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GENERAL HALF-INTEGRAL REDUCIBILITIES

Marko Tadić
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Abstract. The main aim of this paper is a presentation of a con-
struction of a large family of non-cuspidal irreducible square integrable
representations δ(∆1, . . . ,∆k, σ)τ of symplectic and odd-orthogonal p-adic
groups, starting from the cuspidal representations of the Levi subgroups.
The only information that we need about these irreducible cuspidal rep-
resentations are the generalized rank one reducibilities. We also get a
number of interesting facts about these square integrable representations.
In C. Mœglin and M. Tadić’s paper ”Construction of discrete series for
classical p-adic groups” (J. Amer. Math. Soc. 15 (2002), 715-786) is given
a general construction of all the irreducible square integrable representa-
tions of the classical p-adic groups modulo cuspidal data (under a natural
assumption). The construction of the family that we present in this pa-
per preceded the general construction. Although the general construction
gives a construction of all the square integrable representations of classical
p-adic groups, it is interesting to have also available this former construc-
tion. Namely, the construction that we present here is much more direct
than the general construction, and it gives a number of explicit informa-
tion about representations. These facts may be useful in further study of
the representations of the family that we construct in this paper. It is for
expecting that we shall deal a lot in the future with the representations
of this family, since this family includes all the generic irreducible square
integrable representations (for example). From the Shahidi’s conjecture
on existence of a generic representation in each L2 L-packet, would follow
that each L2 L-packet contains some of the representation from the family
whose construction we present in this paper.
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Introduction

The main aim of this paper is a presentation of a construction of a large
family of non-cuspidal irreducible square integrable representations δ(∆1, . . . ,
∆k, σ)τ of symplectic and odd-orthogonal p-adic groups, starting from the
cuspidal representations of the Levi subgroups. The only information that
we need about these irreducible cuspidal representations are the generalized
rank one reducibilities. We also get a number of interesting facts about these
square integrable representations. Some of the constructions and analysis of
representations in the paper may be of independent interest.

Classifying of irreducible square integrable representations is one of the
most basic steps in the development of the representation theory of reduc-
tive groups. In [MgT] are constructed all the irreducible square integrable
representations of the classical p-adic groups modulo cuspidal data (under a
natural assumption, which is proved in some cases and which is expected to
hold in general). Let us note that the construction of the family that we
present in this paper1 preceded the construction in [MgT] (by the way, the
construction that we present here played an important role in the development
of ideas of the construction in [MgT]; therefore this paper may be helpful in
understanding of [MgT]).

Although [MgT] gives a construction of all the square integrable represen-
tations of classical p-adic groups, it may be interesting to have also available
this former construction. Namely, the construction that we present here is
much more direct than in [MgT], and it gives a number of explicit informa-
tion about representations, which are not present in [MgT]. These facts may
be useful in further study of the representations of the family that we con-
struct in this paper. It is for expecting that we shall deal a lot in the future
with the representations of this family, since this family includes all the generic
irreducible square integrable representations (this fact is proved by G. Muić
in [Mi2]). Let us recall that the generic representations were in the last few
decades intensively studied for the purpose of the Langlands’ program. From
the Muić’s result and the Shahidi’s conjecture on existence of a generic rep-
resentation in each L2 L-packet, would follow that each L2 L-packet contains
some of the representation from the family whose construction we present in
this paper. This brings an additional interest for the family that we study in
this paper.

To describe our results, we shall first introduce some notation. Let F be
a local non-archimedean field. We shall assume char (F ) 6= 2. The modulus
character of F is denoted by | |F . Set ν = |det|F . Based on the fact that Levi
factor of a maximal parabolic subgroup of a general linear group is a product

1This paper, written in 1998, is essentially a revised version of the second part of [T7].
The ideas used in [T7] and here, are the same. The only difference is that formulations of
results and the proofs are written in a way which holds also for non-generic reducibilities.
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of two smaller general linear groups, using parabolic induction Bernstein and
Zelevinsky defined multiplication × among representations of general linear
groups (see 4.1 of [BZ], or the first section). Let C be the set of all equivalence
classes of irreducible cuspidal representations of all GL(p, F ), p ≥ 1. For
ρ ∈ C and n ≥ 0, the set [ρ, νnρ] = {ρ, νρ, . . . , νnρ} is called a segment in C.
The set of all such segments is denoted by S(C). For ∆ = [ρ, νnρ] ∈ S(C),
the representation νnρ × νn−1ρ × · · · × νρ × ρ contains a unique irreducible
square integrable subquotient, which we denote by δ(∆).

We fix one of the families Sp(m,F ) (m ≥ 0) or SO(2m+1, F ) (m ≥ 0) of
classical groups. The group of rank m from the fixed family will be denoted
by Sm. The Levi factor of a maximal parabolic subgroup of Sm is isomorphic
to GL(k, F ) × Sm−k, with 1 ≤ k ≤ m. Now, as in the case of general linear
groups, using parabolic induction, one can introduce multiplication o between
representations of general linear groups and representations of the groups Sm.
The products are representations of the groups Sm (see the first section).

Let ρ ∈ C be unitarizable and σ an irreducible cuspidal representation of
Sq . Suppose that ναρo σ reduces for some real α. Look at the simplest case
when the induced representation is a representation of Sp(1, F ) = SL(2, F ) or
SO(3, F ) (then ρ is a character of F× and σ is trivial representation). Then
there exits

α0 ∈ {0, 1/2, 1}
such that να0ρ o σ reduces and ναρ o σ is irreducible for β ∈ R\{±α0} (in
general, we shall than say that (ρ, σ) satisfies (Cα0)). F. Shahidi has shown
that this is the case in general, if σ is generic and char (F ) = 0. We shall say
that ρ and σ have generic (or non-exceptional) reducibility if they satisfy the
above condition on reducibility (σ does not need to be generic). Otherwise,
we shall say that ρ and σ have exceptional (or non-generic) reducibility. It is
expected that in general for any reducibility α0 we have

α0 ∈ (1/2) Z

(this would follow from a F. Shahidi’s conjecture on existence of a generic
representation in each L2 L-packet).

The first exceptional reducibilities seems to be proved to exist in 1996, by
M. Reeder ([Re]) and by C. Mœglin ([Mg2]). It is a hard problem to determine
the reducibility point α0 for a general (ρ, σ). F. Shahidi has determined this
in a number of cases ([Sd2], Theorem 3.3, Propositions 3.5 and 3.10). Earlier,
J.-L. Waldspurger settled one such case ([W], Proposition 5.1). C. Mœglin
has computed in some cases these reducibilities, and she has also formulated
a conjecture about the generalized rank one reducibilities (see Remarks 3.2
for more comments).

Construction of square integrable representations is closely related to the
reducibility of the generalized principal series representations. Particularly
important for us is the reducibility of δ(∆)oσ (∆ ∈ S(C) and σ is irreducible
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cuspidal). In [T5] we have proved that the reducibility of δ(∆)oσ is equivalent
to

(RCS) ρo σ reduces for some ρ ∈ ∆,

if char (F ) = 0 and σ is generic (the proof in [T5] covers the case of general
half-integral reducibility, which could be the general case according to the
Shahidi’s conjecture that we have mentioned above).

The following theorem is one of the main results of the paper.

Theorem 1.1. Let ∆i = [ν−niρi, ν
miρi] ∈ S(C), i = 1, . . . , k. Suppose

that ρi are unitarizable, ni,mi ∈ (1/2)Z and ni < mi. Let σ be an irreducible
cuspidal representation of Sq. Suppose

1. ∆i ∩ ∆̃i and σ satisfy (RCS), or ∆i ∩ ∆̃i = ∅ and ν−niρi o σ reduces.

2. If ∆i∩∆j 6= ∅, for some 1 ≤ i < j ≤ k, then either ∆i∪∆̃i & ∆j ∩∆̃j ,

or ∆j ∪ ∆̃j & ∆i ∩ ∆̃i.

Let l = card{i; 1 ≤ i ≤ k and ∆i ∩ ∆̃i 6= ∅}. Then:

(i)
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

oσ decomposes into a sum ⊕2l

j=1τj of 2l inequivalent ir-

reducible (tempered) representations. Each representation
(∏k

i=1 δ(∆i\∆̃i)
)

o

τj has a unique irreducible subrepresentation, which we denote by

δ(∆1, . . . ,∆k, σ)τj .

The representations δ(∆1, . . . ,∆k, σ)τj are square integrable.

(ii) Each irreducible subrepresentation of
(∏k

i=1 δ(∆i)
)

o σ has multiplicity

one. There exist exactly 2l irreducible subrepresentations of
(∏k

i=1 δ(∆i)
)

oσ

and they are

{δ(∆1, . . . ,∆k, σ)τj ; j = 1, . . . , 2l}.
The approach in this paper is different from the one in [MgT]. The square

integrable representations in [MgT] are introduced inductively, while the def-
inition in the above theorem is much more direct. Further, in this paper we
get explicit upper bounds for Jacquet modules. This is the reason why we
expect that in the study of the generic representations, or for computing some
invariants, the approach of this paper could be useful.

The above theorem directly implies that the standard modules of the
groups Sm, induced by generic (essentially tempered) representations, do not
have injective Whittaker models in general (this is different from the case of
the general linear groups; see Proposition 3.2 of [JcSl]).

D. Vogan showed us in 1992 number of places where he expected square in-
tegrable representations for symplectic groups (having in mind the conjectural
local Langlands’ correspondence). This was one of the motivations to con-
struct such representations using the techniques developed in [T4]. Another
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motivation for our work was getting a parameterization of the non-unitary
dual (in particular, getting a parameterization which is convenient for the
work on the unitarizability problem).

Let us say a few words about the methods that we use in the construction.
In [T3] (Theorem 7.2), we have constructed the structure which enables us to
obtain, in a simple way, composition series of Jacquet modules of parabolically
induced representations. The fact that Levi factors of maximal parabolic sub-
groups of Sm are isomorphic to products of general linear groups and groups
Sq enables us to use the full power of the well understood representation
theory of general linear groups in the representation theory of Sp(n, F ) and
SO(2n+1, F ). In our construction of the representations δ(∆1, . . . ,∆k, σ)τ in
this paper, the basis is understanding of the representations δ(∆i, σ)τ ′ , which
were introduced in [T6].

Although our work in this paper deals with the representations of the
groups Sp(n, F ) and SO(2n+ 1, F ), this work will be not hard to extend to
other classical groups.

The first two sections of this paper introduce notation and recall some pre-
vious results that we use often in the paper. We recall of the representations
δ(∆i, σ)τ ′ in the third section. In the fourth section, we give the construction
of the representations δ(∆1, . . . ,∆k, σ)τj . The last section presents another
proof of a result of D. Goldberg. We include this proof, because it works also
in the positive characteristic.

We are thankful, among others, to A.-M. Aubert, C. Jantzen, D. Miličić,
C. Mœglin, G. Muić, S.J. Patterson, P.J. Sally, G. Savin, F. Shahidi and
S. Žampera for discussions of topics closely related to the topic of this paper.
C. Jantzen has read a previous version of this paper and he gave very helpful
comments (mathematical, stylistic and grammatical). Most of the ideas of
this paper arose during our stay in Göttingen as a guest of SFB 170. We
want to thank SFB 170 for their kind hospitality, stimulating atmosphere,
and the support.

1. Preliminaries

In this paper, we fix a local non-archimedean field F of characteristic
different from two. At the beginning of this section, we shall recall the stan-
dard notation from the representation theory of GL(n, F ) (see [Z1] for com-
plete definitions). The minimal parabolic subgroup of GL(n, F ) consisting
of all upper triangular matrices in GL(n, F ) is fixed. Parabolic subgroups
of GL(n, F ) which contain this minimal parabolic subgroup will be called
standard parabolic subgroups of GL(n, F ).

Let πi be an admissible representation of GL(ni, F ), for i = 1, 2. Then
π1 × π2 denotes the representation of GL(n1 + n2, F ) which is parabolically
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induced from the representation π1 ⊗π2 of a suitable standard parabolic sub-
group. Then, π1 × (π2 × π3) ∼= (π1 × π2) × π3.

If G is a reductive group over F , then there is always a natural order on
the Grothendieck group of the category of all admissible representations of
G of finite length. We shall denote by G̃ the set of all equivalence classes of
irreducible admissible representations of G. The set of unitarizable classes in
G̃ is denoted by Ĝ.

Let the Grothendieck group of the category of all admissible representa-
tions of GL(n, F ) of finite length be denoted by Rn. The canonical mapping
from the objects of the category to Rn is denoted by s.s. (the image forms a
cone of positive elements). Set R = ⊕

n≥0
Rn. One lifts the above multiplica-

tion to a multiplication × on R. The induced mapping R⊗R→ R is denoted
by m.

