brought to you by DCORE

GLASNIK MATEMATIČKI Vol. 37(57)(2002), 165 – 175

# NEW NORMALITY AXIOMS AND DECOMPOSITIONS OF NORMALITY

J. K. KOHLI AND A. K. DAS University of Delhi, India

ABSTRACT. Generalizations of normality, called (weakly) (functionally)  $\theta$ -normal spaces, are introduced and studied. This leads to decompositions of normality. It turns out that every paracompact space is  $\theta$ -normal. Moreover, every Lindelöf space as well as every almost compact space is weakly  $\theta$ -normal. Preservation of  $\theta$ -normality and its variants under mappings is studied. This in turn strengthens several known results pertaining to normality.

## 1. INTRODUCTION

In this paper we introduce four generalizations of normality. All four of them coincide with normality in the class of  $\theta$ -regular spaces (see Definition 3.9) while two of them characterize normality in Hausdorff spaces. Furthermore all four of them serve as a necessary ingredient towards a decomposition of normality.

Throughout the present paper no separation axioms are assumed unless explicitly stated otherwise. For example, we do not assume a paracompact space to be Hausdorff or regular. Thus, in particular, every pseudometrizable space as well as every compact space is paracompact.

2. Basic definitions and preliminaries

DEFINITION 2.1. [10] Let X be a topological space and let  $A \subset X$ . A point  $x \in X$  is in  $\theta$ -closure of A if every closed neighbourhood of x intersects A. The  $\theta$ -closure of A is denoted by  $cl_{\theta}A$ . The set A is called  $\theta$ -closed if  $A = cl_{\theta}A$ .

Key words and phrases.  $\theta$ -closed set,  $\theta$ -open set,  $\theta$ -normal space,  $\theta$ -regular space, almost compact space,  $\theta$ -continuous function.



<sup>2000</sup> Mathematics Subject Classification. 54D10, 54D15, 54D20, 54D30.

The complement of a  $\theta$ -closed set will be referred to as a  $\theta$ -open set.

PROPOSITION 2.2. For a topological space X the following statements are equivalent.

- (a) X is Hausdorff.
- (b) Every compact subset of X is  $\theta$ -closed.
- (c) Every singleton in X is  $\theta$ -closed.

REMARK 2.3. The above result is due to Dickman and Porter (see [2, 1.2] and [3, 2.3]).

LEMMA 2.4. [3, 2.4] A topological space X is regular if and only if every closed set in X is  $\theta$ -closed.

Next we quote the following lemma which is utilized in [7] and is fairly immediate in view of Definition 2.1

LEMMA 2.5. [7] A subset A of a topological space X is  $\theta$ -open if and only if for each  $x \in A$ , there is an open set U such that  $x \in U \subset \overline{U} \subset A$ .

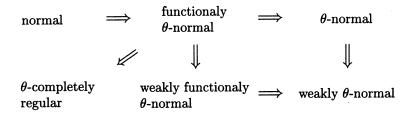
### 3. $\theta$ -Normal Spaces And Their Variants

DEFINITION 3.1. A topological space X is said to be

- (i)  $\theta$ -normal if every pair of disjoint closed sets one of which is  $\theta$ -closed are contained in disjoint open sets.
- (ii) functionally θ-normal if for every pair of disjoint closed sets A and B one of which is θ-closed there exists a continuous function f : X → [0,1] such that f(A) = 0 and f(B) = 1.
- (iii) Weakly  $\theta$ -normal if every pair of disjoint  $\theta$ -closed sets are contained in disjoint open sets; and
- (iv) Weakly functionally  $\theta$ -normal if for every pair of disjoint  $\theta$ -closed sets A and B there exists a continuous function  $f: X \longrightarrow [0,1]$  such that f(A) = 0 and f(B) = 1.

DEFINITION 3.2. [8] A topological space X is said to be  $\theta$ -completely regular if for every  $\theta$ -closed set F in X and a point  $x \notin F$  there is a continuous function  $f: X \longrightarrow [0, 1]$  such that f(x) = 0 and f(F) = 1.

In view of Lemma 2.4 it is immediate that in the class of regular spaces all the four variants of  $\theta$ -normality in Definition 3.1 coincide with normality. Moreover, the following implications are immediate from the definitions.



