bsp,q is the closure of Bt
p,q in Bs

p,q for t > s

(see [Ama97, Propositions 5.3 and 5.4 and Remark 5.5(b)] and [Ama99]).

Denoting by
d
↪→ dense embedding, it follows that

(3.12) S d
↪→ Bs1

p,q1

d
↪→ Bs0

p,q0

d
↪→ bs0

p,∞

d
↪→ S ′ , p <∞ ,

if either s1 = s0 and 1 ≤ q1 ≤ q0 <∞, or s1 > s0 and q0 ∨ q1 <∞ (see
[Ama97, Remark 5.5(a)]).

The following interpolation theorem for vector-valued Besov spaces will
be of particular importance for us.

Theorem 3.1. Let (E0, E1) be an interpolation couple and suppose that
s0 6= s1 and p0, p1, q0, q1 ∈ [1,∞). Then

(
Bs0

p0,q0
(Rn, E0), B

s1
p1,q1

(Rn, E1)
)

θ,qθ

.
= Bsθ

pθ ,qθ

(
R

n, (E0, E1)θ,qθ

)
,

provided pθ = qθ.

Proof. We denote by `sq(E) the subspace of EN consisting of all u = (uk)
satisfying

‖u‖`s
q(E) := ‖(2skuk)k∈N‖`q <∞ .

It is a Banach space with this norm. If (F0, F1) is an interpolation couple then

(3.13)
(
`s0
q0

(F0), `
s1
q1

(F1)
)

θ,qθ

.
= `sθ

qθ

(
(F0, F1)θ,qθ

)

(e.g., [BL76, Theorem 5.6.2] or [Tri78, Theorem 1.18.1]). Furthermore ([Tri78,
Theorem 1.18.4]),

(3.14)
(
Lp0(R

n, E0), Lp1(R
n, E1)

)
θ,pθ

.
= Lpθ

(
R

n, (E0, E1)θ,pθ

)
.

From [Ama97, Lemma 5.1] we know that Bs
p,q is a retract of `sq(Lp). Hence the

assertion follows from (3.13), (3.14), and [Tri78, Theorem 1.2.4] or [Ama95,
Proposition I.2.3.2].

Theorem 3.1 generalizes a result of Grisvard [Gri66, formula (6.9) on
p. 179] who considers the case pj = qj and n = 1. It should be noted that
Grisvard’s proof does not extend to n > 1 since, in general, Wm

p (Rn, E) is not
isomorphic to Lp(R

n, E).
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4. Besov Spaces on X

We denote by rX ∈ L
(
C(Rn, E), C(X,E)

)
the operator of point-wise re-

striction, u 7→ u |X, and recall that rX ∈ L
(
D′(Rn, E),D′(X,E)

)
is the re-

striction operator in the sense of distribution, that is,

rXu(ϕ) := u(ϕ) , u ∈ D′(Rn, E) , ϕ ∈ D(X) .

Observe that coretractions for rX and rX are extension operators.

The following extension theorem is of basic importance for the study of
spaces of distributions on X . Here and below we set

Ws
p(Y,E) :=

{
W s

p (Y,E) , p <∞ ,

BUCs(Y,E) , p = ∞ ,

for s ∈ R and Y ∈ {Rn, X}.

Theorem 4.1. rX is a retraction from S ′(Rn, E) onto D′(X,E) and there
exists a coretraction eX for rX which is independent of E. Moreover, rX ⊃ rX ,
and rX belongs to

L
(
S(Rn, E), C∞(X,E)

)
∩ L
(
Ws

p(Rn, E),Ws
p(X,E)

)

∩ L(bucs(Rn, E), cs(X,E)
)
.

Furthermore, eX is an element of

L
(
C∞(X,E),S(Rn, E)

)
∩ L
(
Ws

p(X,E),Ws
p(Rn, E)

)

∩ L(cs(X,E), bucs(Rn, E)
)
,

and it is a coretraction for rX in each case.

Proof. By a standard partition of unity argument the proof is reduced to
establishing a corresponding statement if X is replaced by a half-space of Rn.
In this case the theorem is deduced by constructing an extension operator
along the lines of [Ham75, Part II]. For details and generalizations we refer
to [Ama99].

Now we define the Besov spaces of E-valued distributions on X by

Bs
p,q(X,E) := rXB

s
p,q(R

n, E) ,

equipped with the obvious quotient space topology.

