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VARIETIES OF GROUPOIDS WITH AXIOMS OF THE
FORM xm+1y = xy AND/OR xyn+1 = xy
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Abstract. The subject of this paper are varieties U(M ;N) of
groupoids defined by the following system of identities

{xm+1 · y = xy : m ∈ M} ∪ {x · yn+1 = xy : n ∈ N},

where M,N are sets of positive integers. The equation U(M ;N) =
U(M ′;N ′) for any given pair (M,N) is solved, and, among all solutions,

one called canonical, is singled out. Applying a result of Evans ([6])
it is shown for finite M and N that: if M and N are nonempty and
gcd(M) = gcd(M ∪ N), or only one of M and N is nonempty, then the
word problem is solvable in U(M ;N).

1. Introduction

A groupoid is an algebra G = (G, •) with one binary operation • : (a, b) 7→
ab. (We will often omit the operation sign.) Assuming the usual meanings of
other algebraic notions, we do not define them explicitly.

By a result of P. Hall (see, for example, [3], III.2, Ex. 2, p. 125,or [10],

p. 39-40), for any positive integer k there exist (2k−2)!
k!(k−1)! k-th groupoid powers

x 7→ xk. In this paper, we assume the groupoid power xk defined as follows:

x1 = x, xk+1 = xkx.

So x3 = x2x = (xx)x.
A formula xk+1y = xy (xyk+1 = xy), will be called a left (right) equa-

tion. (Here, and further on, m,n, k, p, i, j, s are assumed to be positive inte-
gers, and xyn+1 stands for x · yn+1, and xm+1y for xm+1 · y.) The varieties
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U(M ; ∅), U(∅;N), U(M ;N), where M 6= ∅ and N 6= ∅, are said to be left,
right, two-sided, respectively. (Throughout the paper ”variety” will mean
”left, right, or two–sided variety”.)

Below, U(m1,m2,m3, . . . ;n1, n2, n3, . . . ) will be an abbreviation for
U({m1,m2,m3, . . .}; {n1, n2, n3, . . .}).

The paper consists of three sections. In Section 2 we show that each va-
riety U(M ;N) admits a canonical axiom system. In Section 3 we solve the
equation U(M ;N) = U(M ′;N ′). Finally, in Section 4, we consider ”incom-
plete U(M ;N)-groupoids”, and applying a result of Evans ([6]) we show that
the word problem is solvable in U(M ;N) for finite M and N in each of the
cases: (i) N = ∅,(ii) M = ∅, (iii) M 6= ∅, N 6= ∅, gcd(M)=gcd(M ∪N).1

2. A Canonical Axiom System for U(M;N)

The main result of this section is the following

Theorem 2.1. If M,N are nonempty sets of positive integers, then

(l) U(M ; ∅) = U(gcd(M); ∅).
(r) U(∅;N) = U(∅; 〈N〉).2
(t) U(M ;N) = U(gcd(M); gcd(M ∪N)).

In order to prove this theorem we will show some lemmas, where
m,n, k, p, i, j, s are assumed to be positive integers as above, and q a non-
negative integer.

Lemma 2.2. If 1 ≤ k ≤ m, then

U(m; ∅) |= xqm+k+1 = xk+1. 3

Proof. Clearly, xm+2 = x2, · · · , x2m+1 = xm+1 are true in U(m; ∅); then
the proof follows by induction on q and k.

As a corollary, we obtain:

Lemma 2.3. If m|n, then U(m; ∅) ⊆ U(n; ∅). 4

Lemma 2.4. If gcd(M) = d /∈M , then there exists a nonempty set M1 of
positive integers such that

(2.1) U(M ; ∅) = U(M1; ∅), d = gcd(M1), min(M1) < min(M).5

Proof. Let p = min(M). The assumption d /∈M implies that d < p and
thus there exists an n ∈M such that p is not a divisor of n. Then n = qp+k,
d|k, k < p and, if M1 = (M \ {n}) ∪ {k}, the relations (2.1) hold.