Take an admissible representation π of GL(n, F ) of finite length. Let
α = (n1, . . . , nk) be an ordered partition of n. Take the standard parabolic

subgroup P
GL

α of GL(n, F ) whose Levi factor M
GL

α is naturally isomorphic to

GL(n1, F ) × . . .× GL(nk, F ). The Jacquet module of π with respect to P
GL

α

is denoted by rα(π). Consider s.s. (rα(π)) ∈ Rn1 ⊗ . . .⊗Rnk
. Set

m∗(π) =

n∑

k=0

s.s.
(
r(k,n−k)(π)

)
∈ R⊗R.

One lifts m∗ Z-linearly to all of R.
For a matrix g, denote by tg (resp. τg) the transposed matrix of g (resp.

the transposed matrix of g with respect to the second diagonal). For a repre-
sentation π of GL(n, F ), τπ−1 denotes the representation g 7→ π(τ g−1). We
denote by π̃ the contragredient representation of π. We have τπ−1 ∼= π̃ for
irreducible π.

Let π be an irreducible admissible representation of GL(n, F ). If π is a
subquotient of ρ1 × · · · × ρk where ρi are irreducible cuspidal representations
of GL(ni, F ), then we shall call the multiset (ρ1, . . . , ρk) the support of π. We
write supp(π) = (ρ1, . . . , ρk). If π is of finite length such that any irreducible
subquotient π′ of π has supp(π′) = (ρ1, . . . , ρk), then we say that π has a
support and we shall write supp(π) = (ρ1, . . . , ρk). We extend this definition
to allow π ∈ Rn with π > 0 (there is a natural order on Rn’s).

We now introduce a similar notation for two series of classical groups (see
[T2] and [T3] for more details). The n × n matrix having 1’s on the second
diagonal and all other entries 0 will be denoted by Jn. The identity matrix is
denoted by In. For a 2n× 2n matrix S, set

×S =

[
0 −Jn

Jn 0

]
tS

[
0 Jn

−Jn 0

]
.
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The group Sp(n, F ) consists of all 2n × 2n matrices over F which satisfy
×S S = I2n. We define Sp(0, F ) to be the trivial group. Fix the minimal par-
abolic subgroup Pmin in Sp(n, F ) consisting of all upper triangular matrices
in the group.

We denote by SO(2n+1, F ) the group of all (2n+1)×(2n+1) matricesX
with entries in F which satisfy τXX = I2n+1 and detX=1. Fix the minimal
parabolic subgroup Pmin in SO(2n + 1, F ) consisting of all upper triangular
matrices in the group.

In the sequel, we denote by Sn either the group Sp(n, F ) or SO(2n+1, F ).
Parabolic subgroups which contain the minimal parabolic subgroup which we
have fixed will be called standard parabolic subgroups.

For pi × pi matrices Xi, i = 1, . . . , k, the quasi-diagonal (p1 + · · ·+ pk)×
(p1+· · ·+pk) matrix which has the matricesX1, · · · , Xk on the quasi-diagonal,
is denoted by q-diag (X1, · · · , Xk).

Let α = (n1, . . . , nk) be an ordered partition of some non-negative integer
m ≤ n into positive integers. If m = 0, then the only partition will be denoted
by (0). Set

Mα =
{
q-diag (g1, · · · , gk, h,

τg−1
k , · · · , τg−1

1 ); gi ∈ GL(ni, F ), h ∈ Sn−m

}

Then, Pα = MαPmin is a standard parabolic subgroup of Sn. The unipo-
tent radical of Pα is denoted by Nα. Since Mα is naturally isomorphic to
GL(n1, F ) × . . .× GL(nk, F )× Sn−m, we have a natural bijection

M̃α ↔ GL(n1, F )̃ × · · · ×GL(nk, F )̃ × S̃n−m.

Let π be an admissible representation of GL(n, F ) and let σ be an admis-
sible representation of Sm. We denote by π o σ the representation of Sn+m

which is parabolically induced from the representation π ⊗ σ of P(n). Here

π ⊗ σ maps q-diag(g, h,τ g−1) ∈ M(n) to π(g) ⊗ σ(h). For admissible repre-
sentations π, π1, π2 of general linear groups and for a similar representation
σ of Sm, the following hold:

π1 o (π2 o σ) ∼= (π1 × π2) o σ,(1.1)

(π o σ)∼ ∼= π̃ o σ̃.(1.2)

The Grothendieck group of the category of all admissible representations
of Sn of finite length is denoted by Rn(S). Set R(S) = ⊕

n≥0
Rn(S). We lift

the multiplication o to a multiplication o : R × R(S) → R(S) in the usual
way. In this way, R(S) becomes an R-module. Denote the contragredient
involution on R and R(S) by ∼. For π ∈ R and σ ∈ R(S), we have (in R(S))

π o σ = π̃ o σ.(1.3)

Let µ : R⊗R(S) → R(S) be the Z-bilinear mapping which satisfies µ(π⊗σ) =
s.s.(π o σ), for π ∈ R, σ ∈ R(S).
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Since we have natural orders on Grothendieck groups, there is a natural
order on R, R(S) and R⊗R(S).

Let σ be a smooth representation of Sn of finite-length and let α =
(n1, . . . , nk) be an ordered partition of 0 ≤ m ≤ n. The Jacquet module
of σ for Pα is denoted by sα(σ). We may consider s.s. (sα(σ)) ∈ Rn1 ⊗ · · · ⊗
Rnk

⊗ Rn−m(S). Define a Z-linear mapping µ∗ : R(S) → R ⊗ R(S) on the
basis of irreducible admissible representations by

µ∗(σ) =

n∑

k=0

s.s.
(
s(k)(σ)

)
.

Denote by s : R⊗R→ R⊗R the mapping s(
∑

i xi⊗yi) =
∑

i yi⊗xi. For
r1⊗r2 ∈ R⊗R and r⊗ t ∈ R⊗R(S) set (r1⊗r2)o(r⊗ t) = (r1×r)⊗(r2 o t).
Extend o Z-bilinearly to o : (R⊗R) × (R⊗R(S)) → R⊗R(S). Set

M∗ = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗.

Then,

µ∗(π o σ) = M∗(π) o µ∗(σ)(1.4)

for an admissible representation π of GL(n, F ) of finite length and a similar
representation σ of Sm.

Let π⊗σ be an admissible representation of GL(n, F )×Sm. We say that
π ⊗ σ has GL-support if π has support and if σ is an irreducible cuspidal
representation. Then, we write

supp
GL

(π ⊗ σ) = supp(π).

We extend this definition to allow π ⊗ σ ∈ Rn ⊗ Rm(S) with π > 0 and σ
irreducible cuspidal.

Suppose that τ is an irreducible admissible representation of Sm. Then,
there exist irreducible cuspidal representations ρi of GL(ni, F ), i = 1, . . . , k,
and an irreducible cuspidal representation σ of Sm−(n1+···+nk) such that τ is
a subquotient of ρ1 × · · · × ρk o σ. We define

depth
GL

(τ) = n1 + · · · + nk.

If τ is a an admissible representation of Sm of finite length such that
depthGL(τ ′) = d for any irreducible subquotient τ ′ of τ , then we say that
τ has a depth and we write depthGL(τ) = d. In a similar way, we define if
τ ∈ Rn(S), τ > 0, has a depth, and the depth. If an admissible representation
τ of finite length has a depth, then we define

s
GL

(τ) = s(depth
GL

(τ))(τ).

In a similar way, we define s
GL

(τ) for τ ∈ Rn(S), τ > 0, if τ has a depth.
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2. Square integrability, Langlands’ classification

An irreducible representation π of a reductive p-adic group G is called
essentially square integrable if there exists a continuous (not necessarily uni-
tary character) χ : G→ C× such that χπ is a square integrable representation
(i.e., χπ has a unitary central character, and for any matrix coefficient φ of
χπ, |φ| is a square integrable function on G modulo center).

The set of all equivalence classes of irreducible cuspidal representations
of all GL(p, F ), p ≥ 1, will be denoted by C. Let ρ ∈ C and let n be a non-
negative integer. The set [ρ, νnρ] = {ρ, νρ, ν2ρ, . . . , νnρ} is called a segment
in irreducible cuspidal representations of general linear groups, or a segment
in C. The set of all segments in C will be denoted by S(C). The representa-
tion νnρ × νn−1ρ × · · · × νρ × ρ has a unique irreducible subrepresentation
which we denote by δ([ρ, νnρ]). The representation δ([ρ, νnρ]) is an essentially
square integrable representation and ∆ 7→ δ(∆) is a bijection of S(C) onto
the set of all equivalence classes of irreducible essentially square integrable
representations of all GL(k, F ), k ≥ 0.

If n < 0, then we define [ρ, νnρ] to be the empty set ∅, and we take δ(∅)
to be 1 ∈ R. By Proposition 9.5 of [Z1] we have

m∗ (δ([ρ, νnρ])) =

n∑

k=−1

δ([νk+1ρ, νnρ]) ⊗ δ([ρ, νkρ]).(2.1)

This formula implies that

s (m∗ (δ([ρ, νnρ]))) =

n∑

k=−1

δ([ρ, νkρ]) ⊗ δ([νk+1ρ, νnρ]).

Assume that ρ ∈ C is a representation of GL(p, F ). We have

r(p)n+1 (δ([ρ, νnρ])) = νnρ⊗ νn−1ρ⊗ · · · ⊗ ρ,

where (p)n+1 denotes (p, p, . . . , p) ∈ Zn+1.
Let X be a set. We shall denote by M(X) the set of all finite multisets

in X (more details regarding this notation can be found on the page 169 of
[Z1]; see also [Z2]). The addition among multisets is defined by (x1, . . . , xk)+
(x′1, . . . , x

′
k′) = (x1, . . . , xk, x

′
1, . . . , x

′
k′ ). If a, b, c ∈ M(X) and a+ b = c, then

we shall also denote a by c− b.
For an irreducible essentially square integrable representation δ of

GL(m,F ), one can find a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable.
Set δu = ν−e(δ)δ. Then, δ = νe(δ)δu, where e(δ) ∈ R and δu is unitarizable.

We denote by D the set of all equivalence classes of the irreducible es-
sentially square integrable representations of all GL(n, F )’s with n ≥ 1.
Let d = (δ1, . . . , δk) ∈ M(D) where M(D) denotes the set of all finite
multisets in D. Take a permutation p of the set {1, . . . , k} such that
e(δp(1)) > e(δp(2)) · · · > e(δp(k)). The representation δp(1) × · · · × δp(k) has
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a unique irreducible quotient which we denote by L(d). Then d 7→ L(d) is
Langlands’ classification for general linear groups. We shall usually write
L(d) = L((δ1, . . . , δk)) simply as L(δ1, . . . , δk).

In this paper, we shall have several occasions to use the following well-
known fact proved by A.V. Zelevinsky (this fact follows from Theorem 7.1 of
[Z1] and Remark 5.3 of [Ro], using either Theorem 2.3 and Corollary 3.9 of [A],
or the fifth section of [ScSt]; see also [T1]). For two segments ∆′, ∆′′ ∈ S(C),
one says that they are linked if ∆′ ∪∆′′ ∈ S(C) and ∆′ ∪∆′′ 6∈ {∆′,∆′′}. Let
∆1, . . . ,∆k ∈ S(C). If there exist 1 ≤ i < j ≤ k such that ∆i and ∆j are
linked, then we shall write

(∆1,∆2, . . . ,∆i−1,∆i ∪ ∆j ,∆i+1, . . . ,∆j−1,∆i ∩ ∆j ,∆j+1, . . . ,∆k−1,∆k)

≺ (∆1,∆2, . . . ,∆k−1,∆k).

Now ≺ generates a partial order on S(C). Denote the partial order thus
obtained by ≤. Let ∆′

1, . . . ,∆
′
k′ ∈ S(C). Then L(δ(∆′

1), . . . , δ(∆
′
k′ )) is a

subquotient of δ(∆1)×· · ·×δ(∆k) if and only if (∆′
1, . . . ,∆

′
k′ ) ≤ (∆1, . . . ,∆k).

Suppose that (∆′
1, . . . ,∆

′
k′ ) ≤ (∆1, . . . ,∆k) and suppose that among all pairs

∆′
i, ∆′

j , 1 ≤ i 6= j ≤ k′, there do not exist linked segments. Then δ(∆′
1) ×

· · · × δ(∆′
k′ ) is irreducible and it has multiplicity one in δ(∆1) × · · · × δ(∆k).

Suppose that ∆i,∆
′
j ∈ S(C), 1 ≤ i ≤ k, 1 ≤ j ≤ k′. If ∆i is not

linked to any ∆′
j , for 1 ≤ i ≤ k, 1 ≤ j ≤ k′, then L(δ(∆1), . . . , δ(∆k)) ×

L(δ(∆′
1), . . . , δ(∆

′
k′ )) is irreducible and L(δ(∆1), . . . , δ(∆k)) × L(δ(∆′

1), . . . ,
δ(∆′

k′ )) = L(δ(∆1), . . . , δ(∆k), δ(∆′
1), . . . , δ(∆

′
k′)).