Proposition 4.2. rX is a retraction from Bs
p,q(R

n, E) onto Bs
p,q(X,E) and

eX is a corresponding coretraction.
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Proof. Fix s0 < s < s1 and put θ := (s− s0)/(s1 − s0). Then
(
Ws0

p (Rn, E),Ws1
p (Rn, E),

)
θ,q

.
= Bs

p,q(R
n, E)

thanks to (3.7) and (3.9). By Theorem 4.1 the diagrams of continuous
linear maps

�
�

�+Q
Q

Qk

-

Wsj
p (X,E)

Wsj
p (Rn, E) Wsj

p (X,E)
rX

ideX

are commutative. Hence the assertion follows by interpolation.

Corollary 4.3. Assertions (3.1)–(3.12) as well as Theorem 3.1 remain
valid if Rn is replaced by X, provided we substitute C∞(X,E) and D′(X,E)
for S and S ′, respectively.

Proof. This is deduced from Proposition 4.2 by standard arguments.

In the following (4.x), where x ∈ {1, . . . , 12}, denotes the analogue of for-
mula (3.x) with Rn replaced by X , as well as S and S ′ replaced by C∞(X,E)
and D′(X,E), respectively.

Now it is easy to prove the following compact embedding theorem.

Theorem 4.4. Suppose that E1 ↪−↪→ E0. Then

Bs1
p,q(X,E1) ↪−↪→ Bs0

p,q(X,E0) , s1 > s0 .

Proof. Fix σ0 < s0 < s1 < σ1 and σ ∈ (0, 1) such that σ0 < 0 and
σ < σ1 − n/p. Then we infer from (4.1)–(4.3) and (4.5), (4.6) that

Bσ1
p,q(X,E1) ↪→ Bσ1−n/p

∞,∞ (X,E1) ↪→ Cσ(X,E1)

and

C(X,E0) ↪→ Lp(X,E0) ↪→ Bσ0
p,q(X,E0) .

Since, by the Arzéla-Ascoli theorem, Cσ(X,E1) is compactly embedded
in C(X,E0), it follows that Bσ1

p,q(X,E1) ↪−↪→ Bσ0
p,q(X,E0). Now the assertion

is a consequence of (4.4) and the Lions-Peetre compactness theorem for the
real interpolation method.

Corollary 4.5. (i) Suppose that E1 ↪−↪→ E0. If s1 > s0 and s1 − n/p1 >
s0 − n/p0 then

Bs1
p1,q1

(X,E1) ↪−↪→ bs0
p0,q0

(X,E0) .
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(ii) Suppose that

E1 ↪→ E0 and (E0, E1)θ,pθ
↪−↪→ E .

If sθ > s and sθ − n/pθ > s− n/p then

Bs0
p0,q0

(X,E0) ∩Bs1
p1,q1

(X,E1) ↪−↪→ bsp,q(X,E) .

Proof. (i) Since X is bounded, it is obvious that

Cm(X,E) ↪→ Wm
p (X,E) ↪→Wm

p (X,E) , 1 ≤ p < p , m ∈ Z .

Thus it is an easy consequence of (4.1), (4.5), (4.7), and (4.9) that

Bs
p,q(X,E) ↪→ Bs

p,q(X,E) , 1 ≤ p < p .

Fix p ∈ [1, p1] and s ∈ (s0, s1) such that t := s− n(1/p− 1/p0) < s and sup-
pose that s0 < σ < τ < t. Then we infer from (4.1)–(4.3), Theorem 4.4, and
the above embedding that

Bs1
p1,q1

(X,E1) ↪→ Bs
p,q1

(X,E1) ↪→ Bt
p0,q1

(X,E1) ↪→ Bτ
p0,q0

(X,E1)

↪−↪→ Bσ
p0,q0

(X,E0) ↪→ bs0
p0,q0

(X,E0) ,

where the last embedding follows from (4.11).

(ii) Fix σj < sj such that s− n/p < σθ − n/pθ. Then

Bs0
p0,q0

(X,E0) ∩Bs1
p1,q1

(X,E1) ↪→ Bσ0
p0,p0

(X,E0) ∩ Bσ1
p1,p1

(X,E1) .

Since

Bσ0
p0,p0

(X,E0) ∩Bσ1
p1,p1

(X,E1) ↪→ Bσj
pj ,pj

(X,Ej) , j = 0, 1 ,

interpolation gives

Bσ0
p0,p0

(X,E0) ∩ Bσ1
p1,p1

(X,E1) ↪→
(
Bσ0

p0,p0
(X,E0), B

σ1
p1,p1

(X,E1)
)
θ,pθ

= Bσθ
pθ ,pθ

(
X, (E0, E1)θ,pθ

)
,

where the last equality follows from Theorem 3.1 and Corollary 4.3. Now it
suffices to apply (i).