None of the above implications is reversible (see Examples 3.6, 3.7, 3.8 and [6, Example 3.4]). Moreover, every Hausdorff weakly functionally  $\theta$ -normal space is  $\theta$ -completely regular.

THEOREM 3.3. For a topological space X, the following statements are equivalent.

- (a) X is  $\theta$ -normal.
- (b) For every  $\theta$ -closed set A and every open set U containing A there exists an open set V such that  $A \subset V \subset \overline{V} \subset U$ .
- (c) For every closed set A and every  $\theta$ -open set U containing A there exists an open set V such that  $A \subset V \subset \overline{V} \subset U$ .
- (d) For every pair of disjoint closed sets A and B one of which is  $\theta$ -closed there exist open sets U and V such that  $A \subset U$ ,  $B \subset V$  and  $\overline{U} \cap V = \emptyset$ .

PROOF. To prove the assertion (a)  $\Rightarrow$  (b), let X be a  $\theta$ -normal space and let U be an open set containing a  $\theta$ -closed set A. Now A is a  $\theta$ -closed set which is disjoint from the closed set X - U. By  $\theta$ -normality of X there are disjoint open sets V and W containing A and X - U, respectively. Then  $A \subset V \subset X - W \subset U$ , since X - W is closed,  $A \subset V \subset \overline{V} \subset U$ .

To prove the implication (b)  $\Rightarrow$  (c), let U be a  $\theta$ -open set containing a closed set A. Then X - A is an open set containing the  $\theta$ -closed set X - U. So by hypothesis there exists an open set W such that  $X - U \subset W \subset \overline{W} \subset X - A$ . Let  $V = X - \overline{W}$ . Then  $A \subset V \subset X - W \subset U$ . Since X - W is closed,  $A \subset V \subset \overline{V} \subset U$ .

To prove (c)  $\Rightarrow$  (d), let A be a closed set disjoint from a  $\theta$ -closed set B. Then  $A \subset X - B$  and X - B is  $\theta$ -open. By hypothesis there exists an open set U such that  $A \subset U \subset \overline{U} \subset X - B$ . Again, by hypothesis there exists an open set W such that  $\overline{U} \subset W \subset \overline{W} \subset X - B$ . Let  $V = X - \overline{W}$ . Then U and V are open sets containing A and B, respectively and have disjoint closures. The assertion (d)  $\Rightarrow$  (a) is obvious.

The proof of the following characterization of weakly  $\theta$ -normal spaces is similar to that of Theorem 3.3 and hence is omitted.

THEOREM 3.4. A topological space X is weakly  $\theta$ -normal if and only if for every  $\theta$ -closed set A and a  $\theta$ -open set U containing A there is an open set V such that  $A \subset V \subset \overline{V} \subset U$ . For a characterization of functionally  $\theta$ -normal spaces analogous to Urysohn's lemma (see [6]), and for a similar characterization of weakly functionally  $\theta$ -normal spaces and their relationships with the existence of partition of unity see [7].

The following result shows that in the class of Hausdorff spaces the notions of normality and (functional)  $\theta$ -normality coincide.

THEOREM 3.5. For a Hausdorff space X, the following statements are equivalent.

- (a) X is normal.
- (b) X is functionally  $\theta$ -normal.

(c) X is  $\theta$ -normal.

PROOF. The implications (a)  $\Rightarrow$  (b)  $\Rightarrow$  (c) are obvious. To prove (c)  $\Rightarrow$  (a), let X be a  $\theta$ -normal Hausdorff space. By Proposition 2.2 every singleton in X is  $\theta$ -closed. So by  $\theta$ -normality of X every closed set in X and a point outside it are contained in disjoint open sets. Thus X is regular and so by Lemma 2.4 every closed set in X is  $\theta$ -closed. Consequently, every pair of disjoint closed sets in X are separated by disjoint open sets.

EXAMPLE 3.6. A Hausdorff veakly functionally  $\theta$ -normal space which is not  $\theta$ -normal. Let X be the real line with every point having neighbourhoods as in the usual topology with the exception of 0. A basic neighbourhood of 0 is of the form  $(-\varepsilon, \varepsilon) - K$ , where  $\varepsilon > O$  and  $K = \{\frac{1}{n} : n \in \mathbb{N}\}$ . It is easily verified that the space X has the desired properties.