We recall the Casselman square integrability criterion in the case of Sn

(which is a special of Theorem 4.4.6 of [C]; see also the sixth section of [T2]).
Consider the standard inner product on Rn. Set

βi = (1, 1, . . . , 1︸ ︷︷ ︸
i times

, 0, 0, . . . , 0) ∈ Rn, 1 ≤ i ≤ n.

Let π be a non-cuspidal irreducible admissible representation of Sn. Take
α such that sα(π) has a cuspidal subquotient (sα(π) 6= 0). Write α =
(n1, . . . , n`) and denote n1 + · · · + n` = m. Take an irreducible subquotient
σ of sα and decompose σ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρ` ⊗ ρ, where ρi ∈ GL(ni, F )̃ ,

ρ ∈ S̃n−m. Define

e∗(σ) = (e(ρ1), . . . , e(ρ1)︸ ︷︷ ︸
n1 times

, . . . , e(ρ`), . . . , e(ρ`)︸ ︷︷ ︸
n` times

, 0, . . . , 0︸ ︷︷ ︸
n − m times

).

If π is square integrable, then

(e∗(σ), βn1) > 0, (e∗(σ), βn1+n2) > 0, · · · , (e∗(σ), βm) > 0.

Conversely, if all above inequalities hold for any α and σ as above, then π is
square integrable. If instead of > 0, the weaker condition ≥ 0 holds in all
the above relations, then π is tempered.
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3. Square integrable representations corresponding to single
segments

First, we shall recall the square integrable representations of the Steinberg
type (Proposition 3.1 of [T4]).

Proposition 3.1. Fix an irreducible unitarizable cuspidal representation
ρ of GL(p, F ) and a similar representation σ of Sq . Suppose that ναρ o σ
reduces for some α ∈ (1/2)Z, α > 0. Then ρ ∼= ρ̃. The representation
να+nρ × να+n−1ρ × · · · να+1ρ × ναρ o σ has a unique irreducible subrepre-
sentation which we denote by δ([ναρ, να+nρ], σ) (n ≥ 0). This irreducible
subrepresentation can be characterized as a unique irreducible subquotient π
of δ([ναρ, να+nρ])oσ which satisfies δ([ναρ, να+nρ])⊗σ ≤ sGL(π). We have
s(p)n+1(δ([ναρ, να+nρ], σ)) = να+nρ⊗ να+n−1ρ⊗ · · · ⊗ να+1ρ⊗ ναρ⊗σ (here

(p)n+1 = (p, p, . . . , p) ∈ Zn+1) and

µ∗ (δ([ναρ, να+nρ], σ)
)

=

n∑

k=−1

δ([να+k+1ρ, να+nρ]) ⊗ δ([ναρ, να+kρ], σ)

The representation δ([ναρ, να+nρ], σ) is square integrable and we have δ([ναρ,
να+nρ], σ)̃ ∼= δ([ναρ, να+nρ], σ̃).

In the above formula, we just take δ(∅, σ) to be σ. Note that the above
proposition holds without assumption α ∈ (1/2)Z.

We shall sometimes denote δ([ναρ, να+nρ], σ) also by δ([ναρ, να+nρ], σ)σ

(this notation is in the spirit of the notation for square integrable representa-
tions that we shall introduce in the following section).

Let ρ be an irreducible unitarizable cuspidal representation of GL(p, F )
and let σ be an irreducible cuspidal representation of Sq. Suppose that ναρoσ
reduces for some α ∈ R. If there exists α0 ≥ 0 such that

να0ρo σ reduces and νβρo σ is irreducible for β ∈ R, |β| 6= α0,(Cα0)

then we shall say that ρ and σ have reducibility at α0, or that they satisfy
(Cα0) (we follow the notation of Jantzen’s paper [Jn1]). If ρ and σ have
reducibility at α0, and σ is generic, then Theorem 8.1 of [Sd1] implies that

α0 ∈ {0, 1/2, 1}
(see also Theorem 3.3 of [Sd2]). In general, if ρ and σ satisfy (Cα0) with
α0 ∈ {0, 1/2, 1}, then we shall say that they have generic (or non-exceptional)
reducibility (σ does not need to be generic). Otherwise, we shall say that they
have exceptional (or non-generic) reducibility.

It is well-known that if ναρ o σ reduces for some α ∈ R, then ρ ∼= ρ̃
(as before, ρ and σ are irreducible unitarizable cuspidal representations of
GL(p, F ) and Sq , respectively).

An admissible representation ρ will be called selfdual if ρ ∼= ρ̃. If an
irreducible cuspidal representation is selfdual, then it is unitarizable.
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Remark 3.2. We shall not use the following facts in this paper (they
give some information about the role of the generic reducibilities among all
reducibilities). We shall denote by ρ a selfdual irreducible cuspidal represen-
tation of GL(p, F ) and by σ an irreducible cuspidal representation of Sq .
(i) For a given ρ and σ, the question of determining α0 is a hard one. The
case of ρ being a character and σ being the trivial representation, has been
known for a long time (this is just the question of reducibility of principal
series for SL(2, F ) and SO(3, F )). The first more general case was settled by
J.-L. Waldspurger (Proposition 5.1 of [W]). F. Shahidi made a big progress
in this problem in [Sd2] (Theorems 1.2 and 3.3, Proposition 3.5, Proposition
3.10, . . . ). Further results in this direction are obtained by C. Mœglin, G.
Muić, F. Murnaghan and J. Repka ([MrRp], Corollary 11.5), and M. Reeder
([Re]).
(ii) C. Mœglin has formulated a conjecture which describes α0 in terms of the
conjectural local Langlands correspondence.
(iii) C. Mœglin and M. Reeder have shown independently that exceptional re-
ducibilities can occur ([Mg2], [Re]). The existence of exceptional reducibilities
seems to be known from the summer of 1996.
(iv) The Mœglin’s conjecture would imply that exceptional reducibilities are
rare in the following sense. For a fixed irreducible cuspidal representation σ
of Sq , the Mœglin’s conjecture would imply that there exist at most finitely
many selfdual ρ ∈ C such that ρ and σ have exceptional reducibility. This
conjecture would also imply that there are infinitely many ρ ∈ C such that ρ
and σ have generic reducibility.
(v) From the Harish-Chandra and A. Silberger’s work, it follows that re-
ducibility of νβρo σ for some β ≥ 0, implies irreducibility of ναρ o σ for all
α ∈ R\{±β}. Therefore, (Cα0) is just the condition that να0ρo σ reduces.
(vi) We have mentioned that if ναρ o σ reduces for same α ∈ R, then ρ is
selfdual. The converse of this fact also holds: if ρ is selfdual, then ναρoσ re-
duces for some α ∈ R. The argument is the following: suppose that this is not
the case. The properties of the standard integral intertwining operators imply
that representations ναρoσ, α ∈ R, are unitarizable (they form a complemen-
tary series). Recall that the matrix coefficients of a unitarizable representation
are bounded. Further s.s.(s(p)(ν

αρ o σ)) = ναρ ⊗ σ + ν−αρ ⊗ σ. Now the
connection between the asymptotic of matrix coefficients of a representation
and Jacquet modules (see [C], Theorem 4.3.3), leads to a contradiction. One
can also get in this way an explicit upper bound for reducibility point α0 ≥ 0
corresponding to ρ and σ.
(vii) Conjecture 9.4 of [Sd1] would imply that (Cα0) can happen only for
α0 ∈ (1/2) Z (this is also contained in the C. Mœglin’s conjecture).

Now we shall recall of the representations defined in [T6].
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Theorem 3.3. Let ρ and σ be irreducible unitarizable cuspidal represen-
tations of GL(p, F ) and Sq respectively, and α ∈ (1/2) Z, α ≥ 0. Suppose that
ρ and σ have reducibility at α. Fix n,m ∈ (α+Z) satisfying α ≤ n < m. De-

note ∆ = [ν−nρ, νmρ]. Then the representation δ(∆∩ ∆̃)oσ decomposes into
a direct sum of two inequivalent irreducible representations τ1 and τ2. Each
representation δ(∆\∆̃) o τi contains a unique irreducible subrepresentation,
which we denote by

δ(∆, σ)τi .

The representation δ(∆, σ)τi can be characterized as a unique irreducible sub-

quotient π of δ(∆\∆̃) o τi which satisfies δ(∆)⊗ σ ≤ sGL(π). Each δ(∆, σ)τi

is a subrepresentation of δ(∆) o σ,

δ(∆) ⊗ σ ≤ sGL(δ(∆, σ)τi )

≤
α∑

i=−n

δ([νiρ, νmρ]) × δ([ν−i+1ρ, νnρ]) ⊗ σ
(3.1)

and δ(∆, σ)τi is square integrable.

Let δ(∆, σ)τ = δ([ν−nρ, νmρ], σ)τ be a representation defined either in
Proposition 3.1 or Theorem 3.3. Then in both cases hold

(3.2) sGL(δ([ν−nρ, νmρ], σ)τi) ≤
α∑

i=−n

δ([νiρ, νmρ]) × δ([ν−i+1ρ, νnρ]) ⊗ σ

≤
|n|∑

i=−n

δ([νiρ, νmρ]) × δ([ν−i+1ρ, νnρ]) ⊗ σ

(the above inequality is obvious in the case of n ≥ 0, while in the case n < 0
one checks it directly).

4. Square integrable representations corresponding to several
segments

For ∆ ∈ M(S(C)), set ∆̃ = {ρ̃ ∈ ∆; ρ ∈ ∆}. We shall say that ∆ is

selfdual if ∆ = ∆̃. We say that ∆ is balanced if e(δ(∆)) = 0. Clearly, a
selfdual segment is balanced.

Let X be a set. For a finite multiset x = (x1, . . . , xk) in X , we shall
denote by Set(x) = {x1, . . . , xk} the subset of X corresponding to x (this is
the set which one gets from the multiset x by forgetting the multiplicities of
elements which enter x). If one considers a finite multiset x in X as a function
x : X → {z ∈ Z; z ≥ 0} with finite support, then Set(x) is just the support of
the function x.

In the following proposition, we collect some facts about tempered repre-
sentations that we need in the construction of square integrable representa-
tions corresponding to several segments in irreducible cuspidal representations
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of general linear groups. In the case of char (F ) = 0, claim (i) of the following
proposition follows from Theorems 4.9, 6.4, 6.5 of [Go] and Proposition 2.3
of [H]. We present a different proof of (i) in the following section, in order to
have the claim (i) also proved for positive characteristic.

Proposition 4.1. Let σ be an irreducible cuspidal representation of Sq.
Let ∆1, . . . ,∆k ∈ S(C) be a sequence of different selfdual segments. Write
∆i = [ν−niρi, ν

niρi], i = 1, . . . , k, where ρi ∈ C, ni ∈ (1/2)Z, ni ≥ 0. Suppose
that (ρi, σ) has reducibility at αi ∈ (1/2) Z, αi ≥ 0 and δ(∆i) o σ reduces for
i = 1, . . . , k. Then,
(i) δ(∆1) × · · · × δ(∆k) o σ is a multiplicity one representation of length 2k.
(ii) The multiplicity of δ(∆1)×· · ·×δ(∆k)⊗σ in sGL (δ(∆1) × · · · × δ(∆k) o σ)
is 2k.
(iii) Let τ be an irreducible subrepresentation of δ(∆1) × · · · × δ(∆k) o σ.
Then, the multiplicity of δ(∆1) × · · · × δ(∆k) ⊗ σ in sGL(τ) is one.
(iv) Let τ be as in (iii). If π is any irreducible subquotient of sGL(τ) different
from δ(∆1) × · · · × δ(∆k) ⊗ σ, then

Set (suppGL(π)) ⊆ ∆1 ∪ · · · ∪ ∆k and suppGL(π) 6= ∆1 + · · · + ∆k.(4.1)

Remark 4.2. The condition in the above proposition that δ(∆i) o σ
reduces is equivalent to ναi ∈ ∆i (Theorem 13.2 of [T5]).

Recall that if ∆ is balanced, but not selfdual, then δ(∆)oσ is irreducible.

Proof. First we prove (ii). Let β = δ(∆1) × · · · × δ(∆k) ⊗ σ (clearly, β
is irreducible). Write

M∗
GL(δ([ν−niρi,ν

niρi])) =

=

ni+1∑

ki=−ni

δ([νkiρi, ν
niρi]) × δ([ν−ki+1ρi, ν

niρi]).
(4.2)

The above sum runs over ki ∈ ni + Z such that −ni ≤ ki ≤ ni + 1 (such
convention we shall also use in the sequel). Then, (1.4) implies

s.s.(sGL(δ(∆1) × · · · × δ(∆k) o σ)) =

= M∗
GL(δ(∆1)) × · · · ×M∗

GL(δ(∆k)) ⊗ σ.
(4.3)

Note that for ki = −ni or ni + 1, the term in the sum (4.2) is δ(∆i). There-
fore, multiplying these terms in (4.3), we get that the multiplicity of β in
sGL (δ(∆1) × · · · × δ(∆k) o σ) is at least 2k.