5. Sobolev-Slobodeckii Spaces on X

As an easy consequence of the preceding results we obtain the following
vector-valued version of the Rellich-Kondrachov theorem.

Theorem 5.1. Suppose that E1 ↪−↪→ E0. If s1 > s0 and s1 − n/p1 > s0 − n/p0

then

W s1
p1

(X,E1) ↪−↪→W s0
p0

(X,E0) .

If 0 ≤ s < s1 − n/p1 then

W s1
p1

(X,E1) ↪−↪→ cs(X,E0) .
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Proof. Fix σ0, σ1 ∈ (s0, s1) with σ1 > σ0 such that σ1 − n/p1 > σ0 − n/p0.
Then (4.5), (4.6), and Corollary 4.5(i) imply

W s1
p1

(X,E1) ↪→ Bσ1
p1,p1

(X,E1) ↪−↪→ bσ0
p0,p0

(X,E0) .

Now the assertion follows from (4.10) and (4.5).

It is also easy to prove a compact embedding theorem involving intersec-
tions of Sobolev-Slobodeckii spaces as well as interpolation spaces Eθ.

Theorem 5.2. Suppose that

(5.1) E1 ↪−↪→ E0 and (E0, E1)θ,pθ
↪→ E ↪→ E0 .

Then

(5.2) W s0
p0

(X,E0) ∩W s1
p1

(X,E1) ↪−↪→ W s
p (X,E) ,

provided

(5.3) s < sθ and s− n/p < sθ − n/pθ .

If 0 ≤ s < sθ − n/pθ then

(5.4) W s0
p0

(X,E0) ∩W s1
p1

(X,E1) ↪−↪→ cs(X,E) .

Proof. Since E1 ↪−↪→ E0, interpolation theory guarantees that

E1 ↪−↪→ (E0, E1)ϑ,pϑ
↪−↪→ (E0, E1)θ,1 , θ < ϑ < 1 .

Hence (4.2) and the second part of (5.1) show that (E0, E1)ϑ,pϑ
↪−↪→ E. Fix

ϑ ∈ (θ, 1) sufficiently close to θ such that s− n/p < sϑ − n/pϑ if (5.3) holds,
and such that s < pϑ − n/pϑ if sθ − n/pθ > 0. Now the assertion is an easy
consequence of Corollary 4.5(ii) and (4.1), (4.5), and (4.6).

Remarks 5.3.

(a) Suppose that H is a Hilbert space. Then u belongs to W s
2 (Rn, H), where

s ∈ R+, iff u ∈ L2(R
n, H) and
(
ξ 7→ |ξ|2s

û(ξ)
)
∈ L2(R

n, H) ,

with û denoting the Fourier transform of u. Thus assumption (5.1), modulo
Theorem 5.2, generalizes a result of J.-L. Lions (cf. [Lio61, Théorème IV.2.2]
and [Lio69, Théorème I.5.2]), who considers the case n = 1, p = 2, and s1 = 0
with E, E0, and E1 being Hilbert spaces satisfying E1 ↪−↪→ E ↪→ E0.

(b) Theorem 1.1 also improves Corollary 9 of [Sim87] which, for n = 1, guar-
antees the validity of (5.2)–(5.4) for s = 0.

(c) Observe that there are no sign restrictions for s, s0, and s1 in (5.3).
Hence the first part of Theorem 5.2 is also valid if s0 < 0, for example. In
this connection it is important to know that, similarly as in the scalar case,
Sobolev-Slobodeckii spaces of negative order can be characterized by duality.
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More precisely: Denote by W̊ s
p (X,E) the closure of D(X,E) in W s

p (X,E).
Then, given a reflexive Banach space F ,

W−s
p (X,F )

.
=
[
W̊ s

p′(X,F ′)
]′
, 1 < p <∞ ,

and

W−s
1 (X,F )

.
=
[
cs(X,F ′)

]′
, s ∈ R

+\N ,

with respect to the duality pairing induced by

(5.5) 〈u′, u〉 :=

∫

X

〈
u′(x), u(x)

〉
F ′ dx , u, u′ ∈ D(X,E) ,

where 〈·, ·〉F ′ : F × F ′ → K is the duality pairing between F and F ′.

Consequently, if 1 < p <∞ then a subset V of W−s
p (X,F ) is bounded iff

there exists a constant c such that

(5.6) |〈v, ϕ〉| ≤ c ‖ϕ‖s,p′ , ϕ ∈ D(X,F ′) , v ∈ V .