1gcd(M) is the greatest common divisor of M
2〈N〉 is the additive groupoid of integers generated by N .
3V |= τ1 = τ2 means: the equation τ1 = τ2 is true in the variety V .
4m|n denotes that m is a divisor of n.
5min(M) denotes the least element in M .
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As a corollary of Lemma 2.3 and Lemma 2.4 we obtain the equality (l).
The equality (r) is an obvious corollary of the following

Lemma 2.5. U(∅;m,n) ⊆ U(∅;m+ n).

Proof. U(∅;m) |= (xm+1)i = xm+i, and therefore U(∅;m,n) |=
(xm+1)n+1 = xm+n+1. Thus, if G∈ U(∅;m,n), then:

xm+n+1y = (xm+1)n+1 = xm+1y = xy, i.e. G ∈ U(∅;m+ n).

It remains to prove (t).

Lemma 2.6. If L = {gcd(m,n) : n ∈ N}, then U(m;N) = U(m;L).

Proof. By a similar argument as in Lemma 2.3, U(m;L) ⊆ U(m;N). If
n ∈ N and d = gcd(m,n), then there exist i, j such that im + d = jn. By
Lemma 2.2, U(m;n) |= xd+1 = xim+d+1, and therefore U(m;n) |= xyd+1 =
xy.

In completing the proof of (t) we will use the following result (for example
[5] or [9]).

Lemma 2.7. If S is an additive groupoid of positive integers and d =
gcd(S), then:

(i) gcd(N) = d for any generating subset N of S.
(ii) There exists the least generating subset K = {n1, n2, . . . , nk} of S, and

K is finite.
(iii) There exists s ∈ S such that for each positive integer j, s+ jd ∈ S.

Lemma 2.8. If d1, d2, . . . , dk are divisors of m and d = gcd(d1, d2, . . . , dk),
then

U(m; d1, d2, . . . , dk) = U(m; d).

Proof. The inclusion U(m; d) ⊆ U(m; d1, d2, . . . , dk) follows as in
Lemma 2.6. For the converse inclusion, denote by S the additive groupoid
of positive integers generated by {d1, d2, . . . , dk}. By Lemma 2.7 (i) and (r)
we have gcd(S) = d, and U(m; d1, d2, . . . , dk) = U(m;S). By Lemma 2.7
(iii) there exists s ∈ S such that ms + d ∈ S and thus, by Lemma 2.2,
U(m;S) |= yms+d+1 = yd+1.

Finally, by (l), (r), Lemma 2.6 and Lemma 2.8, it follows that

U(M ;N) = U(m;n),

where m = gcd(M) and n = gcd(M ∪N). This completes the proof of (t).
We note that the following equality holds in U(m;m)

(2.2) (xm+1)m+1 = xm+1,
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(or more generally, in U(m;n), where n|m, the equality (xin+1)m+1 = xin+1

holds.)
The results obtained in Theorem 2.1 suggest saying that

xm+1y = xy, {xyn+1 = xy : n ∈ K}, {xm+1y = xy, xyn+1 = xy}
is the canonical axiom system of U(M ; ∅), U(∅;N), U(M ;N), respectively,
where M,N are nonempty sets of positive integers, m = gcd(M), K is the
least generating subset of 〈N〉, and n = gcd(M ∪N).

As a corollary of Theorem 2.1 (for example [2]) we obtain

Corollary 2.9. For any pair (M,N) the variety U(M ;N) is finitely
based.

3. Closed Sets of Equations in U(M;N)

The main result of this section is the following

Theorem 3.1. If M,N,M ′, N ′ are nonempty sets of positive integers,
then:

(i) U(M ; ∅) = U(M ′; ∅) ⇐⇒ gcd(M) = gcd(M ′).
(ii) U(∅;N) = U(∅;N ′) ⇐⇒ 〈N〉 = 〈N ′〉.