Now, we shall see that β can appear as a subquotient of sGL (δ(∆1) × · · ·×
δ(∆k) o σ) only in the above way. We shall discuss when β can be obtained
as a subquotient of the product in (4.3). Choose i1 such that ∆i1 6⊆ ∆i for
i ∈ {1, . . . , k}, i 6= i1 (this choice is possible since ∆i’s are mutually differ-
ent). If we want to get β in the product of the right hand side of (4.3),
then in the i1-place in the product, we must take a term in the sum (4.2)
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corresponding to −ni1 or ni1 + 1 (since ν−ni1 ρi1 is in suppGL(β), and be-
cause no other terms in the sum except these two can give ν−ni1 ρi1 in the
GL-support, nor can other terms in the product give ν−ni1 ρi1 in the GL-
support, thanks to the condition ∆i1 6⊆ ∆i for i 6= i1). This proves that
in the i1-th place β can come only from terms corresponding to k = −ni1

or ni1 + 1. Now, choose i2 ∈ {1, . . . , k}, i2 6= i1 such that ∆i2 6⊆ ∆i for
i ∈ {1, . . . , n}\{i1, i2}. Then, repeating the above type of argument with the
GL-support (and ν−n2ρn2), we obtain that we can get β in the product only if
in the i2-th place, we take a term corresponding to −ni2 or ni2+1 (one needs to
work with suppGL(β)−∆i1 , where − denotes subtraction between multisets).
Choosing i3, i4, . . . , ik in an analogous way and continuing with the above
type of argument, we obtain that β can appear only in the way that we have
described. Therefore, the multiplicity of β in sGL (δ(∆1) × · · · × δ(∆k) o σ)
is 2k. This proves (ii).

Theorems 4.9, 6.4, 6.5 of [Go] and Proposition 2.3 of [H] imply (i) when
char (F ) = 0. In the case of positive characteristic, (i) is proved in the fifth
section.

Claim (iii) follows from the fact that
(∏k

i=1 δ(∆i)
)
⊗σ must be a quotient

of sGL(τ) (which follows from Frobenius reciprocity and the unitarizability of
δ(∆1) × · · · × δ(∆k) o σ), using (i) and (ii).

It remains to prove (iv). The first claim in (iv) follows from (4.3) and (4.2).
Now, suppose π as in (iv) comes from a term β′ = τ ′1×· · ·×τ ′k on the right-hand
side of (4.3), with τ ′i an irreducible subquotient of M∗

GL(δ(∆i)). From the
above considerations, this can happen only if for some i′, τ ′i′ is a subquotient
of a term (in the expression (4.2) for M ∗

GL(δ(∆i))) with −ni′ < ki′ < ni′ + 1.
Denote (for above β′) the set of all such indexes i′ by X (i.e., the set of
all indexes i′ where enters a term corresponding to −ni′ < ki′ < ni′ + 1).
Choose i0 such that ∆i0 6⊆ ∆i for any i ∈ X\{i0}. Now, it is easy to see
that suppGL(π) 6= ∆1 + · · · + ∆k (consider the multiplicity of ν−ni0 ρi0 in
suppGL(π) and in ∆1 + · · · + ∆k; they are different).

We do not need the following theorem in this paper (which is Theorem
13.2 of [T5]). We mention the theorem because it gives additional insight into
some of the conditions in the following proposition.

Theorem 4.3. Let ∆ = [ναρ, νβρ] ∈ S(C), where α, β ∈ R, and ρ is
unitarizable. Assume char (F ) = 0. Let σ be an irreducible cuspidal represen-
tation of Sq. Suppose that (ρ, σ) has reducibility in α ∈ (1/2) Z, α ≥ 0, if ρ is
selfdual. Then, δ(∆)oσ reduces if and only if ρ′ oσ reduces for some ρ′ ∈ ∆.

Proposition 4.4. Let ∆i = [ν−niρi, ν
miρi] ∈ S(C), i = 1, . . . , k, where

ρi are selfdual, mi, ni ∈ (1/2) Z, and let σ be an irreducible cuspidal repre-
sentation of Sq. Assume that (ρi, σ) has reducibility in αi ∈ (1/2) Z, αi ≥ 0,
for i = 1, . . . , k. Suppose that the following three conditions hold:
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(a) ni > mi for i = 1, . . . , k.

(b) ναiρi ∈ ∆i ∩ ∆̃i or ∆i ∩ ∆̃i = ∅ and −ni = αi.
(c) If ρi

∼= ρj for some i 6= j, then either mi < nj or mj < ni. Let l =

card({∆i ∩ ∆̃i; i = 1, . . . , k}\{∅}) = card({i; 1 ≤ i ≤ k and ni ≥ 0}). Then:

(i) The multiplicity of
(∏k

i=1 δ(∆i)
)
⊗σ in representations sGL

((∏k
i=1 δ(∆i)

)

oσ
)

and sGL

((∏k
i=1(δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i))

)
o σ

)
is 2l.

(ii) Let τ be an irreducible subrepresentation of
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

o σ. The

multiplicity of
(∏k

i=1 δ(∆i)
)
⊗ σ in sGL

((∏k
i=1 δ(∆i\∆̃i)

)
o τ
)

is one.

(iii) Let τ be as in (ii). The representation
(∏k

i=1 δ(∆i\∆̃i)
)

o τ has a

unique irreducible subquotient πτ such that
(∏k

i=1 δ(∆i)
)
⊗σ is a subquotient

of sGL(πτ ). Further, the multiplicity of πτ in
(∏k

i=1 δ(∆i\∆̃i)
)

o τ is one.

We shall denote πτ by
δ(∆1, . . . ,∆k, σ)τ .

The multiplicity of
(∏k

i=1 δ(∆i)
)
⊗ σ in sGL(δ(∆1, . . . ,∆k, σ)τ ) is one.

(iv) δ(∆1, . . . ,∆k, σ)τ is a subquotient of δ(∆1) × · · · × δ(∆k) o σ.

(v) If π is a subquotient of δ(∆1) × · · · × δ(∆k) o σ such that δ(∆1) ×
· · · × δ(∆k) ⊗ σ is a subquotient sGL(π), then π is isomorphic to some
δ(∆1, . . . ,∆k, σ)τ . (vi) If ∆′

1, . . . ,∆
′
k′ and σ′ is some system which satisfies

(a) - (c), and τ ′ is an irreducible subrepresentation of
(∏k′

i=1 δ(∆
′
i ∩ ∆̃′

i)
)

o

σ′, then δ(∆1, . . . ,∆k, σ)τ
∼= δ(∆′

1, . . . ,∆
′
k′ , σ′)τ ′ implies {∆1, . . . ,∆k} =

{∆′
1, . . . ,∆

′
k′} and σ ∼= σ′.

Later, we shall prove that in (vi) we must also have τ ∼= τ ′.

Remark 4.5. (i) Let k = 1. If ∆i ∩ ∆̃i = ∅, then Proposition 3.1 implies
that δ(∆1, σ)τ defined in the above proposition is just the square integrable

representation δ(∆1, σ) = δ(∆1, σ)σ from Proposition 3.1. Suppose ∆i∩∆̃i 6=
∅. Now, Theorem 3.3 implies that the representation δ(∆1, σ)τ defined above
is the square integrable representation from Theorem 3.3.

(ii) Assume that char (F ) = 0. Then, the conditions (a), (b) and (c) on
∆1, . . . ,∆k ∈ S(C) and σ in the last proposition are equivalent to the following
conditions
(α) If 1 ≤ i ≤ k and ∆i ∩ ∆̃i 6= ∅, then δ(∆i ∩ ∆̃i) o σ reduces.

(β) If 1 ≤ i ≤ k and ∆i ∩ ∆̃i = ∅, then ν−niρi o σ reduces.
(γ) e (δ(∆i)) > 0 for i = 1, . . . , k.
(δ) If ∆i ∩ ∆j 6= ∅ for some 1 ≤ i 6= j ≤ k, then

∆i ∪ ∆̃i & ∆j ∩ ∆̃j or ∆j ∪ ∆̃j & ∆i ∩ ∆̃i.
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Proof. Assume that ∆1, . . . ,∆k and σ satisfy conditions (a) - (c) in the
proposition.

The proof of (i) is similar to the proof of (ii) and (iii) of Proposition 4.1.
We shall modify that proof to the present situation. Write β = δ(∆1)× · · · ×
δ(∆k) ⊗ σ (condition (c) provides that β is irreducible) and

M∗
GL(δ([ν−niρi,ν

miρi])) =

=

mi+1∑

j=−ni

δ([ν−j+1ρi, ν
niρi]) × δ([νjρi, ν

miρi])
(4.4)

(the sum is over j ∈ −ni + Z such that −ni ≤ j ≤ mi + 1). Now, as before,

sGL(δ(∆1)× · · · × δ(∆k) o σ) =

= M∗
GL (δ(∆1)) × · · · ×M∗

GL (δ(∆k)) ⊗ σ.
(4.5)

For j = −ni, the term in the sum (4.4) is δ(∆i). If ni < 0, then this
is the only term in the sum (4.4) where δ(∆i) can appear as a subquo-
tient (all other terms have support different from the support of δ(∆i)). If
ni ≥ 0, then −ni < ni + 1, and the term for j = ni + 1 in the sum is
δ([ν−niρi, ν

niρi])×δ([νni+1ρi, ν
miρi]), which has δ(∆i) for a subquotient (the

multiplicity is one). These are the only two terms in the sum where δ(∆i) can
appear as a subquotient (again, all other terms have support different from
the support of δ(∆i)). Multiplying the above δ(∆i)’s in (4.5), we get that
multiplicity of β in sGL (δ(∆1) × · · · × δ(∆k) o σ) is at least 2l.

If ni ≥ 0, write

M∗
GL(δ([νni+1ρi, ν

miρi])) =

=

mi+1∑

ji=ni+1

δ([ν−ji+1ρi, ν
−ni−1ρi]) × δ([νjiρi, ν

miρi]).
(4.6)

For ni < 0, put

M∗
GL(δ([ναiρi, ν

miρi])) =

=

mi+1∑

ji=αi

δ([ν−ji+1ρi, ν
−αiρi]) × δ([νjiρi, ν

miρi]).
(4.7)

Then,

(4.8) s.s.

(
sGL

(( k∏

i=1

(δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i))

)
o σ

))

=

( k∏

i=1

M∗
GL(∆i\∆̃i)

)
×
( k∏

i=1

M∗
GL(∆i ∩ ∆̃i)

)
⊗ σ
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(take M∗
GL(∆i ∩ ∆̃i) as it is defined in (4.2) if ni ≥ 0, and M∗

GL(1) = 1).
In the first product on the right hand side of (4.8), one takes terms in (4.6)
corresponding to ji = ni + 1 if ni ≥ 0 and ji = αi if ni < 0, and one takes(∏k

i=1 δ(∆i ∩ ∆̃i)
)
⊗ σ from

∏k
i=1M

∗
GL(∆i ∩ ∆̃i) (more precisely, one takes

terms in (4.2) corresponding to ki = −ni or ni + 1 if ni ≥ 0). In this way,

one gets 2l times
(∏k

i=1

(
δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i)

))
⊗σ (in the Grothendieck

group). The last representation contains β =
(∏k

i=1 δ(∆i)
)
⊗ σ as a subquo-

tient, and the multiplicity is one.
Now, we shall show that β can appear only in this way. First introduce

ξ(ni) =

{
−ni − 1 if ni ≥ 0

ni = −αi if ni < 0

Suppose that β is a subquotient of some

γ =

(
k∏

i=1

δ([ν−ji+1ρi, ν
ξ(ni)ρi]) × δ([νjiρi, ν

miρi])

)
×

( ∏

1≤i≤k,ni≥0

δ([ν−ki+1ρi, ν
niρi]) × δ([νkiρi, ν

niρi])

)
⊗ σ,

where ni + 1 ≤ ji ≤ mi + 1 if ni ≥ 0 and αi ≤ ji ≤ mi + 1 if ni < 0.
Take i1 such that ∆i1 6⊆ ∆i for i ∈ {1, . . . , k}, i 6= i1 (this choice is

possible because of (c) and (a)). Suppose ni ≥ 0. Recall that νmi1 ρi1 is in
suppGL(β), and ν−ni1−1ρi1 is not in the GL-support (for this use (c)). This
implies ji1 = ni1 + 1. Using that ν−ni1 ρi1 is in the GL-support of β, we get
that ki1 = −ni1 or ni1 + 1 if ni1 ≥ 0.

Suppose ni1 < 0. Again directly follows ji1 = αi1 for the same reasons as
above.

