ADDITIVE SELECTIONS OF (α, β)-SUBADDITIVE SET VALUED MAPS

Dorian Popa

Technical University, Dept. Mathematics

> Abstract. It is proved that an (α, β)-subadditive set valued map with close, convex and equibounded values in a Banach space has exactly one additive selection if α, β are positive numbers and $\alpha+\beta \neq 1$.

The study of subadditive set valued maps (s.v. maps) is related to the classical Hyers-Ulam stability problem for the Cauchy functional equation. This problem is cf.[1] and [4] the next one:

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a measurable solution of the inequality

$$
\begin{equation*}
|f(x+y)-f(x)-f(y)|<\varepsilon \tag{0.1}
\end{equation*}
$$

where $\varepsilon>0$ then there exists a linear function $a(x)=m x, m \in \mathbb{R}$, such that $|f(x)-a(x)|<\varepsilon$ for every $x \in \mathbb{R}$.

The inequality (1) can be written on the form

$$
f(x+y)-f(x)-f(y) \in B(0, \varepsilon)
$$

where $B(0, \varepsilon)$ is the ball with centre 0 and radius ε.
Hence we have

$$
f(x+y)+B(0, \varepsilon) \subset f(x)+B(0, \varepsilon)+f(y)+B(0, \varepsilon)
$$

and denoting by $F(x)=f(x)+B(0, \varepsilon), x \in \mathbb{R}$, we get

$$
\begin{equation*}
F(x+y) \subseteq F(x)+F(y), \quad x, y \in \mathbb{R} \tag{0.2}
\end{equation*}
$$

and

$$
a(x) \in F(x), \quad x \in \mathbb{R},
$$

which means that the s.v. map F has the additive selection a.
2000 Mathematics Subject Classification. (1991): 28B20, 54C65.
Key words and phrases. set valued map, subadditive, selection.

Now one may ask in what conditions a subadditive s.v. map (i.e. a s.v. map that satisfies relation (2) admits an additive selection. An answer at this question is given in [1]. It is also proved that there exists subadditive s.v. maps that have not additive selection (see [1]).

In the sequel we shall generalize the notion of subadditive s.v. map and we shall give for such s.v. maps an existence and uniqueness theorem of an additive selection.

Let X be a real vector space. We shall denote by $\mathcal{P}(X)$ and $\mathcal{P}_{0}(X)$ the family of all subsets, respectively nonempty subsets of X. If Y is a real normed space the family of all close and convex subsets of Y will be denoted by $\operatorname{ccl}(Y)$.

If A, B are nonempty subsets of the real vector space X and λ, μ are real numbers we define

$$
\begin{align*}
& A+B=\{x \mid x=a+b, a \in A, b \in B\} \\
& \lambda A=\{x \mid x=\lambda a, a \in A\} \tag{0.3}
\end{align*}
$$

The next properties will be often used in what follows

$$
\begin{align*}
& \lambda(A+B)=\lambda A+\lambda B \\
& (\lambda+\mu) A \subseteq \lambda A+\mu A \tag{0.4}
\end{align*}
$$

If A is a convex set and $\lambda \mu \geq 0$ we have (cf.[3])

$$
\begin{equation*}
(\lambda+\mu) A=\lambda A+\mu A \tag{0.5}
\end{equation*}
$$

A set $A \subseteq X$ is said to be a cone if $K+K \subseteq K$ and $\lambda K \subseteq K$ for all $\lambda>0$. If the zero vector from X belongs to K we say that K is a zero cone.

Definition 1. Let X, Y be real vector spaces, $K \subseteq X$ a cone and $\alpha>0$, $\beta>0$. A s.v. map $F: K \rightarrow \mathcal{P}_{0}(Y)$ is called (α, β)-subadditive if

$$
\begin{equation*}
F(\alpha x+\beta y) \subseteq \alpha F(x)+\beta F(y) \tag{0.6}
\end{equation*}
$$

for all $x, y \in X$.
For $\alpha=\beta=1, F$ is called subadditive s.v. map.
Let us remark that there exists (α, β)-subadditive s.v. map that are not subadditive.