(iii) U(M ;N) = U(M ′;N ′) ⇐⇒
gcd(M) = gcd(M ′) & gcd(M ∪N) = gcd(M ′ ∪N ′).

(iv) U(M ; ∅) 6= U(∅;N); U(M ; ∅) 6= U(M ′;N ′); U(∅;N) 6= U(M ′;N ′).

The ⇐-parts of (i), (ii), (iii) hold by Theorem 2.1. The correspond-
ing ⇒-parts and (iv) are corollaries of the following statement, shown in [4]
(Proposition 3.5).

Proposition 3.2. Let H be a free groupoid in the variety U(M ;N). Then
the following statements hold:

(i) If M 6= ∅, N = ∅, gcd(M) = m, then a left equation xn+1y = xy
holds in H iff m|n; no right equation holds in H.

(ii) If M = ∅, N 6= ∅, then a right equation xyn+1 = xy holds in H iff
n ∈ 〈N〉; no left equation holds in H.

(iii) If M 6= ∅, N 6= ∅ and m = gcd(M), n = gcd(M∪N), then xi+1y = xy
iff m|i, and xyj+1 = xy iff n|j, hold in H.

(We note that only-if parts of (i) and (iii) in Proposition 3.2 follow from
the fact that Cn ∈ U(n; ∅) ∩ U(kn;n), where Cn is the groupoid that is the
reduction of the cyclic group of order n to its binary operation.)

A set Σ of equations is said to be closed if, for every equation ε, the
following implication holds:

(Σ |= ε)⇒ (ε ∈ Σ).
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Proposition 3.3. (i) Assume that Σ is a set of equations containing
at least one left equation and at least one right equation. Then Σ is a
closed set iff there exist two positive integers m and n such that n is a
divisor of m and

Σ = {xim+1y = xy : i ≥ 1} ∪ {xyjn+1 = xy : j ≥ 1}.
(ii) A set Σ of left equations is closed iff there is a positive integer m such

that

Σ = {xim+1y = xy : i ≥ 1}.
(iii) A set Σ of right equations is closed iff there is an additive groupoid S

of positive integers such that

Σ = {xyn+1 = xy : n ∈ S}.
The lattices Ul,Ur,U (of all left, right, two–sided varieties, respectively)

can be characterized as follows:

Proposition 3.4. (l) Ul is isomorphic to the lattice of positive inte-
gers, where m ≤ n iff m|n.

(r) Ur is antiisomorphic to the lattice of additive groupoids of positive in-
tegers.

(t) U is isomorphic to the lattice of pairs (m,n) of positive integers such
that n is divisor of m, and:

(m,n) ≤ (m′, n′) ⇐⇒ m|m′ & n|n′.

4. Incomplete U(M ;N)– Groupoids and Varieties U(M ;N) with
Solvable Word Problem

We investigate here the class of incomplete U(M ;N)–groupoids and by
applying the main result of Evans’s paper [6], we solve the word problem for
some varieties U(M ;N).

The term ”incomplete groupoid” ([6]) has the same meaning as ”half-
groupoid” ([1]) or ”partial groupoid” ([8]). Namely, if G is a nonempty set, D
a subset of G × G, and · : (x, y) 7→ xy a map from D into G, then the pair
G = (G, ·) is called an incomplete groupoid with the domain D.