Further, choose i2 ∈ {1, . . . , k}, i2 6= i1, such that ∆i2 6⊆ ∆i for i ∈
{1, . . . , k}\{i1, i2} and repeat the above argument considering supports (more
precisely, suppβ−∆i1 . One shall get ji2 = ni2 +1 if ni2 ≥ 0 and αi2 if ni2 < 0,
and further ki2 = −ni2 or ni2 + 1 if ni2 ≥ 0.

Continuing in this way, we get we can get β as a subquotient only in the
way that we have already described above. Therefore, the multiplicity is 2l.
Using (4.9), we get a complete proof of (i).

Note that s.s.
(
sGL

((∏k
i=1 δ(∆i\∆̃i)

)
o τ

))
=
(∏k

i=1M
∗
GL(∆i\∆̃i)

)
×

sGL(τ) (here × in the right hand side multiplies
∏k

i=1M
∗
GL(∆i\∆̃i) with

the terms on the left hand side of ⊗, which show up in sGL(τ); more pre-
cisely, of s.s. (sGL(τ))). In the product on the right hand side of this formula,
take the term in (4.6) corresponding to ji = ni + 1 if ni ≥ 0 and ji = αi
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if ni < 0, and take
(∏k

i=1 δ(∆i ∩ ∆̃i)
)
⊗ σ from sGL(τ) (see (iii) of Propo-

sition 8.1). In this way, one gets
(∏k

i=1

(
δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i)

))
⊗ σ in

s.s.
(
sGL

((∏k
i=1 δ(∆i\∆̃i)

)
o τ
))

, which contains β =
(∏k

i=1 δ(∆i)
)
⊗ σ as a

subquotient. Therefore, the multiplicity is ≥ 1. Now (i) and (i) of Proposition
3.1 (and (4.9) imply that the multiplicity is exactly one. This completes the
proof of (ii).

A direct consequence of (ii) is (iii).

Write (
∏k

i=1 δ(∆i ∩ ∆̃i)) o σ = ⊕2l

i=1τi, where τi are irreducible. Then,
we have the following relations in the Grothendieck group:

( k∏

i=1

δ(∆i\∆̃i)

)
o
(
⊕2l

j=1τj

)
(4.9)

=

( k∏

i=1

δ(∆i\∆̃i)

)
×
( k∏

i=1

δ(∆i ∩ ∆̃i)

)
o σ

=

( k∏

i=1

δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i)

)
o σ ≥

( k∏

i=1

δ(∆i)

)
o σ

Since the multiplicity of
(∏k

i=1 δ(∆i)
)

⊗ σ in sGL

((∏k
i=1 δ(∆i\∆̃i)

)
o

(
⊕2l

j=1τj

))
and in sGL

((∏k
i=1 δ(∆i)

)
o σ

)
is 2l by (i) and (ii), and

(∏k
i=1 δ(∆i)

)
o σ ≤

(∏k
i=1 δ(∆i\∆̃i)

)
o
(
⊕2l

j=1τj

)
, (i), (ii), (iii) and Propo-

sition 4.1 imply (iv). Similar argumentation gives (v).
We get (vi) using the fact that if two representations, parabolically in-

duced from irreducible cuspidal representations ρ′ and ρ′′, have an irreducible
subquotient in common, then ρ′ and ρ′′ must be associate (see [C], Theorem
6.3.6 and Corollary 6.3.7).

The main aim of the rest of this section is to prove that representations
δ(∆1, . . . ,∆k, σ)τ introduced in the last proposition are square integrable.
Along the way, we shall get a number of useful and interesting facts about
these representations. We shall first prove three lemmas.

Lemma 4.6. Fix an irreducible cuspidal representation σ of Sq. Let ρ ∈ C
be selfdual. Assume that (ρ, σ) has reducibility at α ∈ (1/2) Z, α ≥ 0. Let
ni,mi ∈ (1/2) Z, i = 1, . . . , k, such that mi −nj ∈ Z for any i, j ∈ {1, . . . , k},
and

n1 < m1 < n2 < m2 < n3 < m3 < · · · < mk−1 < nk < mk.

Let ∆i = [ν−niρ, νmiρ]. Suppose ναρ ∈ ∆1∩∆̃1 or ∆1∩∆̃1 = ∅ and −n1 = α.

Let τ be an irreducible subrepresentation of
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

o σ. Then:
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(i) If k ≥ 2 and i′ ∈ {1, . . . , k}, then there exists an irreducible subrepresen-

tation τ ′ of
(∏

1≤i≤k,i6=i′ δ(∆i ∩ ∆̃i)
)

o σ such that

δ(∆1, . . . ,∆k, σ)τ ≤ δ(∆i′ ) o δ(∆1, . . . ,∆i′−1,∆i′+1, . . . ,∆k, σ)τ ′ .

(ii) There exists a positive integer c, depending on ∆1, . . . ,∆k and σ, such
that

(4.10) sGL (δ(∆1, . . . ,∆k, σ)τ )

≤ c




k∏

i=1

|ni|∑

ai=−ni

δ([ν−ai+1ρ, νniρ]) × δ([νaiρ, νmiρ])


⊗ σ.

(iii) If π is an irreducible subquotient of sGL (δ(∆1, . . . ,∆k, σ)τ ) which sat-

isfies π 6∼=
(∏k

i=1 δ(∆i)
)
⊗ σ, then suppGL(π) 6= suppGL

((∏k
i=1 δ(∆i)

)
⊗ σ

)

Proof. For k = 1, we know from the previous section that the lemma
holds. Therefore, we shall suppose that k ≥ 2.

If n1 < 0, define ε(∆1) = 1. Otherwise take ε(∆1) = 0.
First, suppose n1 ≥ 0 or i′ > 1. Proposition 4.1 implies that we can write

[ ∏

1≤i≤k,i6=i′

δ(∆i∩∆̃i)

]
oσ =

2k−1−ε(∆1)

⊕
j=1

τ ′j ,

[ ∏

1≤i≤k

δ(∆i∩∆̃i)

]
oσ =

2k−ε(∆1)

⊕
j=1

τj

[ ∏

1≤i≤k,i 6=i′

δ(∆i∩∆̃i)

]
oσ =

2k−1−ε(∆1)

⊕
j=1

τ ′j ,

[ ∏

1≤i≤k

δ(∆i∩∆̃i)

]
oσ =

2k−ε(∆1)

⊕
j=1

τj

where τj and τ ′j irreducible. By an argument similar to that in the proof of
Proposition 4.4, in the Grothendieck group, we get

( k∏

i=1

δ(∆i\∆̃i)

)
o

(
2k−ε(∆1)

⊕
r=1

τr

)
=

( k∏

i=1

δ(∆i\∆̃i)

)
×
( k∏

i=1

δ(∆i ∩ ∆̃i)

)
o σ
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= δ(∆i′\∆̃i′) × δ(∆i′ ∩ ∆̃i′) ×
( ∏

1≤i≤k,i6=i′

δ(∆i\∆̃i)

)

×
( ∏

1≤i≤k,i6=i′

δ(∆i ∩ ∆̃i)

)
o σ

≥ δ(∆i′) ×
( ∏

1≤i≤k,i6=i′

δ(∆i\∆̃i)

)
× v

( ∏

1≤i≤k,i6=i′

δ(∆i ∩ ∆̃i)

)
o σ

= δ(∆i′) ×
( ∏

1≤i≤k,i6=i′

δ(∆i\∆̃i)

)
o

(
2k−1−ε(∆1)

⊕
j=1

τ ′j

)

≥ δ(∆i′) ×
( 2k−1−ε(∆1)∑

j=1

δ(∆1, . . . ,∆i′−1,∆i′+1, . . . ,∆k, σ)τ ′
j

)

=

2k−1−ε(∆1)∑

j=1

δ(∆i′) × δ(∆1, . . . ,∆i′−1,∆i′+1, . . . ,∆k, σ)τ ′
j
.

From formula (1.4), (iii) of Proposition 4.4 and (4.4), it follows that the multi-

plicity of
(∏k

i=1 δ(∆i)
)
⊗σ in sGL

(
δ(∆i′ ) × δ(∆1, . . . ,∆i′−1,∆i′+1,∆k, σ)τ ′

j

)

is ≥ 2. The above inequalities and (iii) of Proposition 4.4 imply that the mul-
tiplicity is 2. From the multiplicities, one concludes that each

δ(∆1, . . . ,∆k, σ)τr ≤ δ(∆i′ ) × δ(∆1, . . . ,∆i′−1,∆i′+1, . . . ,∆k, σ)τ ′
j

for some τ ′j . This proves (i) in the case that n1 ≥ 0 or i′ > 1.
Now, suppose n1 < 0 and i′ = 1. Write
( ∏

2≤i≤k

δ(∆i ∩ ∆̃i)

)
o σ =

( ∏

1≤i≤k

δ(∆i ∩ ∆̃i)

)
o σ =

2k−1

⊕
j=1

τj ,

where τj are irreducible. Then,

( k∏

i=1

δ(∆i\∆̃i)

)
o

(
2k−1

⊕
i=1

τi

)
= δ(∆1) ×

( k∏

i=2

δ(∆i\∆̃i)

)
o

(
2k−1

⊕
j=1

τj

)

≥ δ(∆1)×
( 2k−1∑

j=1

δ(∆2,∆3, . . . ,∆k, σ)τj

)
=

2k−1∑

j=1

δ(∆1)×δ(∆2,∆3, . . . ,∆k, σ)τj .

Using (1.4), (iii) of Proposition 4.4 and (4.4), we get that the multiplicity of(∏k
i=1 δ(∆i)

)
⊗ σ in sGL

(
δ(∆1) × δ(∆2,∆3, . . . ,∆k, σ)τj

)
is ≥ 1. The above

inequalities and (iii) of Proposition 4.4 imply that the multiplicity is 1. This
implies (i) in this case (n1 < 0 and i′ = 1). Thus, the proof of (i) is complete.
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Using (i), we shall prove (ii) by induction with respect to k. Let k ≥ 2
and suppose that (ii) holds for k′ < k. From (i), we know that

δ(∆1, . . . ,∆k, σ)τ ≤ δ([ν−nkρ, νmkρ]) o δ(∆1, . . . ,∆k−1, σ)τ ′

for some irreducible subquotient τ ′ of
(∏k−1

i=i δ(∆i ∩ ∆̃i)
)

oσ. The inductive

assumption and (1.4) imply

(4.11) sGL (δ(∆1, . . . ,∆k, σ)τ ) ≤
( mk+1∑

jk=−nk

δ([ν−jk+1ρ, νnkρ]) × δ([νjkρ, νmkρ])

)

× c1

( k−1∏

i=1

|ni|∑

ai=−ni

δ([ν−ai+1ρ, νniρ]) × δ([νaiρ, νmiρ])

)
⊗ σ.

Further, δ(∆1, . . . ,∆k, σ)τ ≤ δ(∆1) o δ(∆2, . . . ,∆k, σ)τ ′′ for some irreducible

subquotient τ ′′ of
(∏k

i=2 δ(∆i ∩ ∆̃i)
)

o σ implies

sGL(δ(∆1, . . . ,∆k, σ)τ )

≤
( m1+1∑

j1=−n1

δ([ν−j1+1ρ, νn1ρ]) × δ([νj1ρ, νm1ρ])

)

× c2

( k∏

i=2

|ni|∑

ai=−ni

δ([ν−ai+1ρ, νniρ]) × δ([νaiρ, νmiρ])

)
⊗ σ.

(4.12)

The above formula shows that ν−mkρ, ν−mk+1ρ, . . . , ν−nk−1ρ are not in
suppGL(π) for any irreducible subquotient π of sGL(δ(∆1, . . . ,∆k, σ)τ ).
Therefore, we can sharpen the estimate (4.11) to the following estimate:

sGL (δ(∆1, . . . ,∆k, σ)τ ) ≤
( nk+1∑

jk=−nk

δ([ν−jk+1ρ, νnkρ]) × δ([νjkρ, νmkρ])

)

× c1

( k−1∏

i=1

|ni|∑

ai=−ni

δ([ν−ai+1ρ, νniρ]) × δ([νaiρ, νmiρ])

)
⊗ σ.

Note nk ≥ 0, since k ≥ 2. The above formula implies that to prove (ii), it is
enough to prove that if π ⊗ σ is a common irreducible subquotient of

(4.13) δ([ν−nkρ, νnkρ]) × δ([νnk+1ρ, νmkρ])

×
( k−1∏

i=1

|ni|∑

ai=−ni

δ([ν−ai+1ρ, νniρ]) × δ([νaiρ, νmiρ])

)
⊗ σ
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and the right hand side of (4.12), then π ⊗ σ is an irreducible subquotient of
the right hand side of (4.10).