Similarly, a subset V of W−s
1 (X,F ) is bounded iff (5.6) holds for all

ϕ ∈ C∞(X,F ′). In concrete situations, estimates of this type are often rather
easy to establish.

Proof. Note that (5.5) extends by continuity from D(X,F ) ×D(X,F ′)
to a bilinear form onW−s

p (X,F ) ×W s
p′(X,F ′) and from D(X,F ) × C∞(X,F ′)

to such a form onW−s
1 (X,F ) × cs(X,F ′). For a proof of the duality assertions

we refer to [Ama99, Chapter VII].

(d) Suppose that (5.1) is satisfied and α ∈ Nn. Then

∂α : W s0
p0

(X,E0) ∩W s1
p1

(X,E1) →W s
p (X,E) compactly ,

provided

s < sθ and s− n/p < sθ − |α| − n/pθ .

If 0 ≤ s < sθ − |α| − n/pθ then

∂α : W s0
p0

(X,E0) ∩W s1
p1

(X,E1) → cs(X,E) compactly .

This generalizes Théorème 2 of [Aub63] as well as Simon’s extension of it
[Sim87, Corollary 10].

Proof. Since

∂α ∈ L
(
W s0

p0
(X,E0) ∩W s1

p1
(X,E1),W

s0−|α|
p0

(X,E0) ∩W s1−|α|
p1

(X,E1)
)
,

the assertion follows from Theorem 5.2.

6. Proof of Theorem 1.1

In order to derive Theorem 1.1 from the preceding results we need some
preparation.
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Lemma 6.1. Set

V := Vp0,p1(E0, E1) :=
{
v ∈ Lp1

(
(0, T ), E1

)
; ∂v ∈ Lp0

(
(0, T ), E0

) }
.

Then V
.
= W 1

p0

(
(0, T ), E0

)
∩ Lp1

(
(0, T ), E1

)
.

Proof. It is clear that V is a Banach space and that

W 1
p0

(
(0, T ), E0

)
∩ Lp1

(
(0, T ), E1

)
↪→ V .

Moreover,

V ↪→ C
(
[0, T ], E0

)
↪→ Lp0

(
(0, T ), E0

)
,

where we refer to [Tri78, Lemma 1.8.1], for example, for a proof of the first
embedding. Now the assertion is obvious.

Put Xh := X ∩ (X − h) for h ∈ Rn and suppose that p <∞. Also set

[u]θ,p,∞ := sup
h∈R

n

h6=0

‖u(· + h) − u‖Lp(Xh,E)

|h|θ

and, given m ∈ N,

Nm+θ
p (X,E) :=

({
u ∈ Lp(X,E) ; [∂αu]θ,p,∞ <∞, |α| = m

}
, ‖·‖m+θ,p,∞

)
,

where

‖u‖m+θ,p,∞ := ‖u‖p + max
|α|=m

[∂αu]θ,p,∞ .

ThenNs
p (X,E), s ∈ R+\N, are the Nikol’skii spaces of E-valued distributions

on X . The proof for the scalar case (e.g., [Tri78, Section 2.5.1]) carries over
to the vector-valued case to show that

(6.1) Ns
p (X,E)

.
= Bs

p,∞(X,E) , s ∈ R
+\N ,

(cf. [Ama99, Section VII.3].

Proof of Theorem 1.1. Clearly, we can assume that p0 ∨ p1 <∞.

Let (1.7) be satisfied. Then (1.2), (1.3), and Lemma 6.1 imply that V is
bounded in W 1

p0

(
(0, T ), E0

)
∩ Lp1

(
(0, T ), E1

)
. Hence the assertion is entailed

by Theorem 5.2.

Suppose that assumption (1.8) is fulfilled. Then (6.1) shows that V is
bounded in Bs0

p0,∞

(
(0, T ), E0

)
. Hence it is bounded in Bs0

p0,∞

(
(0, T ), E0

)

∩Lp1

(
(0, T ), E1

)
by (1.6). Thus (4.1) and (4.6) imply that V is bounded in

Bs0
p0,∞

(
(0, T ), E0

)
∩Bs1

p1,p1

(
(0, T ), E1

)
for each s1 < 0. Now the assertion fol-

lows from Corollary 4.5(ii) by means of the arguments used in the proof of
Theorem 5.2.