The s.v. map $F:[0,+\infty) \rightarrow \mathcal{P}_{0}(\mathbb{R})$ given by

$$
F(x)=[\sqrt{x},+\infty)
$$

is $\left(\frac{1}{2}, \frac{1}{2}\right)$-subadditive but is not subadditive.
For all $x, y \geq 0$ we have

$$
F\left(\frac{x+y}{2}\right)=\left[\sqrt{\frac{x+y}{2}},+\infty\right)
$$

and

$$
\frac{1}{2} F(x)+\frac{1}{2} F(y)=\left[\frac{\sqrt{x}+\sqrt{y}}{2},+\infty\right) .
$$

Taking account of

$$
\sqrt{\frac{x+y}{2}} \geq \frac{\sqrt{x}+\sqrt{y}}{2}
$$

it results that

$$
F\left(\frac{x+y}{2}\right) \subseteq \frac{F(x)+F(y)}{2}
$$

that means F is $\left(\frac{1}{2}, \frac{1}{2}\right)$-subadditive, but it is not subadditive because

$$
F(x+y)=[\sqrt{x+y},+\infty) \nsubseteq[\sqrt{x}+\sqrt{y}, \infty)=F(x)+F(y)
$$

for $x>0, y>0$.
In the following theorem we shall give a sufficient condition for an (α, β) subadditive multifunction to admit an additive selection. Let us recall that if $F: X \rightarrow \mathcal{P}(Y)$ is a s.v. map a function $f: X \rightarrow Y$ with the property $f(x) \in F(x)$ for all $x \in X$ is said to be a selection of F.

Theorem 2. Let X be a real vector space, $K \subseteq X$ a zero cone, Y a Banach space and $\alpha>0, \beta>0$.

If $F: K \rightarrow \operatorname{ccl}(Y)$ is (α, β)-subadditive s.v. map which satisfies the conditions:

1) $\alpha+\beta \neq 1$
2) $\sup \{\operatorname{diam} F(x): x \in X\}<+\infty$
then F admits exactly one additive selection.
Proof. Using (α, β)-subadditivity of F and convexity of its values we have for all $x \in K$

$$
\begin{equation*}
F((\alpha+\beta) x) \subseteq \alpha F(x)+\beta F(y)=(\alpha+\beta) F(x) \tag{0.7}
\end{equation*}
$$

and replacing x by $(\alpha+\beta)^{n} x, n \in \mathbb{N}$, in (7) we obtain

$$
F\left((\alpha+\beta)^{n+1} x\right) \subseteq(\alpha+\beta) F\left((\alpha+\beta)^{n} x\right)
$$

and

$$
\frac{F\left((\alpha+\beta)^{n+1} x\right)}{(\alpha+\beta)^{n+1}} \subseteq \frac{F\left((\alpha+\beta)^{n} x\right)}{(\alpha+\beta)^{n}}
$$

I. Let $\alpha+\beta>1$.

Denoting by $F_{n}(x)=\frac{F\left((\alpha+\beta)^{n} x\right)}{(\alpha+\beta)^{n}}, x \in K, n \in \mathbb{N}$, it results that $\left(F_{n}(x)\right)_{n \geq 0}$ is a decreasing sequence of closed subsets of the Banach space Y. We have also

$$
\operatorname{diam} F_{n}(x)=\frac{1}{(\alpha+\beta)^{n}} \operatorname{diam} F\left((\alpha+\beta)^{n} x\right)
$$

and taking account of the condition 2) we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{diam} F_{n}(x)=0 \tag{0.8}
\end{equation*}
$$

Using the Cantor theorem for the sequence $\left(F_{n}(x)\right)_{n \geq 0}$ the intersection $\bigcap_{n>0} F_{n}(x)$ is a singleton and we denote this intersection by $a(x)$ for all $x \in K$. Thus we obtain a function $a: K \rightarrow Y$ which is a selection of F because $a(x) \in F_{0}(x)=F(x)$ for all $x \in K$.