A groupoid H = (H, •) is called an extension of the incomplete groupoid
G iff G ⊆ H and a • b = ab, for every (a, b) ∈ D. If Go = G ∪ {0}, where
0 /∈ G, then the groupoid Go = (Go, •) defined by

(4.1) x • y =

{
xy, if (x, y) ∈ D
0, otherwise

is an extension of G. We call Go the trivial extension of G.
If M , N are sets of positive integers such that M ∪N 6= ∅, then we denote

by IU(M ;N) the class of incomplete groupoids G, such that the corresponding
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trivial closure Go satisfies the following implications:

xm+1 ∈ G⇒ xm+1 • y = x • y,
yn+1 ∈ G⇒ x • yn+1 = x • y,

(4.2)

for any m ∈M,n ∈ N, x, y ∈ G.
Let G be an incomplete groupoid and K a set of positive integers. We

define an equivalence ∼K on G as follows. If K = ∅, then ∼K is the equality
on G. If K 6= ∅, we define a relation →K on G by:

(4.3) c→K d ⇐⇒ d = ck+1,

for c, d ∈ G and some k ∈ K, and we put: c↔K d ⇐⇒ (c→K d or c←K d).
We denote by ∼K the reflexive, symmetric and transitive closure of →K on
G, i.e., the equivalence on G generated by →K .

By (4.1), (4.2), and (4.3), we obtain the following characterization of the
class IU(M ;N):

(4.4) G ∈ IU(M ;N)⇔ (∀x, x′, y, y′ ∈ G)(x ∼M x′ & y ∼N y′ ⇒ xy = x′y′)

Let G ∈ IU(M ;N) and define

(4.5) A = {a ∈ G | ak+1 ∈ G, for every k ∈M ∪N}, B = G \A;

clearly, B = {b ∈ G | bk+1 /∈ G, for some k ∈M ∪N}.
By (4.1), (4.2) and (4.5) it follows that

(4.6) G ∈ IU(M ;N) & A = G⇒ Go ∈ U(M ;N).

Note that, in the special case when M = {m}, N = {n}, and n|m, we
have A = {a ∈ G | am+1 ∈ G} and B = {b ∈ G | bm+1 /∈ G}.

The following proposition is true.

Proposition 4.1. (i) If G ∈ IU(m; ∅), then for each a ∈ A, q ≥ 0,
and 1 ≤ k ≤ m, the equality aqm+k+1 = ak+1 holds.

(ii) If G ∈ IU(m;n), n|m, and a ∈ A, then (ain+1)m+1 = ain+1.
(iii) IU(∅; r, i) = IU(∅; r, i, r + i).

Using (4.3) and Proposition 4.1 we obtain the following

Lemma 4.2. Let G ∈ IU(m;n) and n|m. Then

(i) x ∼m y ⇒ xm+1 = ym+1;
(ii) x ∼m y ⇒ x, y ∈ A ∨ x = y ∈ B,

where ∼m stands for ∼{m}.

Proof. Let x ∼m y. If x = y, then xm+1 = ym+1. If x 6= y, then
x ∼m y ⇐⇒ (∃t0, t1, . . . ts ∈ G)x = t0 ↔ t1 ↔ · · · ↔ ts = y, where
↔ stands for ↔{m}. The proof is given by induction on s. If s = 1, then

xm+1 = ym+1, and x, y ∈ A. If s = 2, we have the following four cases:
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1) x→ t→ y; then t = xm+1, y = tm+1, y = (xm+1)m+1 = xm+1

(by Proposition 4.1), and thus ym+1 = (xm+1)m+1 = xm+1;
2) x→ t← y; then xm+1 = t = ym+1;
3) x← t← y; then xm+1 = ym+1 follows by symmetry of 1);
4) x← t→ y; then x = tm+1 = y;

and in each case x, y ∈ A.
If s > 2, then applying 1)–4), the sequence t0, t1, . . . , ts can be reduced

to a sequence with less than s+ 1 elements.

As a corollary of Lemma 4.2 we obtain the following

Proposition 4.3.

(4.7) G ∈ IU(m;n) & n|m⇒ (∀b, b′ ∈ B)(b ∼m b′ ⇒ b = b′).

If b ∈ B, then we denote by p(b) the positive integer p, such that

(4.8) bp 6= 0, bp+1 = 0.

Now we are ready to prove the main result.