COMPACT EMBEDDINGS OF SOBOLEV AND BESOV SPACES 175

7. Final Remarks

So far we have not put any restriction, like reflexivity for example,
on the Banach spaces under consideration. However, in order to prove an
n-dimensional analogue to Lemma 6.1 we need such an additional assump-
tion. For this we recall that a Banach space F is a UMD space if the Hilbert
transform is a continuous self-map of L2(R

n, F ). Every UMD space is reflex-
ive (but not conversely), and every Hilbert space is a UMD space. The class
of UMD spaces enjoys many useful permanence properties. For example, each
closed subspace of a UMD space is again a UMD space. For details and more
information we refer to [Ama95, Subsection III.4.5].

Example 7.1. Suppose that Ω is an open subset of some euclidean space.
Then W s

p (Ω) and every closed linear subspace thereof are UMD spaces, pro-
vided 1 < p <∞.

Proof. If m ∈ N then Wm
p (Ω) is well-known to be isomorphic to a closed

linear subspace of the M -fold product of Lp(Ω), where M :=
∑

|α|≤m 1. Hence

Wm
p (Ω) is a UMD space by Theorem III.4.5.2 in [Ama95]. Consequently,

W̊m
p (Ω) is a UMD space as well. Thus W−m

p (Ω) =
[
W̊m

p′ (Ω)
]′

is also a UMD

space, as follows from part (v) of Theorem III.4.5.2 in [Ama95]. Finally,
part (vii) of that theorem, together with (3.5) and (3.7), implies the assertion.

If F is a UMD space then the Sobolev-Slobodeckii spaces W s
p (X,F )

possess essentially the same properties as their scalar ancestors, provided
1 < p <∞. This is seen, for example, by the following proposition.

Proposition 7.2. Suppose that F is a UMD space and 1 < p <∞. Then,
given s ∈ R and m ∈ N,

u 7→ ‖u‖s,p +
∑

|α|=m

‖∂αu‖s,p

is an equivalent norm for W s+m
p (X,F ).

Proof. If F is a UMD space then Mikhlin’s multiplier theorem is
valid in Lp(R

n, F ) for 1 < p <∞ (and scalar symbols) (e.g., [Ama95, Theo-
rem III.4.4.3]). Thus the well-known proof for scalar Sobolev spaces extends
to the vector-valued setting in this case.

Corollary 7.3. Suppose that E0 is a UMD space and 1 < p0 <∞. Then

Wm
p0

(X,E0) ∩ Lp1(X,E1) =
{
u ∈ Lp1(X,E1) ; ∂αu ∈ Lp0(X,E0), |α| = m

}

for m ∈ N and 1 ≤ p1 ≤ ∞.
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Lastly, we show that, in practice, the assumption that we can squeeze
an interpolation space between E and E1 is no serious restriction. In other
words: in most applications assumption (1.6) is satisfied.

Remark 7.4. In concrete applications it is most often the case that
Ej := W

σj
rj (Ω) for j = 0, 1 and E := W σ

r (Ω), where Ω is a bounded smooth

open subset of Rd, σ0 and σ1 are real numbers with σ0 < σ < σ1, and
r, r0, r1 ∈ [1,∞). Thanks to the classical Rellich-Kondrachov theorem
E1 ↪−↪→ E0. Suppose that σ0 − d/r0 < σ − d/r < σ1 − d/r1. Fix ϑ ∈ (0, 1)
such that

σ − d/r < σϑ − d/rϑ < σ1 − d/r1 , σ < σϑ < σ1 ,

and σϑ /∈ Z. Then we infer from (4.1) and (4.7) that

E1 ↪→ (E0, E1)ϑ,1 ↪→ (E0, E1)ϑ,rϑ

.
= W σϑ

rϑ
(Ω) ↪→ E ,

since, by making σ1 slightly smaller and σ0 slightly bigger, if necessary, we
can suppose that W

σj
rj (Ω) = B

σj
rj ,rj (Ω) for j = 0, 1.

For simplicity, we presupposed throughout that X be smooth. However,
everything remains valid if we drop this hypothesis and assume instead that
rX possesses a coretraction with the properties stated in Theorem 4.1. This
is known to be the case for a much wider class of subdomains of Rn. We do
not go into detail but refer to [Ama99]. The same observation applies to Ω,
of course.
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Theory, Birkhäuser, Basel, 1995.

[Ama97] H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and
applications, Math. Nachr., 186 (1997), 5–56.

[Ama99] H. Amann, Linear and Quasilinear Parabolic Problems, Volume II: Function
Spaces and Linear Differential Operators, 1999. In preparation.
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