The co-finite topology on an infinite set as well as the co-countable topology on an uncountable set is functionally  $\theta$ -normal but not normal. Moreover, although every finite topological space is functionally  $\theta$ -normal, finite spaces need not be normal.

EXAMPLE 3.7. A finite functionally  $\theta$ -normal space which is not normal. Let  $X = \{a, b, c, d\}$ . Let  $\mathcal{V}$  be the topology on X generated by taking  $\mathcal{S} = \{\{a, b\}, \{b, c\}, \{d\}\}$  as a subbase. Then  $\{d\}$  and  $\{a, b, c\}$  are the only  $\theta$ -closed sets in X. Define function  $f : X \longrightarrow [0, 1]$  by taking f(d) = 1 and f(x) = 0 for  $x \neq d$ . Then f is a continuous function and separates every pair of disjoint closed sets if one of them is  $\theta$ -closed. However x is not normal as the disjoint closed sets  $\{a\}$  and  $\{c\}$  can not be separated by disjoint open sets.

EXAMPLE 3.8. A weakly  $\theta$ -normal space which is not weakly functionally  $\theta$ -normal. Let X denote the interior  $S^0$  of the unit square S in the plane together with the points (0,0) and (1,0), i. e.  $X = S^0 \cup \{(0,0), (1,0)\}$ . Every point in  $S^0$  has the usual Euclidean neighbourhoods. The points (0,0) and (1,0) have neighbourhoods of the form  $U_n$  and  $V_n$  respectively, where

$$U_n = \{(0,0)\} \cup \left\{ (x,y) : 0 < x < \frac{1}{2}, \ 0 < y < \frac{1}{n} \right\}$$

and

$$V_n = \{(1,0)\} \cup \left\{ (x,y) : \frac{1}{2} < x < 1, \ 0 < y < \frac{1}{n} \right\}.$$

The space X is weakly  $\theta$ -normal, since every pair of disjoint  $\theta$ -closed sets are separated by disjoint open sets. However, the  $\theta$ -closed sets  $\{(0,0)\}$  and  $\{(1,0)\}$  do not have disjoint closed neighbourhoods and hence cannot be functionally separated.

The space of Example 3.6 is a Hausdorff weakly functionally  $\theta$ -normal space which fails to be normal. This motivates the search for an appropriate class of spaces (besides regular spaces) in which the notions of normality and weak (functional)  $\theta$ -normality coincide. The answer is enfolded in the concept of a  $\theta$ -regular space.

DEFINITION 3.9. A topological space X is said to be  $\theta$ -regular if for each closed set F and each open set U containing F, there exists a  $\theta$ -open set V such that  $F \subset V \subset U$ .

In view of Lemma 2.4 it follows that every regular space is  $\theta$ -regular. The two-point Sierpinski space [9, p. 44] is a  $\theta$ -regular space which is not regular. Moreover, by Lemma 2.5 it follows that a  $T_1$ -space is regular if and only if it is  $\theta$ -regular.

In general a normal space need not be regular. However, the following holds.

PROPOSITION 3.10. Every normal space is  $\theta$ -regular.

PROOF. Let A be a closed set and U be an open set containing A. Let B = X - U. Then A and B are disjoint closed sets in X. By Urysohn's lemma there exists a continuous function  $f: X \longrightarrow [0,1]$  such that f(A) = 0 and f(B) = 1. Let  $V = f^{-1}[0,1/2)$  and  $W = f^{-1}(1/2,1]$ . Then  $A \subset V \subset X - W \subset U$ . We claim that V is a  $\theta$ -open set. Let  $x \in V$ . Then  $f(x) \in [0,1/2)$ . So there is a closed neighbourhood N of f(x) contained in [0,1/2). Let  $U_x = \operatorname{int} f^{-1}(N)$ . Then  $x \in U_x \subset \overline{U}_x \subset f^{-1}(N) \subset V$ . By Lemma 2.5, V is  $\theta$ -open.

The space of Example 3.7 is a functionally  $\theta$ -normal space which fails to be  $\theta$ -regular. The following Theorem is central to the paper, since it provides a decomposition of normality in terms of  $\theta$ -regularity and variants of  $\theta$ -normality.