We shall show that a is additive. We have

$$
\begin{gathered}
F_{n}(\alpha x+\beta y)=\frac{F\left((\alpha+\beta)^{n}(\alpha x+\beta y)\right)}{(\alpha+\beta)^{n}}=\frac{F\left(\alpha(\alpha+\beta)^{n} x+\beta(\alpha+\beta)^{n} y\right)}{(\alpha+\beta)^{n}} \subseteq \\
\subseteq \frac{\alpha F\left((\alpha+\beta)^{n} x\right)+\beta F\left((\alpha+\beta)^{n} y\right)}{(\alpha+\beta)^{n}}=\alpha \frac{F\left((\alpha+\beta)^{n} x\right)}{(\alpha+\beta)^{n}}+\beta \frac{F\left((\alpha+\beta)^{n} y\right)}{(\alpha+\beta)^{n}}= \\
=\alpha F_{n}(x)+\beta F_{n}(y)
\end{gathered}
$$

for all $x, y \in K$ and $n \in \mathbb{N}$.
From the last relation it results that

$$
a(\alpha x+\beta y)=\bigcap_{n \geq 0} F_{n}(\alpha x+\beta y) \subseteq \bigcap_{n \geq 0}\left(\alpha F_{n}(x)+\beta F_{n}(y)\right)
$$

and

$$
\begin{aligned}
\| a(\alpha x+\beta y) & -(\alpha a(x)+\beta a(y)) \| \leq \operatorname{diam}\left(\alpha F_{n}(x)+\beta F_{n}(y)\right) \leq \\
& \leq \alpha \operatorname{diam} F_{n}(x)+\beta \operatorname{diam} F_{n}(y) \rightarrow 0,
\end{aligned}
$$

when $n \rightarrow \infty$, cf.(8).
So

$$
\begin{equation*}
a(\alpha x+\beta y)=\alpha a(x)+\beta a(y) \tag{0.9}
\end{equation*}
$$

for all $x, y \in K$.
Putting $x=y=0$ in (9) it results $a(0)=0$ and for $y=0$ and $x=0$ in (9) we obtain

$$
\begin{align*}
& a(\alpha x)=\alpha a(x) \tag{0.10}\\
& a(\beta y)=\beta a(y)
\end{align*}
$$

for all $x, y \in K$. Using (10) we have

$$
a(x+y)=a\left(\alpha \frac{x}{\alpha}+\beta \frac{y}{\beta}\right)=\alpha a\left(\frac{x}{\alpha}\right)+\beta a\left(\frac{y}{\beta}\right)=a(x)+a(y)
$$

for all $x, y \in K$, thus a is additive.
II. For $\alpha+\beta<1$, we replace x in (7) by $\frac{x}{(\alpha+\beta)^{n+1}}, n \in \mathbb{N}$, and we obtain multiplying this relation by $(\alpha+\beta)^{n}$

$$
\begin{equation*}
(\alpha+\beta)^{n} F\left(\frac{x}{(\alpha+\beta)^{n}}\right) \subseteq(\alpha+\beta)^{n+1} F\left(\frac{x}{(\alpha+\beta)^{n+1}}\right) \tag{0.11}
\end{equation*}
$$

The sequence $\left(F_{n}^{\prime}(x)\right)_{n \geq 0}$,

$$
F_{n}^{\prime}(x)=(\alpha+\beta)^{n} F\left(\frac{x}{(\alpha+\beta)^{n}}\right)
$$

is increasing and it follows that the sequence of positive numbers $\left(\operatorname{diam} F_{n}^{\prime}(x)\right)_{n \geq 0}$ is increasing too. We have

$$
\operatorname{diam} F_{n}^{\prime}(x)=(\alpha+\beta)^{n} \operatorname{diam} F\left(\frac{x}{(\alpha+\beta)^{n}}\right)
$$

and

$$
\lim _{n \rightarrow \infty} \operatorname{diam} F_{n}^{\prime}(x)=0
$$

hence $F_{n}^{\prime}(x)$ is single valued for all $x \in K$. The s.v. map F is single valued

$$
F(\alpha x+\beta y)=\alpha F(x)+\beta F(y)
$$

for all $x, y \in K$, and using the same methods as in case I, we obtain the additivity of F. We conclude that F is its own selection.