Theorem 4.4. If the pair (M,N) satisfies one of the following conditions

(i) M = ∅, N 6= ∅; (ii) M = {m}, N = ∅; (iii) M = {m} = N,

then for each (finite) G ∈ IU(M ;N) there exists a (finite) H ∈ U(M ;N) that
is an extension of G.

Proof. If B = ∅, then Go is an extension of G, finite if G is finite,
such that, by (4.6), Go ∈ U(M ;N). Thus, it remains to build an extension
H = (H, •) ∈ U(M ;N), assuming that B 6= ∅.

Consider first the case (i): M = ∅, N 6= ∅.
Let L be a set such that L ∩ Go = ∅, and let b 7→ b be a surjection from

B onto L with the following property:

(4.9) (∀b, c ∈ B)(b = c ⇐⇒ b ∼ c & bp = cq),

where ∼ is an abbreviation for ∼N , p = p(b), q = p(c). Define an operation
• on H = Go ∪ L as follows:

1) If x, y ∈ G, b ∈ B, then:
1.1) x • y = xy, for xy ∈ G;
1.2) x • y = b, for x = bp, y ∼ b.

2) If x ∈ G, b ∈ B, then:
2.1) b • x = b, for x ∼ b;
2.2) x • b = x • b, if x • b is defined by 1.1) or 1.2).

3) If b, c ∈ B, and b ∼ c, then b • c = b.
4) x • y = 0, in any other case.
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Using (4.9) and (4.4) one can directly show that • is a well–defined oper-
ation on H .

It follows by 1.1) that H is an extension of G, and so it remains to show
that H ∈ U(∅;N).

First, by (4.9) and the definition of • we obtain the following properties:

5) If a ∈ A, b ∈ B, z ∈ L ∪ {0}, n ∈ N, p = p(b), then:
5.1) an+1

• = an+1;
5.2) bn+1

• = bn+1, for n+ 1 ≤ p;
5.3) bn+1

• = b, for n+ 1 > p;
5.4) zk

• = z, for each k ∈ Z+.

(Here, yk
• is the k–th power of y in H, i.e. y1

• = y, yk+1
• = yk

• • y.)
Now, by using properties 5) and the definition of •, we can show that:

6) x • (yn+1
• ) = x • y, for each x, y ∈ H, n ∈ N , i.e. H ∈ U(∅;N).

Thus we have proved Theorem 4.4 in the case (i).
Now, consider the cases (ii) M = {m}, N = ∅ and (iii) M = N = {m}.

The construction of a groupoid H ∈ U(M ;N) that is an extension of G ∈
IU(M ;N) is formally the same in case (ii) as in case (iii). In both cases we
will denote the equivalence ∼M in G by ∼; and ≈ is the equality in G in case
(ii), and ≈ is the same as ∼ in case (iii).

Let

L = {(b, i) : b ∈ B, p(b) < i ≤ m}
and H = Go ∪ L. (The union defining H is assumed to be disjoint.)

Define an operation • in H as follows.

1′) If x, y ∈ G, then:
1.1′) x • y = xy, if xy ∈ G;
1.2′) x • y = b, if b ∈ B, x ∼ bm, p(b) = m, y ≈ b;
1.3′) x • y = (b, p(b) + 1), if x ∼ bp(b), p(b) < m, y ≈ b.

2′) If b ∈ B, y ∈ G, y ≈ b, then:
2.1′) (b,m) • y = b;
2.2′) (b, i) • y = (b, i+ 1), if p(b) < i < m.

3′) If x ∈ L, then x • x = x.
4′) x • y = 0, in any other case.

Thus we obtain an extension H = (H, •) of G. (The product x • y for (ii) in
the cases 1.2′) and 1.3′) is well–defined by (4.7).)

It remains to show that H ∈ U(M ;N).
For that purpose, note first that the following statements hold.

5′) If a ∈ A, x ∈ B ∪ L ∪ {0}, then
5.1′) am+1

• = am+1 ∈ G;
5.2′) xm+1

• = x.