THEOREM 3.11. Let X be a  $\theta$ -regular space. Then the following statements are equivalent.

- (a) X is normal.
- (b) X is functionally  $\theta$ -normal.
- (c) X is  $\theta$ -normal.

(d) X is weakly functionally  $\theta$ -normal.

(e) X is weakly  $\theta$ -normal.

PROOF. The implications (a)  $\Rightarrow$  (b)  $\Rightarrow$  (d)  $\Rightarrow$  (e) are immediate. To prove (e)  $\Rightarrow$  (c), let A and B be any two disjoint closed subsets of X such that one of them, say B, is  $\theta$ -closed. Then  $B \subset X - A$  and so by  $\theta$ -regularity of X there is a  $\theta$ -open set W such that  $B \subset W \subset X - A$ . Since X is weakly  $\theta$ -normal, by Theorem 3.4 there exists an open set V such that  $B \subset V \subset \overline{V} \subset W \subset X - A$ . Clearly  $U = (X - \overline{V})$  and V are disjoint open sets containing A and B respectively.

Finally to show that  $(c) \Rightarrow (a)$ , let E and F be any two disjoint closed subsets of X. Since X is  $\theta$ -regular, there is a  $\theta$ -open set W such that  $E \subset W \subset X - F$ . Then X - W is a  $\theta$ -closed set containing the closed set F and is disjoint from E. By  $\theta$ -normality of X there are disjoint open sets U and V containing E and X - W, respectively and so E and F, respectively.

A topological space X is said to be almost compact [1] if for every open cover  $\mathcal{U}$  of X there is a finite subcollection  $\{U_1, \ldots, U_n\}$  of  $\mathcal{U}$  such that  $X = \bigcup_{i=1}^n \overline{U}_i$ . A Hausdorff almost compact space is called H-closed.

Dickman and Porter showed that every H-closed space is weakly  $\theta$ -normal (see [2, 2.4]). This result was significantly improved by Espelie and Joseph [5]. In particular, it is immediate from Theorem 1 of [5] that every almost compact space is weakly  $\theta$ -normal.

Unlike normality,  $\theta$ -normality is enjoyed by every paracompact space and hence by every compact space.

THEOREM 3.12. A paracompact space is  $\theta$ -normal.

PROOF. Let A and B be disjoint closed sets such that one of them, say B, is  $\theta$ -closed. Then  $A \subset X - B$  and X - B is  $\theta$ -open so for each  $a \in A$ , there is an open set  $U_a$  such that  $a \in U_a \subset \overline{U}_a \subset X - B$ . Then the collection  $\mathcal{U} = \{U_a : a \in A\} \cup \{X - A\}$  is an open covering of X. By paracompactness of X, let  $\mathcal{V}$  be a locally finite open refinement of  $\mathcal{U}$ . Let  $\mathcal{D}$  denote the subcollection of  $\mathcal{V}$  consisting of those members of  $\mathcal{V}$  which intersects A. Then  $\mathcal{D}$  covers A. Furthermore, if  $D \in \mathcal{D}$ , then  $\overline{D}$  is disjoint from B and as D intersects A, it lies in some  $U_{a'}$  whose closure is disjoint from B.

Let  $V = \bigcup \{D : D \in D\}$ . Then V is an open set in X containing A. Since  $\mathcal{D}$  is locally finite;  $\overline{V} = \bigcup \{\overline{D} : D \in \mathcal{D}\}$  and  $\overline{V}$  is disjoint from B. Thus V and  $(X - \overline{V})$  are disjoint open sets containing A and B respectively. Hence X is  $\theta$ -normal.

COROLLARY 3.13. A paracompact  $\theta$ -regular space is normal.

PROOF. This is immediate in view of Theorems 3.11 and 3.12.

COROLLARY 3.14. A Hausdorff space is compact if and only if it is almost compact and  $\theta$ -normal.

PROOF. Necessity is immediate in view of Theorem 3.12 and sufficiency is an easy consequence of Theorem 3.5 and the fact that every regular almost compact space is compact [1].  $\Box$ 

REMARK 3.15. In a paracompact space any two sets which are contained in disjoint closed sets one of which is  $\theta$ -closed are separated by disjoint open sets.