First write (4.13) in a slightly different way:

δ([ν−nkρ, νnkρ]) × δ([νnk+1ρ, νmkρ]) ×
( |n1|∑

a1=−n1

n2∑

a2=−n2

. . .(4.14)

nk−1∑

ak−1=−nk−1

k−1∏

i=1

(
δ([ν−ai+1ρ, νniρ]) × δ([νaiρ, νmiρ])

))
⊗ σ.(4.15)

Now, we shall point out some properties of the factors in the line (4.15).
Consider segments ∆′

i = [ν−ai+1ρ, νniρ], ∆′′
i = [νaiρ, νmiρ] for i =

1, . . . , k − 1, where −ni ≤ ai ≤ |ni|, and consider all multisets a =
(∆′

1,∆
′′
1 ,∆

′
2,∆

′′
2 , . . . ,∆

′
k−1,∆

′′
k−1) that we get in this way (if some ∆′

i = ∅,
then we omit ∅ from the above definition of a). Set ∆†

k = [ν−nkρ, νnk ],

∆††
k = [νnk+1ρ, νmkρ]. Using the conditions on ni and mi in the lemma, one

checks directly that the following properties hold:

1. ∆′
i,∆

′′
i ⊆ ∆†

k ⊆ ∆k for any 1 ≤ i ≤ k − 1.

2. For any 1 ≤ i ≤ k − 1, neither ∆′
i nor ∆′′

i is linked with ∆†
k, ∆††

k or
∆k.

3. Linking ∆†
k and ∆††

k one gets ∆k.

Let π ⊗ σ be a common irreducible subquotient of the right hand side of

(4.12) and of (4.13) (let π be a subquotient of δ(∆†
k)×δ(∆††

k )×∏k−1
i=1 (δ(∆′

i)×
δ(∆′′

i )) coming from (4.13)). Write π = L(δ(Γ1), . . . , δ(Γt)) with Γi ∈ S(C).
Because π ⊗ σ is a subquotient of (4.13), (1) - (3) directly imply that

(Γ1, . . . ,Γt) = a + (∆†
k ,∆

††
k ) or a + (∆k) for some multiset a in S(C). Note

that if L(δ(Γ′
1), . . . , δ(Γ

′
t′)) ⊗ σ is a subquotient of the right hand side of

(4.12), and some ∆′
i ends with νmkρ, then ∆′

i contains also νnkρ. Since π⊗σ
is a subquotient of the right hand side of (4.12), (Γ1, . . . ,Γt) = a + (∆k).
Now, (1) implies π = δ(∆k) × π′. Since δ(∆k) × π′ is a subquotient of

δ(∆†
k) × δ(∆††

k ) × ∏k−1
i=1 (δ(∆′

i) × δ(∆′′
i )), (1) - (3) imply that it is a sub-

quotient of δ(∆k) × ∏k−1
i=1 (δ(∆′

i) × δ(∆′′
i )). All irreducible subquotients of

the last representations are δ(∆k) × π′′, where π′′ runs over all irreducible

subquotients of
∏k−1

i=1 (δ(∆′
i)× δ(∆′′

i )). This implies that π′ = π′′ for some π′′

as above. Thus, π ⊗ σ is an irreducible subquotient of the right hand side of
(4.10). This completes the proof of (ii).

We shall prove (iii) by induction. Suppose that (iii) holds for k − 1.
Let π be an irreducible subquotient of sGL (δ(∆1, . . . ,∆k, σ)τ ) such that

suppGL(π) =
∑k

i=1 ∆i (= suppGL

((∏k
i=1 δ(∆i)

)
⊗ σ

)
). Since ν−nkρ is in

suppGL(π), π can appear as a subquotient of a product γ on the right hand
side of (4.10) only if ak = −nk. Since ∆k contains each segment which shows
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up in the right hand side of (4.10), π = δ(∆k)×π′, where π′ is an irreducible
representation of some GL(p′, F ) × Sq . Since

s.s.(sGL(δ(∆1, . . . ,∆k, σ)τ ))

≤
( nk+1∑

jk=−nk

δ([ν−jk+1ρ, νnkρ]) × δ([νjkρ, νmkρ])

)

× sGL (δ(∆1, . . . ,∆k−1, σ)τ ′)

(4.16)

for some τ ′,

δ(∆k) × π′ ≤ δ([ν−jk+1ρ, νnkρ])(4.17)

× δ([νjkρ, νmkρ]) × sGL (δ(∆1, . . . ,∆k−1, σ)τ ′) .

Since ν−nkρ is in the support of the left hand side of (4.17), jk = −nk or

jk = nk + 1. Since neither ∆k ∩ ∆̃k nor ∆k\∆̃k is linked with any other
segment which shows up in the upper bound for sGL (δ(∆1, . . . ,∆k−1, σ)τ ′),
one directly gets δ(∆k) × π′ ≤ δ(∆k) × sGL (δ(∆1, . . . ,∆k−1, σ)τ ′) . This im-
plies π′ ≤ sGL (δ(∆1, . . . ,∆k−1, σ)τ ′) . Since suppGL(π) = ∆k +suppGL(π′) =∑k

i=1 ∆i, then suppGL(π′) =
∑k−1

i=1 ∆i. Now, the inductive assumption im-

plies π′ =
(∏k−1

i=1 δ(∆i)
)
⊗ σ. This finishes the proof of (iii). Therefore, the

proof of lemma is complete.

Let ρ′, ρ′′ ∈ C. We shall say that they are are strongly Z-disconnected
if there does not exist ∆ ∈ S(C) such that ρ′, ρ′′ ∈ ∆ or ρ′, (ρ′′ )̃ ∈ ∆. For
Γ1,Γ2 ∈ S(C), we say that they are strongly Z-disconnected if any ρ1 ∈ Γ1 is
strongly Z-disconnected with any ρ2 ∈ Γ2. The following lemma is related to
[Jn2] (it is a very special case of a general ideas studied there).

Lemma 4.7. Let ρ′1, . . . , ρ
′
k′ , ρ′′1 , . . . , ρ

′′
k′′ ∈ C and let σ be an irreducible

cuspidal representation of Sq. Suppose:
(a) Any ρ′i is strongly Z-disconnected with any ρ′′j .

(b) π′ is an irreducible subquotient of ρ′1 × · · · × ρ′k′ o σ and π′′ is an irre-
ducible subquotient of ρ′′1 × · · · × ρ′′k′′ o σ. Write s.s.(sGL(π′)) = γ′ ⊗ σ and
s.s.(sGL(π′′)) = γ′′ ⊗ σ.
(c) π is a representation which satisfies π ≤ ρ′1 × · · · × ρ′k′ o π′′ and π ≤
ρ′′1 × · · · × ρ′′k′′ oπ′. Then, there exists a positive integer d such that sGL(π) ≤

d(γ′ × γ′′ ⊗ σ).
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Proof. From (1.4) and (b), it follows that

sGL(π) ≤
( k′∏

i=1

(ρ′i + (ρ′i )̃ )

)
× γ′′ ⊗ σ,

sGL(π) ≤
( k′′∏

j=1

(ρ′′j + (ρ′′j )̃ )

)
× γ′ ⊗ σ.

(4.18)

Let β be an irreducible subquotient of sGL(π). Then, (4.18) and (a) imply
β = α′×φ′′⊗σ = α′′×φ′⊗σ, where α′ is an irreducible subquotient of γ ′, α′′ an

irreducible subquotient of γ ′′, φ′ an irreducible subquotient of
∏k′

i=1(ρ
′
i+(ρ′i)̃ )

and φ′′ an irreducible subquotient of
∏k′′

j=1(ρ
′′
j + (ρ′′j )̃ ). Obviously, supp(φ′)

consists only of elements from {ρ′i, ρ̃′i; 1 ≤ i ≤ k′}, while supp(φ′′) consists
only of elements from {ρ′′j , ρ̃′′j ; 1 ≤ j ≤ k′′}. Also, supp(α′) consists only of

elements from {ρ′i, ρ̃′i; 1 ≤ i ≤ k′} and supp(α′′) consists only of elements
from {ρ′′j , ρ̃′′j ; 1 ≤ j ≤ k′′}. Further, suppGL(β) = supp(α′) + supp(φ′′) =

supp(α′′) + supp(φ′). Now, (a) implies supp(α′) = supp(φ′) and supp(φ′′) =
supp(α′′).

Now, we use the following fact from the representation theory of general
linear groups. Let X1, X2 ⊆ C. Suppose that any element of X1 is strongly Z-
disconnected with any element of X2 (a weaker condition would be enough for
what follows). Let λ1, λ

′
1, λ2, λ

′
2 be irreducible representations of general linear

groups such that supp(λ1), supp(λ′1) consist only of elements from X1 and
supp(λ2), supp(λ′2) consist only of elements from X2. Then, λ1×λ2

∼= λ′1×λ′2
implies λ1

∼= λ′1 and λ2
∼= λ′2 (this follows easily from Proposition 14 and

Remark 5.3 of [Ro], applying Theorem 2.3 and Corollary 3.9 of [A], or the
fifth section of [ScSt]; see also [Z2]). The above fact implies α′ ∼= φ′ and
φ′′ ∼= α′′. Therefore, β ∼= α′ × α′′ ⊗ σ. This implies β ≤ (γ1 × γ2) ⊗ σ. From
this, the claim of the lemma follows.

Lemma 4.8. Suppose that ∆1, . . . ,∆k, σ and τ satisfy the assumptions of
Proposition 4.4. Then
(i) Let 1 ≤ i′ ≤ k. There exists an irreducible subrepresentation τ ′ of(∏i′

i=1 δ(∆i ∩ ∆̃i)
)

o σ such that

δ(∆1,∆2, . . . ,∆k, σ)τ ≤
( i′∏

i=1

δ(∆i)

)
o δ(∆i′+1,∆i′+2, . . . ,∆k, σ)τ ′

(note that now the order of ∆i’s is again arbitrary).
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(ii) For some positive integer c, the following holds:

sGL ( δ(∆1, . . . ,∆k, σ)τ )

≤ c

( k∏

i=1

( |ni|∑

ai=−ni

δ([ν−ai+1ρi, ν
niρi]) × δ([νaiρi, ν

miρi])

))
⊗ σ.

(iii) If π is an irreducible subquotient of sGL (δ(∆1, . . . ,∆k, σ)τ ) which sat-

isfies π 6∼=
(∏k

i=1 δ(∆i)
)
⊗ σ, then suppGL(π) 6=∑k

i=1 ∆i.

(iv)
(∏k

i=1 δ(∆i)
)
⊗ σ is a direct summand in sGL (δ(∆1, . . . ,∆k, σ)τ ).

Proof. Let l1 = card({i; i′ + 1 ≤ i ≤ n and ∆i ∩ ∆̃i 6= ∅}, l2 =

card({i; 1 ≤ i ≤ i′ and ∆i∩∆̃i 6= ∅} and l = card({i; 1 ≤ i ≤ n and ∆i∩∆̃i 6=
∅}. Then, l1 + l2 = l. By Proposition 4.1, we can write

( k∏

i=i′+1

δ(∆i ∩ ∆̃i)

)
o σ = ⊕2l1

i=1τ
′
i ,

( k∏

i=1

δ(∆i ∩ ∆̃i)

)
o σ = ⊕2l

i=1τi.

Now, in the Grothendieck group, we have

( k∏

i=1

δ(∆i\∆̃i)

)
×
(
⊕2l

j=1τj

)
o σ =

( k∏

i=1

δ(∆i\∆̃i)

)
×
( k∏

i=1

δ(∆i ∩ ∆̃i)

)
o σ

=

( k∏

i=1

δ(∆i\∆̃i)

)
×
( i′∏

i=1

δ(∆i ∩ ∆̃i)

)
×
( k∏

i=i′+1

δ(∆i ∩ ∆̃i)

)
o σ

=

( k∏

i=1

δ(∆i\∆̃i)

)
×
( i′∏

i=1

δ(∆i ∩ ∆̃i)

)
o
(
⊕2l1

j=1τ
′
j

)

≥
( i′∏

i=1

δ(∆i)

)
×
( k∏

i=i′+1

δ(∆i\∆̃i)

)
o
(
⊕2l1

j=1τ
′
j

)

=

( i′∏

i=1

δ(∆i)

)
o

(
⊕2l1

j=1

( k∏

i=i′+1

δ(∆i\∆̃i)

)
o τ ′j

)

≥
( i′∏

i=1

δ(∆i)

)
o

( 2l1∑

j=1

δ(∆i′+1, . . . ,∆k, σ)τ ′
j

)

≥
2l1∑

j=1

( i′∏

i=1

δ(∆i)

)
o δ(∆i′+1, . . . ,∆k, σ)τ ′

j
.
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The multiplicity of
(∏k

j=1 δ(∆i)
)

⊗ σ in sGL

((∏k
i=1 δ(∆i\∆̃i)

)
×

(
⊕2l

i=1τi

)
o σ

)
is 2l by (ii) of Proposition 4.4. From (ii) of Proposition

4.4 and (1.4), one easily gets that the multiplicity of
(∏k

j=1 δ(∆i)
)
⊗ σ in

sGL

(∑2l1

j=1

(∏i′

i=1 δ(∆i)
)

oδ(∆i′+1, . . . ,∆k, σ)τ ′
j

)
is at least 2l12l2 = 2l. The

above inequalities imply that the multiplicity is exactly 2l. Now, we can con-
clude that (i) holds.