(Here, as in 5), yk
• is the k–th power of y in H.)

We will now show that:
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6′) xm+1
• • y = x • y, for any x, y ∈ H .

Namely, if x ∈ B ∪ L ∪ {0} or y ∈ L ∪ {0}, then the equality 6′) follows
from 3′), 4′) and 5.2′). There remains the case x ∈ A, y ∈ G. Here, by 5.1′)
and the definition 1.1′), 1.2′), 1.3′) and 4′), we obtain the desired equality 6′).

Hence (in the case M = {m}, N = ∅), H ∈ U(m; ∅).
It remains to show that, for M = N = {m}, the following identity holds

in H:

7′) x • (ym+1
• ) = x • y.

By the same reasoning as for 6′), the equality 7′) is true whenever y ∈ B ∪
L ∪ {0} or x = 0. For x ∈ G ∪ L and y ∈ A, one can show that 7′) is also
true, in the same way as for 6′).

Hence (in the case M = N = {m}), H ∈ U(m;m), and this completes
the proof of Theorem 4.4.

The following statement is a special case of the main result of the paper
[6]:

Proposition 4.5. If the pair (M,N) is such that for every G ∈
IU(M ;N) there exists an extension H ∈ U(M ;N), then the word problem
is solvable in the variety U(M ;N).

As a corollary of Theorem 2.1, Proposition 4.5 and Theorem 4.4, we obtain
the following

Theorem 4.6. If M ∪ N is finite and one of the following conditions
holds:

(i) N = ∅; (ii) M 6= ∅, N 6= ∅, and gcd(M) = gcd(M ∪N); (iii) M = ∅,
then the word problem is solvable in the variety U(M ;N).

Remark 4.7. Theorem 2.1 and Theorem 3.1 suggest the following two
questions:

a) Is the implication

U(M ;N) = U(M ′;N ′)⇒ IU(M ;N) = IU(M ′;N ′)

true?
b) Is it true that, for every pair (M,N), every G ∈ IU(M ;N) has an

extension H ∈ U(M ;N)?

The answer to both questions, in general, is negative, as the following example
shows.

Let M be a nonempty set of positive integers, gcd(M) = m and G =
{1, 2, . . . ,m+ 1,m+ 2}. Let G = (G, •) be an incomplete groupoid such that
the corresponding canonical extension Go is defined as follows:

a1) i • 1 = i+ 1, if i = 1, 2, . . . ,m+ 1;
a2) 1 • (m+ 2) = 1;
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a3) (m+ 1) • (m+ 2) = m+ 1;
a4) x • y = 0, otherwise.

If m /∈M and p = min(M) > m+ 1, then xn+1 = 0 for every x ∈ G, n ∈M ,
and thus, by (4.3), G ∈ IU(M ; ∅). On the other hand, we have 1m+1

• • 1 =
(m + 1) • 1 = m + 2 6= 2 = 1 • 1, which implies that G /∈ IU(m; ∅). Hence,
IU(m; ∅) 6⊆ IU(M ; ∅), i.e. the answer to the question a) is negative.

Also, G ∈ IU(M ; ∅) cannot be embedded in an H ∈ U(M ; ∅) (= U(m; ∅)),
because (1m+1

• ) • 1 = m+ 2 6= 2 = 1 • 1.

Remark 4.8. Theorem 4.4 and the main result of [7] imply that, for each
of the cases: i) M 6= ∅, N = ∅; ii) M 6= ∅ 6= N, gcd(M) = gcd(M ∪N); iii)
M = ∅, N 6= ∅, the embeddability problem: ”For a finite G ∈ IU(M ;N), is
there an extension H ∈ U(M ;N)?” is solvable.

Remark 4.9. In connection with Theorem 4.6, the authors conjecture
that, applying the main result of [7], one can obtain the following variant
of Theorem 4.6: ”If M ∪ N is finite, then the word problem is solvable in
U(M ;N).”
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