#### THEOREM 3.16. A Lindelöf space is weakly $\theta$ -normal.

PROOF. Let X be a Lindelöf space and let A and B be disjoint  $\theta$ -closed subsets of X. Then A and B are Lindelöf sets in X. Since B is  $\theta$ -closed, (X - B) is  $\theta$ -open and  $A \subset X - B$ . So for each point a of A there is an open set containing a whose closure does not intersect B and consequently the family  $\mathcal{U}$  of all open sets whose closure do not intersect B is a cover of A. Similarly, the family  $\mathcal{V}$  of all open sets whose closures do not intersect A is a cover of B. Then there is a sequence  $\{U_n : n \in \mathbb{Z}^+\}$  of members of  $\mathcal{U}$ which covers A and a sequence  $\{V_n : n \in \mathbb{Z}^+\}$  of members of  $\mathcal{V}$  which covers B. For each n, let  $U_n = U_n - \cup \{\overline{V}_k : k \leq n\}$  and  $V_{n'} = V_n - \cup \{\overline{U}_k : k \leq n\}$ . Each of the set  $U_{n'}$  and  $V_{n'}$  is open. The collection  $\{U_{u'} : n \in \mathbb{Z}^+\}$  covers A, because each  $x \in A$  belongs to  $U_n$  for some n, x belongs to none of the sets  $\overline{V}_k$ . Similarly, the collection  $\{V_{n'} : n \in \mathbb{Z}^+\}$  covers B. Finally, the open sets  $U = \bigcup_{n=1}^{\infty} U_{n'}$  and  $V = \bigcup_{n=1}^{\infty} V_{n'}$ , are disjoint and contain A and B, respectively.

REMARK 3.17. The above result is false with 'weak  $\theta$ -normal' replaced by ' $\theta$ - normal'. The space X of Example 3.6 is a Hausdorff second countable weakly functionally  $\theta$ -normal space which is not  $\theta$ -normal.

COROLLARY 3.18. A  $\theta$ -regular Lindelöf space is normal.

PROOF. This is immediate in view of Theorem 3.11 and 3.16.

REMARK 3.19. In a Lindelöf space any two sets which are contained in disjoint  $\theta$ -closed sets are separated by disjoint open sets.

THEOREM 3.20. A  $\theta$ -completely regular compact space is functionally  $\theta$ -normal.

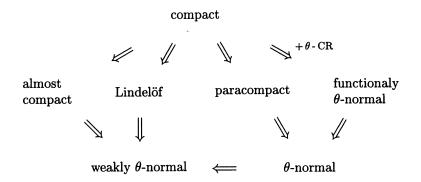
PROOF. Let X be a compact,  $\theta$ -completely regular space, let A be a closed set disjoint from a  $\theta$ -closed set B. Since A is closed, it is compact. Since X is  $\theta$ -completely regular, for every point  $x \in A$  there exists a continuous function  $f: X \longrightarrow [O,1]$  such that  $f_x(x) = 0$  and  $f_x(B) = 1$ . Let  $U_x = f_x^{-1}[0,1)$ . Now  $\mathcal{U} = \{U_x : x \in A\}$  is an open covering of A. Since A is compact, there

Π

Π

exists a finite subcollection  $\{U_{x_1}, \ldots, U_{x_n}\}$  which covers A. Define a function  $g: X \longrightarrow [0, 1l \text{ by } g(x) = 2 \max \left[\frac{1}{2}, \min\{f_{x_1}(x), \ldots, f_{x_n}(x)\}\right] - 1$ . Then it is easily verified that g is continuous, g(A) = 0 and g(B) = 1. Hence X is functionally  $\theta$ -normal.

The following diagram summarizes the relationships between compactness and generalized versions of normality discussed is this paper.



The example of open ordinal space [9, p. 68] a non-Lindelöf, nonparacompact, normal Hausdorff space which is not almost compact, shows that none of the above implications is reversible.

An open cover  $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$  of a space X is said to be shrinkable if there exists an open cover  $\mathcal{V} = \{v_{\alpha} : \alpha \in \Lambda\}$  of X such that  $\overline{V}_{\alpha} \subset U_{\alpha}$  for each  $\alpha \in \Lambda$ .