We have proved the existence of an additive selection of F and let us prove the uniqueness.

Suppose that F has two additive selection $a_{1}, a_{2}: K \rightarrow Y$. We have

$$
n a_{i}(x)=a_{i}(n x) \in F(n x)
$$

for all $n \in \mathbb{N}, x \in K, 1 \leq i \leq 2$. We have

$$
n\left\|a_{1}(x)-a_{2}(x)\right\|=\left\|n a_{1}(x)-n a_{2}(x)\right\|=\left\|a_{1}(n x)-a_{2}(n x)\right\| \leq \operatorname{diam} F(n x)
$$

for all $x \in K, n \in \mathbb{N}$, and taking account of the condition 2) from Theorem 1 , it results $a_{1}(x)=a_{2}(x)$ for all $x \in K$.

Corollary 3. ([1]). Let X be a real vector space, $K \subset X$ a cone with zero and Y a Banach space. If $F: K \rightarrow c c l(Y)$ is a subadditive s.v. map with

$$
\sup \{\operatorname{diam} F(x): x \in K\}<+\infty
$$

then F admits exactly one additive selection.
Proof. We take $\alpha=\beta=1$ in Theorem 1.
Corollary 4. Let X be a real vector space, $K \subseteq X$ a cone with zero, Y a normed space. If $F: K \rightarrow \mathcal{P}_{0}(Y)$ is (α, β)-subadditive with $\alpha+\beta<1$ and convex values and

$$
\sup \{\operatorname{diam} F(x): x \in K\}<+\infty
$$

then F is single valued and additive.
Proof. It results from the proof of Theorem 1, part II.

REmark 5. There exists (α, β)-subadditive s.v. maps with $\alpha+\beta=1$, which satisfies the conditions of Theorem 1 and have not additive selection.

Concave s.v. map are (α, β)-subadditive s.v. maps with $\alpha+\beta=1$. It is known that if $f, g:[0, \infty) \rightarrow \mathbb{R}$ are two functions such that f is concave and g is convex and $f(x) \leq g(x)$, for each $x \in \mathbb{R}$ then the s.v. map $F: \mathbb{R} \rightarrow \mathcal{P}_{0}(\mathbb{R})$, $F(x)=[f(x), g(x)]$ is concave (see [3]). Using this result it follows that

$$
F(x)=\left[\frac{x}{x+1}, 1\right], \quad x \in[0, \infty)
$$

is concave without additive selection, because if $a: \mathbb{R} \rightarrow \mathbb{R}$ is an additive selection of F we must have $a(x)=m x$ for each $x \in[0,+\infty) \cap \mathbb{Q}(m \in \mathbb{R})$ and

$$
\frac{x}{x+1} \leq m x \leq 1, \forall x \in[0,+\infty) \cap \mathbb{Q}
$$

The last inequality is impossible because taking the limit it results $\lim _{x \rightarrow \infty} m x=1$.

References

[1] Gajda Z., Ger R., Subadditive multifunction and Hyers-Ulam stability, Numerical Mathematics, Vol.80, 1987, Birkhäuser Verlag Basel.
[2] Kuczma M., An introduction to the theory of functional equations and Jensen inequality, PWN Universitet Slaski, Warszwa-Krakow-Katovice, 1985.
[3] Nikodem K., K-convex and K-concave set valued functions, Zeszyty Naukowe Nr.559, Lodz 1989.
[4] Smajdor W., Subadditive set valued functions, Glasnik Matematički, Vol.21(41), 1986, No.2, 281-291.

Technical University,
Dept. Mathematics
Str. Emil Isac nr. 15
3400 Cluj-Napoca, Romania
Received: 21.05.1998.