We prove (ii) by induction. For k = 1, (ii) holds. Let k > 1. If ∆i∩∆j 6= ∅
for all 1 ≤ i < j ≤ k, then Lemma 4.6 implies (ii). Therefore, we can suppose
that ∆i ∩ ∆j = ∅ for some 1 ≤ i < j ≤ n. This implies that we can
make a partition {∆1, . . . ,∆k} into a union X ∪ Y of two non-empty sets of
segments in a such a way that any segment in X is strongly Z-disconnected
with any segment in Y . Now, using (i) and applying Lemma 4.7, the inductive
assumption implies (ii).

From (iii) of Lemma 4.6, using Lemma 4.7, one easily obtains (iii). We
can also prove (iii) directly in a similar way as we proved (iii) in Lemma 4.6
(after renumeration, one can assume that ∆k 6⊆ ∆i for i = 1, . . . , k − 1; after
this one proceeds in the same way as in Lemma 4.6).

Finally, (ii) of Lemma 4.6 and (iii) imply (iv) (use Theorem 7.3.2 of [C]).

Theorem 4.9. Let ∆1, . . . ,∆k, σ and τ be as in Proposition 4.4. Then,
(i) δ(∆1, . . . ,∆k, σ)τ are square integrable representations.

(ii) If π is a subrepresentation of
(∏k

i=1 δ(∆i)
)
oσ, then π ∼= δ(∆1, . . . ,∆k, σ)τ

for some τ . Also, each δ(∆1, . . . ,∆k, σ)τ is isomorphic to a subrepresentation

of
(∏k

i=1 δ(∆i)
)

o σ.

(iii) (δ(∆1, . . . ,∆k, σ)τ )˜∼= δ(∆1, . . . ,∆k, σ̃)τ̃ .

Proof. One gets (i) from (i) of the last lemma using the square integra-
bility criterion (one needs the description of Jacquet modules of the right hand
side of the inequality in (i) of the last lemma; to get these Jacquet modules,
apply Proposition 9.5 of [Z1] and the Hopf algebra structure on R).

If π is an irreducible subrepresentation of
(∏k

i=1 δ(∆i)
)

oσ, then Frobe-

nius reciprocity implies
(∏k

i=1 δ(∆i)
)
⊗ σ ≤ sGL(π). Now, (v) of Propo-

sition 4.4 implies that π is isomorphic to some δ(∆1, . . . ,∆k, σ)τ . Further,
(iv) of Lemma 4.8 and Frobenius reciprocity imply that each representation

δ(∆1, . . . ,∆k, σ)τ is a subrepresentation of
(∏k

i=1 δ(∆i)
)

o σ. This proves

(ii).
We shall use now notation analogous to the notation which we have in-

troduced for general linear groups and groups Sq , with the difference that
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the lower triangular matrices are fixed to play the role of the standard
minimal parabolic subgroup. Then, this new notation will be the same as
our standard notation, except that we shall underline this new notation.
So, we are going to work with ×,o, sGL, . . . . More details regarding this
notation can be found in section 4 of [T2] and section 6 of [T3]. From
δ(∆1, . . . ,∆k, σ)τ ↪→ δ(∆1)×· · ·×δ(∆k)oσ, Propositions 4.1 of [T2] and 6.1
of [T3], we get δ(∆1, . . . ,∆k, σ)τ ↪→ δ(∆1 )̃ × · · ·×δ(∆k )̃ oσ. Therefore, there
exists an epimorphism sGL (δ(∆1, . . . ,∆k, σ)τ ) � δ(∆1)̃ × · · ·×δ(∆k )̃ ⊗ σ.
Thus, δ(∆1)× . . . ,×δ(∆k) ⊗ σ̃ ↪→ (sGL (δ(∆1, . . . ,∆k, σ)τ )) .̃ Since

(sGL (δ(∆1, . . . ,∆k, σ)τ ))˜∼= sGL ((δ(∆1, . . . ,∆k, σ)τ ) )̃

by Corollary 4.2.5 of [C], and δ(∆1)× . . . ,×δ(∆k) = δ(∆1)×· · ·×δ(∆k), we get
that δ(∆1)×· · ·×δ(∆k)⊗σ̃ is a subrepresentation of sGL ((δ(∆1, . . . ,∆k, σ)τ ) )̃ .

Recall that δ(∆1, . . . ,∆k, σ)τ is a subquotient of
(∏k

i=1 δ(∆i\∆̃i)
)

o τ .

Therefore, (δ(∆1, . . . ,∆k, σ)τ )˜ is a subquotient of
(∏k

i=1 δ(∆i\∆̃i)̃
)

o τ̃ .

This last representation has the same Jordan-Hölder factors as(∏k
i=1 δ(∆i\∆̃i)

)
o τ̃ (use (1.3)). From the definition of δ(∆1, . . . ,∆k, σ̃)τ̃

in Proposition 4.4, we get δ(∆1, . . . ,∆k, σ̃)τ̃
∼= (δ(∆1, . . . ,∆k, σ)τ ) .̃

Now, we shall get some interesting additional information about the rep-
resentations δ(∆1, . . . ,∆k, σ)τ

Lemma 4.10. Suppose that ∆1, . . . ,∆k, σ and τ satisfy the assumptions
of Proposition 4.4. Then,

(i) The multiplicity of
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ in µ∗

((∏k
i=1 δ(∆i)

)
o σ

)
is

one.
(ii) The representation δ(∆1, . . . ,∆k, σ)τ is a subrepresentation of(∏k

i=1 δ(∆i\∆̃i)
)

o τ ′, for some irreducible subrepresentation τ ′ of
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

o σ.

Proof. First, we compute:

M∗(δ([ν−niρi, ν
miρi]) =

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗(δ([ν−niρi, ν
miρi]))

= (m⊗ 1) ◦ (∼ ⊗m∗)

◦ s
( mi∑

ai=−ni−1

δ([νai+1ρi, ν
miρi]) ⊗ δ([ν−niρi, ν

aiρi])

)
(4.19)



A FAMILY OF SQUARE INTEGRABLE REPRESENTATIONS 49

= (m⊗ 1) ◦ (∼ ⊗m∗)

( mi∑

ai=−ni−1

δ([ν−niρi, ν
aiρi]) ⊗ δ([νai+1ρi, ν

miρi])

)

=

mi∑

ai=−ni−1

mi∑

bi=ai

δ([ν−aiρi, ν
niρi]) × δ([νbi+1ρi, ν

miρi]) ⊗ δ([νai+1ρi, ν
biρi]).

By (1.4), we have

µ∗
(( k∏

i=1

δ(∆i

)
o σ

)
=

=

( k∏

i=1

( mi∑

ai=−ni−1

mi∑

bi=ai

δ([ν−aiρi, ν
niρi])×

× δ([νbi+1ρi, ν
miρi]) ⊗ δ([νai+1ρi, ν

biρi])

))

o (1 ⊗ σ).

(4.20)

Conditions (a) - (c) in Proposition 4.4 imply that β =
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ

is irreducible. Suppose that β is a subquotient of the right hand side of (4.20)
Then, β is a subquotient of some
(4.21)( k∏

i=1

δ([ν−aiρi, ν
niρi]) × δ([νbi+1ρi, ν

miρi]) ⊗ δ([νai+1ρi, ν
biρi])

)
o (1 ⊗ σ),

where

(4.22) −ni − 1 ≤ ai ≤ mi and ai ≤ bi ≤ mi.

Write (4.21) as γ ⊗ γ ′. Since β =
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ is irreducible, and it

is a subquotient of γ⊗γ ′, ∏k
i=1 δ(∆i\∆̃i) is a subquotient of γ. In particular,

(4.23) supp(γ) = supp

( k∏

i=1

δ(∆i\∆̃i)

)
,

i.e.,

k∑

i=1

(
[ν−aiρi, ν

niρi] + [νbi+1ρi, ν
miρi]

)
=

k∑

i=1

(∆i\∆̃i)

(
=

k∑

i=1

[νni+1ρi, ν
miρi]

)
.
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Choose i1 such that ∆i1 6⊆ ∆i for any 1 ≤ i ≤, i1 6= i. Suppose ni1 ≥ 0. Since
we have νni1+1ρi, ν

ni1+2ρi, . . . , ν
mi1 ρi in the support of γ, bi1 + 1 ≤ ni1 + 1

(i.e., bi1 ≤ ni1). Since ν−ni1−1ρi is not in the support of γ, bi1 + 1 ≥ ni1 + 1
(i.e., bi1 ≥ ni1) and −ai1 > ni1 (i.e., −ni1 > ai1) . Thus, ai1 = −ni1 − 1
(which now follows from (4.22)), and bi1 = ni1 . For ni1 < 0 we must have
bi1 + 1 = −ni1 and ai1 + 1 = −ni1 − 1.

From (4.23), it follows that
∑

1≤i≤k,i6=i1

(
[ν−aiρi, ν

niρi] + [νbi+1ρi, ν
miρi]

)
=

∑

1≤i≤k,i6=i1

(∆i\∆̃i).

Choose i2 ∈ {1, . . . , k}\{i1} such that ∆i2 6⊆ ∆i for any i ∈ {1, . . . , k}\{i1, i2}.
Now, in the same way as above, one gets that we must have ai2 = −ni2 − 1
and bi2 = ni2 in (4.21) if ni2 ≥ 0, and bi2 + 1 = −ni2 , ai2 + 1 = −ni2 − 1 if

ni2 < 0. Continuing this process, we get that
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ must be

a subquotient of

( k∏

i=1

(
δ([ν−ξ(ni)ρ, νmiρ]) ⊗ δ([ν−niρ, νniρ])

))
o (1 ⊗ σ),

where ξ(ni) are defined in the proof of Proposition 4.4 (we have shown that
this is the only term on the right hand side of (4.20) which can have β as a
subquotient). From this and Proposition 4.1, we get (i).

Now, we shall list some obvious properties of the segments that we have
considered.

1. Among the segments ∆i∩∆̃i,∆i\∆̃i, 1 ≤ i ≤ k, the only pairs of linked

segments are ∆i∩∆̃i,∆i\∆̃i when ∆i∩∆̃i 6= ∅ (this follows easily from
the conditions on the segments ∆i).

2. δ(∆i) ↪→ δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i) (this follows from Proposition 9.5 of
[Z1] and Frobenius reciprocity).

From (1) and (2), we obtain

[ k∏

i=1

δ(∆i)

]
o σ ↪→

[ k∏

i=1

δ(∆i\∆̃i)

]
×
[ k∏

i=1

δ(∆i ∩ ∆̃i)

]
o σ

∼=
[ k∏

i=1

δ(∆i\∆̃i)

]
o
(
⊕2l

j=1τj

)
,

where
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

o σ = ⊕2l

j=1τj is the decomposition into a sum

of irreducible representations. Therefore, using (ii) of Theorem 4.9, we get
that each δ(∆1, . . . ,∆k, σ)τ is isomorphic to a subrepresentation of some(∏k

i=1 δ(∆i\∆̃i)
)

o τj . This completes the proof of the lemma.
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Proposition 4.11. Suppose that ∆1, . . . ,∆k, σ and τ are as in Proposi-
tion 4.4. Then,

(i) The multiplicity of
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ in µ∗

((∏k
i=1 δ(∆i\∆̃i)

)
o τ
)

and

µ∗
((

k∏

i=1

δ(∆i\∆̃i)

)
×
(

k∏

i=1

δ(∆i ∩ ∆̃i)

)
o σ

)

is one.
(ii) δ(∆1, . . . ,∆k, σ)τ is the unique irreducible subrepresentation of(∏k

i=1 δ(∆i\∆̃i)
)

o τ .

(iii) If τ ′ 6∼= τ ′′, then δ(∆1, . . . ,∆k, σ)τ ′ 6∼= δ(∆1, . . . ,∆k, σ)τ ′′ .

Proof. Let β =
∏k

i=1 δ(∆i\∆̃i) and

γ =

(
k∏

i=1

δ(∆i\∆̃i)

)
×
(

k∏

i=1

δ(∆i ∩ ∆̃i)

)
o σ

(note that β is irreducible). To prove (i), it is enough to prove that the
multiplicity of β ⊗ τ in µ∗(γ) is one (use Frobenius reciprocity). For nj ≥ 0
compute:

M∗ (δ([νnj+1ρj , ν
mjρj ])

)
= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ (δ([νnj+1ρj , ν

mjρj ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s
( mj∑

aj=nj

δ([νaj+1ρj , ν
mjρj ]) ⊗ δ([νnj+1ρj , ν

ajρj ])

)

= (m⊗ 1) ◦ (∼ ⊗m∗)

( mj∑

aj=nj

δ([νnj+1ρj , ν
ajρj ]) ⊗ δ([νaj+1ρj , ν

mjρj ])

)

=

mj∑

aj=nj

mj∑

bj=aj

δ([ν−ajρj , ν
−nj−1ρj ])×δ([νbj+1ρj , ν

mjρj ])⊗δ([νaj+1ρj , ν
bjρj ]).