THEOREM 3.21. For a topological space X, consider the following statements.

- 1. X is  $\theta$ -normal.
- 2. Every point-finite  $\theta$ -open cover of X is shrinkable.
- 3. X is weakly- $\theta$ -normal.

Then  $(1) \Rightarrow (2) \Rightarrow (3)$ .

PROOF. To prove  $(1) \Rightarrow (2)$ , suppose X is a  $\theta$ -normal space and let  $\mathcal{U} = \{U_{\alpha} : a \in \Lambda\}$  be a point-finite  $\theta$ -open cover of X. Well order the set  $\Lambda$ . For convenience we may assume that  $\Lambda = \{1, 2, \ldots, \alpha, \ldots\}$ . Now construct  $\{V_{\alpha} : \alpha \in \Lambda\}$  by transfinite induction as follows: Let

$$F_1 = X - \bigcup_{\alpha > 1} U_\alpha.$$

Then  $F_1$  is a  $\theta$ -closed subset of X and  $F \subset U_1$ . By Theorem 3.3 there exists an open set  $V_1$  such that  $F_1 \subset V_1 \subset \overline{V}_1 \subset U_1$ . Next suppose that  $V_\beta$  has been

defined for each  $\beta < \alpha$  and let

$$F_{\alpha} = X - \left[ \left( \bigcup_{\beta < \alpha} V_{\beta} \right) \bigcup \left( \bigcup_{\gamma > \alpha} U_{\gamma} \right) \right].$$

Then  $F_{\alpha}$  is closed and contained in the  $\theta$ -open set  $U_{\alpha}$ . Again by Theorem 3.3 there is an open set  $V_{\alpha}$  such that

$$F_{\alpha} \subset V_{\alpha} \subset \overline{V}_{\alpha} \subset U_{\alpha}.$$

Now,  $\mathcal{V} = \{V_{\alpha} : \alpha \in \Lambda\}$  is a shrinking of  $\mathcal{U}$  provided it a covers X. Let  $x \in X$ . Then x belongs to only finitely many members of  $\mathcal{U}$ , say  $U_{\alpha_1}, \ldots, U_{\alpha_k}$ . Let  $\alpha = \max\{\alpha_1, \ldots, \alpha_k\}$ . Now x does not belongs to  $U_{\gamma}$  for  $\gamma > \alpha$  and hence if  $x \notin V_{\beta}$  for  $\beta < \alpha$ , then  $x \in F_{\alpha} \subset V_{\alpha}$ . Thus in any case  $x \in V_{\beta}$  for some  $\beta \leq \alpha$ . So  $\mathcal{V}$  is a cover of X and hence  $\mathcal{V}$  is a shrinking of  $\mathcal{U}$ .

To prove  $(2) \Rightarrow (3)$ , let A and B be disjoint  $\theta$ -closed subsets of X. Then  $\{X - A, X - B\}$  is a point-finite  $\theta$ -open cover of X. Let  $\{U, V\}$  be a shrinking of  $\{X - A, X - B\}$ . Then  $X - \overline{U}$  and  $X - \overline{V}$  are disjoint open sets containing A and B, respectively.

#### 4. Preservation Under Mappings

DEFINITION 4.1. A function  $f : X \longrightarrow Y$  is said to be  $\theta$ -continuous if for each  $x \in X$  and each open set V containing f(x) there is an open set Ucontaining x such that  $f(\overline{U}) \subset V$ .

The following lemma seems to be known and is an easy consequence of the fact that a function  $f: X \longrightarrow Y$  is  $\theta$ -continuous if and only if  $\operatorname{cl}_{\theta} f^{-1}(B) \subset f^{-1}(\operatorname{cl}_{\theta} B)$  for each  $B \subset Y$ .

LEMMA 4.2. Let  $f: X \longrightarrow Y$  be a  $\theta$ -continuous function and let K be a  $\theta$ -closed set in Y. Then  $f^{-1}(K)$  is  $\theta$ -closed in X.

#### THEOREM 4.3. A closed continuous image of a $\theta$ -normal space is $\theta$ -normal.

PROOF. Let  $f: X \longrightarrow Y$  be a continuous closed function from a  $\theta$ -normal space X onto Y. Let A and B be disjoint closed sets in Y such that B is  $\theta$ -closed. Then  $f^{-1}(A)$  and  $f^{-1}(B)$  are disjoint closed sets in X. In view of Lemma 4.2  $f^{-1}(B)$  is  $\theta$ -closed. Since X is  $\theta$ -normal, there exist disjoint open sets U and V containing  $f^{-1}(A)$  and  $f^{-1}(B)$ , respectively. It is easily verifed that Y - f(X - U) and Y - f(X - V) are disjoint open sets containing A and B, respectively.

COROLLARY 4.4. A Hausdorff continuous closed image of a  $\theta$ -normal space is normal.

**PROOF.** This is immediate in view of Theorems 3.5 and 4.3.

THEOREM 4.5. A  $\theta$ -continuous closed image of a weakly  $\theta$ -normal space is weakly  $\theta$ -normal.

The proof of Theorem 4.5 makes use of Lemma 4.2 and is similar to that of Theorem 4.3 and hence omitted.

COROLLARY 4.6. A  $\theta$ -regular  $\theta$ -continuous closed image of a weakly  $\theta$ normal space is normal.

**PROOF.** This result is immediate in view of Theorems 3.11 and 4.5.

Recall that a function  $f : X \longrightarrow Y$  which is both open and closed is referred to as a clopen function.

THEOREM 4.7. A continuous clopen image of a (weakly) functionally  $\theta$ -normal space is (weakly) functionally  $\theta$ -normal.

PROOF. Let  $f: X \longrightarrow Y$  be a continuous clopen function from a (weakly) functionally  $\theta$ -normal space X onto Y. Let A and B be disjoint closed subsets of Y such that one of them is  $\theta$ -closed. Suppose B is  $\theta$ -closed. Then  $f^{-1}(A)$  and  $f^{-1}(B)$  are disjoint closed sets in X and by Lemma 4.2  $f^{-1}(B)$  is  $\theta$ -closed. Since X is functionally  $\theta$ -normal, there exists a continuous function  $g: X \longrightarrow [0,1]$  such that  $g(f^{-1}(A)) = 0$  and  $g(f^{-1}(B)) = 1$ . Now, define a mapping  $h: Y \longrightarrow [0,1]$  by  $h(y) = \sup\{g(x): x \in f^{-1}(Y)\}$ . Since f is a clopen function, by [4, Exercise 16, p. 96] h is continuous and h(A) = 0 and h(B) = 1. A similar proof holds in case X is weakly functionally  $\theta$ -normal and in this case f is only required to be ' $\theta$ -continuous'.

ACKNOWLEDGEMENTS.

Authors would like to thank the referee for his helpful remarks.

#### References

- [1] A. Császár, General Topology, Adam Higler Ltd. Bristol, 1978.
- [2] R. F. Dickman, Jr. and J. R. Porter, θ-closed subsets of Hausdorff spaces, Pacific J. Math. 59 (1975), 407–415.
- [3] R. F. Dickman, Jr. and J.R. Porter, θ-perfect and θ-absolutely closed functions, Illinois J. Math. 21 (1977), 42–60.
- [4] James Dugundji, Topology, Allyn and Bacon Inc., Boston, 1966.
- [5] M. Solveig Espelie and James E. Joseph, Some properties of θ-closure, Can. J. Math. 33 (1981), 142–149.
- [6] J. K. Kohli and A. K. Das, Characterizations and a factorization of functionally  $\theta$ -normal spaces (preprint)
- [7] J. K. Kohli, A. K. Das and R. Kumar, Weakly functionally θ-normal spaces, θshrinking of covers and partition of unity, Note di Matematica 19 (1999), 293–297.
- [8] S. Sinharoy and S. Bandopadhyay, On θ-completely regular spaces and locally θ-H closed spaces, Bull. Cal. Math. Soc. 87 (1995), 19–28.
- [9] L. A. Steen and J. A. Seebach, Jr., Counter examples in Topology, Springer Verlag, New York, 1978.

[10] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (2), (1968), 103–118.

Department of Mathematics Hindu College, University of Delhi Delhi - 110007, India

*E-mail*: akdas@du.ac.in

*Received*: 07.03.2000 *Revised*: 14.02.2001