For nj < 0 we have

(4.24) M∗ (δ([ναjρj , ν
mjρj ])) = M∗(δ(∆j\∆̃j)) = M∗(δ(∆j))

=

mj∑

aj=−ni−1

mj∑

bj=aj

δ([ν−ajρj , ν
njρj ])×δ([νbj+1ρj , ν

mjρj ])⊗δ([νaj+1ρj , ν
bjρj ]).

If ni ≥ 0, then

(4.25)

M∗ (δ([ν−niρi, ν
niρi])

)
= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ (δ([ν−niρi, ν

niρi])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s
( ni∑

a′
i=−ni−1

δ([νa′
i+1ρi, ν

niρi]) ⊗ δ([ν−niρi, ν
a′

iρi])

)
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= (m⊗ 1) ◦ (∼ ⊗m∗)

( ni∑

a′
i=−ni−1

δ([ν−niρi, ν
a′

iρi]) ⊗ δ([νa′
i+1ρi, ν

niρi])

)

=

ni∑

a′
i=−ni−1

ni∑

b′i=a′
i

δ([ν−a′
iρi, ν

niρi]) × δ([νb′i+1ρi, ν
niρi]) ⊗ δ([νa′

i+1ρ, νb′iρ]).

For ni < 0, M∗(δ(∅)) = 1 ⊗ 1.
First consider the case ni ≥ 0 for all i = 1, . . . , k:

(4.26)

µ∗(γ) = µ∗
(( k∏

j=1

(δ([νnj+1ρj , ν
mjρj ])

)
×
( k∏

i=1

δ([ν−niρi, ν
niρi])

)
o σ

)

=
k∏

j=1

k∏

i=1

( mj∑

aj=nj

mj∑

bj=aj

δ([ν−ajρj , ν
−nj−1ρj ]) × δ([νbj+1ρj , ν

mjρj ])

×
ni∑

a′
i=−ni−1

ni∑

b′i=a′
i

δ([ν−a′
iρi, ν

niρi]) × δ([νb′i+1ρi, ν
niρi])

⊗ δ([νaj+1ρj , ν
bjρj ]) × δ([νa′

i+1ρi, ν
b′iρi])

)
o σ

(see (5.2) for the computation of M∗(∆i ∩ ∆̃i)). Suppose that β ⊗ τ is a
subquotient of some

γ′ ⊗ γ′′ =

k∏

j=1

k∏

i=1

(
δ([ν−ajρj , ν

−nj−1ρj ]) × δ([νbj+1ρj , ν
mjρj ])×

× δ([ν−a′
iρi, ν

niρi]) × δ([νb′i+1ρi, ν
niρi])⊗

⊗ δ([νaj+1ρj , ν
bjρj ]) × δ([νa′

i+1ρi, ν
b′iρi])

)
o σ,

where aj , aj , a
′
i and b′i are as in (4.26). Since β⊗ τ is a subquotient of γ ′⊗γ′′,

β is a subquotient of γ′. Then, supp(γ′) = supp(β).
Choose i1 ∈ {1, . . . , k} such that ∆i1 6⊆ ∆i for i ∈ {1, . . . , k}\{i1}. Then,

supp(γ′) = supp(β) implies bi1 + 1 ≤ ni1 + 1, since νni1+1ρi1 is in supp(β).
Since ni1 ≤ ai1 ≤ bi1 ≤ ni1 , we get ai1 = bi1 = ni1 . Since νni1 ρi1 is not
in supp(β), we have ni1 ≤ −a′i1 and ni1 ≤ b′i1 + 1 (i.e. a′i1 ≤ −ni1 − 1 and
ni1 ≤ b′i1). This implies a′i1 = −ni1 − 1 and ni1 = b′i1 . One continues arguing
as in the proof of Proposition 4.1 (consider supports), and gets that for all i,

ai = bi = ni, a
′
i = −ni − i, b′i = ni. Then, γ′ ⊗ γ′′ =

(∏k
i=1 δ(∆i\∆̃i)

)
⊗

(∏k
i=1 δ(∆i ∩ ∆̃i)

)
oσ. Proposition 4.1 implies that the multiplicity of β⊗τ in

γ′⊗γ′′ is one. This finishes the proof of (i) in this case. The other case follows
in the similar way. Suppose for example ∆i1 6⊆ ∆i for i ∈ {1, . . . , k}\{i1} and
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ni1 < 0. Then we must have bi1 + 1 ≤ −ni1 (since ν−ni1 ρi1 is in supp(β)).
Now −ni1 − 1 ≤ ai1 ≤ bi1 ≤ −ni1 − 1, which implies ai1 = bi1 = −ni1 − 1.

There is no need to consider a′i1 and b′i1 since ∆i1 ∩∆̃i1 = ∅. We can deal with
the case of ni < 0 at any step in the same way, since the supports determine
the indexes (and we are subtracting supports). Therefore, we shall get again
the multiplicity one.

Lemma 4.10 implies that the representation δ(∆1, . . . ,∆k, σ)τ is a subrep-

resentation of
(∏k

i=1 δ(∆i\∆̃i)
)

oτj , for some irreducible subrepresentation τj

of
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

o σ. Frobenius reciprocity implies
(∏k

i=1 δ(∆i\∆̃i)
)
⊗

τj ≤ µ∗ (δ(∆1, . . . ,∆k, σ)τ ) . Suppose τ 6= τj . By (iii) of Proposition 4.4,

δ(∆1, . . . ,∆k, σ)τ is a subquotient of
(∏k

i=1 δ(∆i\∆̃i)
)

oτ . This implies that

the multiplicity of
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τj in

µ∗
((

k∏

i=1

δ(∆i\∆̃i)

)
×
(

k∏

i=1

δ(∆i ∩ ∆̃i)

)
o σ

)

would be at least two, which contradicts (i)). Therefore, δ(∆1, . . . ,∆k, σ)τ is

(an irreducible) subrepresentation of
(∏k

i=1 δ(∆i\∆̃i)
)

o τ . Frobenius reci-

procity and (i) imply that this is the only irreducible representation, which is
the claim of (ii).

Finally, one gets (iii) from
(∏k

i=1 δ(∆i\∆̃i)
)
⊗τ ≤ µ∗ (δ(∆1, . . . ,∆k, σ)τ )

(which follows from (ii)), and (i) of Lemma 4.10.

Note that we can also get (i) of Lemma 4.10 easily from (i) of the above
proposition.

Information about the Langlands parameters of the square integrable rep-
resentations δ(∆1, . . . ,∆k, σ)τ (defined in Proposition 4.4) in the conjectural
local Langlands correspondence for the groups Sq can be found in the sixth sec-
tion of [Mi1] (at least for generic σ). A number of information can be found in
other papers, for example [GrP]. One should look at these papers for more de-
tails. One can find in [GrP] a discussion of a precise form of the Langlands pa-
rameterization conjectured by D. Vogan ([Vo1]), in the case of SO(2n+1, F ).
There seems to exist naturally defined characters of the corresponding group of
components attached to the representations δ(∆1, . . . ,∆k, σ)τ (which should
exist by the Vogan description).

Remark 4.12. (i) Suppose char (F ) = 0. G. Muić has proved that each
generic irreducible square integrable representation of the groups Sq is equiv-
alent to some of the representations δ(∆1, . . . ,∆k, σ)τ introduced in Proposi-
tion 4.4 ([Mi2], Proposition 2.1; one can find there precise description).
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(ii) We constructed in [T4] square integrable representations which are not
equivalent to the representations constructed in Proposition 4.4.

(iii) C. Jantzen has pointed out to us an example of an irreducible square
integrable representations which does not belong to the square integrable rep-
resentations δ(∆1, . . . ,∆k, σ) of Proposition 4.4 (the first of them shows up
for SO(13, F )). These square integrable representations are members of a
wider family of square integrable representations, which can be introduced
in a similar way as the representations δ(∆1, . . . ,∆k, σ)τ (and whose square
integrability can be proved similarly).

5. Appendix

In this appendix we shall present a proof of (i) in Proposition 4.1 which
works also if char (F ) > 0.

Proof (i) of in Proposition 4.1. We shall prove (i) by induction. Sup-
pose (i) holds for k (note that (ii) and Frobenius reciprocity imply that (i)
hold for k = 1). After renumeration, we can assume that ∆k+1 6⊆ ∆i for
1 ≤ i ≤ k. Now, (ii) implies that for the intertwining algebra,

(5.1) dimC

(
End

(( k+1∏

i=1

δ(∆i)

)
o σ

))
≤ 2k+1.

Let τ be any irreducible subrepresentation of
(∏k

i=1 δ(∆i)
)

o σ. Using

(1.4) and (2.1), we compute:

µ∗(δ(∆k+1) o τ) = M∗ (δ(∆k+1)) o µ∗(τ)

= M∗ (δ([ν−nk+1ρk+1, ν
nk+1ρk+1])

)
o µ∗(τ)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ (δ([ν−nk+1ρk+1, ν
nk+1ρk+1])

)
o µ∗(τ)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s
( nk+1∑

ak+1=−nk+1−1

δ([νak+1+1ρk+1, ν
nk+1ρk+1])

⊗ δ([ν−nk+1ρk+1, ν
ak+1ρk+1])

)
o µ∗(τ)

= (m⊗ 1) ◦ (∼ ⊗m∗)

( nk+1∑

ak+1=−nk+1−1

δ([ν−nk+1ρk+1, ν
ak+1ρk+1])

⊗ δ([νak+1+1ρk+1, ν
nk+1ρk+1])

)
o µ∗(τ)

(5.2)
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=

( nk+1∑

ak+1=−nk+1−1

nk+1∑

bk+1=ak+1

δ([ν−ak+1ρk+1, ν
nk+1ρk+1])

× δ([νbk+1+1ρk+1, ν
nk+1ρk+1]) ⊗ δ([νak+1+1ρk+1, ν

bk+1ρk+1])

)
o µ∗(τ)

From the above formula, we see that the multiplicity of δ(∆k+1) ⊗ τ in
µ∗ (δ(∆k+1) o τ) is 2, since δ(∆k+1) ⊗ τ can come only from terms corre-
sponding to indexes ak+1 = −nk+1 − 1, bk+1 = ak+1 = −nk+1 − 1, and
ak+1 = nk+1, bk+1 = ak+1 = nk+1 (consider the term ν−nk+1ρk+1, which
cannot come from µ∗(τ)). Using the same type of analysis as above and
the inductive assumption, we see that the multiplicity of δ(∆k+1) ⊗ τ in

µ∗
((∏k+1

i=1 δ(∆i

)
o σ

)
= M∗(δ(∆k+1)) o µ∗

((∏k
i=1 δ(∆i

)
o σ

)
is two.

Note that the inductive assumption and (5.1) imply that for the proof
of (i), it is enough to prove that δ(∆k+1) o τ reduces. Suppose that it does
not reduce. We know δ(∆k+1) o σ = Ψ1 ⊕ Ψ2, for irreducible Ψ1 and Ψ2.

Therefore, δ(∆k+1) o τ ≤
(∏k

i=1(δ(∆i)
)

o Ψ for some Ψ ∈ {Ψ1,Ψ2}. This

implies that the multiplicity of δ(∆k+1)⊗τ in µ∗
((∏k

i=1(δ(∆i)
)

o Ψ
)

is two.

Now, in the same way as (5.2), we get

µ∗
([ k∏

i=1

δ(∆i)

]
o Ψi

)
=

[ k∏

i=1

M∗ (δ(∆i))

]
o µ∗(Ψi) =

=

[ k∏

i=1

[ ni∑

ai=−ni−1

ni∑

bi=ai

δ([ν−aiρi, ν
niρi])×

× δ([νbi+1ρi, ν
niρi]) ⊗ δ([νai+1ρi, ν

biρi])

]]
o µ∗(Ψi).

(5.3)

Frobenius reciprocity implies that the multiplicity of δ(∆k+1)⊗σ in sGL(Ψi)
is one. This and (5.3) imply that the multiplicity of δ(∆k+1)⊗τ in (5.3) is ≥ 1,
for i = 1, 2. Using the first part of the proof, we get that the multiplicity must
be one. This implies that the multiplicity of δ(∆k+1) ⊗ τ in µ∗(δ(∆k+1) o τ)
is ≤ 1. This contradicts the multiplicity of δ(∆k+1) ⊗ τ in (5.2). Thus, (i)
holds.
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[A] A.-M. Aubert, Dualité dans le groupe de Grothendieck de la catégorie des
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[T3] M. Tadić, Structure arising from induction and Jacquet modules of representa-

tions of classical p-adic groups, Journal of Algebra 177 (1995), 1-33.
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