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An Introduction to Probabilistic Encryption

GEORG J. FUCHSBAUER*

Abstract.  An introduction to probabilistic encryption is given,
presenting the first probabilistic cryptosystem by Goldwasser and Mi-
cali. Furthermore, the required number-theoretic concepts are discussed
and the notion of semantic security is presented in an informal way.
The article should be comprehensible to students with basic mathemati-
cal knowledge.
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1. Introduction

Historically, encryption schemes were the first central area of interest in cryptog-
raphy.! They deal with providing means to enable private communication over an
insecure channel. A sender wishes to transmit information to a receiver over an
insecure channel, that is a channel which may be tapped by an adversary.

Thus, the information to be communicated, which we call the plaintext, must
be transformed (encrypted) to a ciphertext, a form not legible by anybody other
than the intended receiver. The latter must be given some way to decrypt the
ciphertext, i.e. retrieve the original message, while this must not be possible for
an adversary. This is where keys come into play; the receiver is considered to
have a key at his disposal, enabling him to recover the actual message, a fact that
distinguishes him from any adversary.

An encryption scheme consists of three algorithms: The encryption al-
gorithm transforms plaintexts into ciphertexts while the decryption algorithm
converts ciphertexts back into plaintexts. A third algorithm, called the key gener-
ator, creates pairs of keys: an encryption key, input to the encryption algorithm,
and a related decryption key needed to decrypt. The encryption key relates en-
cryptions to the decryption key. The key generator is considered to be a proba-
bilistic algorithm (see below), which prevents an adversary from simply running the
key generator to get the decryption key for an intercepted message. The following
concept is crucial to probabilistic cryptography:

Definition 1 [Probabilistic Algorithm]. A probabilistic algorithm is an al-
gorithm with an additional command RANDOM that returns “0” or “17, each with
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1For a profound introduction to cryptography, see [3].
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probability 1/s. In the literature, these random choices are often referred to as coin
flips.?

Private-Key vs. Public-Key

The first encryption schemes had only one key for encryption and decryption, which
therefore was to be kept private. We call them private-key or symmetric encryp-
tion schemes. Before using the scheme, the key must once be exchanged securely,
hence private-key encryption is a “way of extending a private channel over time”.

In the 1970s Diffie and Hellman [1] introduced a new concept, called public-
key or asymmetric encryption: The encryption key differs from the decryption key,
moreover, given the former it must be infeasible to find the latter. That is why these
schemes provide secure communication without ever requiring any private channel;
the receiver creates a pair of keys, gives the encryption key (that can be publicly
known) to the sender, but keeps the decryption key secret. The sender can then
use the encryption key to encrypt messages, which can only be decrypted by the
receiver. In this context, the encryption and the decryption key are often referred
to as the public and the private key, respectively.

An analogy illustrating the difference between the two notions of encryption is
the problem of sending a confidential parcel by postal delivery: Private-key encryp-
tion corresponds to sending the secret content in a locked box. The drawback is
that the recipient must be given the key to the box. A secure channel, e.g. a courier,
is thus required. The idea to avoid this is not to send the key to the receiver, but
rather let him send a padlock to the sender and keep the key. The sender locks the
secret content and the receiver is the only one able to open the box. Intercepting
the padlock is of no use to an adversary—assuming that it does not help in forging
the key.

2. Probabilistic Public-Key Encryption

The first public-key cryptosystems (such as RSA [4]) were deterministic algorithms
based on trapdoor functions. These are functions that are easy to compute but
hard to invert—unless some information called the trapdoor is known. So, while
everybody can use the function to encrypt messages, only the legal receiver knows
the trapdoor, which serves as a decryption key.3

According to [2], the two main drawbacks of encryption schemes based on trap-
door functions are:

1. Inverting may be easy for plaintexts of some special form.*

2. It could be easy to compute at least partial information of the plaintext.

2More formally, probabilistic algorithms can be defined by Turing machines having an addi-
tional infinite read-only tape containing random bits.

3The trapdoor function used for RSA is exponentiation to the power of the public key in Zj,
where n = pq is the product of two large primes. That is, the encryption of a plaintext m € Z is
¢ := mf mod n. The prime factors of n can be considered as the trapdoor.

4RSA, for example, always encrypts the messages 1 and 0 to themselves.
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Furthermore, for deterministic schemes it is easy to detect if a message is sent
twice. These points inspired the development of probabilistic public-key encryp-
tion schemes by Goldwasser and Micali [2]. They substituted the notion of trapdoor
functions by what they introduced as (unapproximable) trapdoor predicates: A
predicate B is trapdoor and unapproximable if anyone can select an x such that
B(z) = 0 or y such that B(y) = 1, but only those who know the trapdoor infor-
mation can, given z, compute the value of B(z). Goldwasser and Micali used the
predicate “is quadratic residue modulo composite n” (see Section 4.).

Their scheme uses bitwise encryption, which depends on a sequence of random
bits. However, messages are always uniquely decryptable. Two properties are:

1. Decoding is easy for the legal receiver of a message, who knows the trapdoor
information, but provably hard for an adversary.

2. No information about the plaintext can be obtained from the ciphertext by
an adversary.

Definition 2 [Probabilistic Public-Key Bit-Encryption Scheme]. A
probabilistic public-key bit-encryption scheme (K,E,D) with security pa-
rameter n consists of:

o IC, the key generator: A probabilistic algorithm that on input n outputs a
pair (e,d), where e is the public key and d is the private key.

o &, the encryption function, with three inputs: the public key e, the plaintext
bit b € {0,1}, and a random string r of length p(n) for some polynomial p(-).
We will write E.(b,r).

e D, the decryption function, with two inputs: the private key d and the
ciphertext c. Again, we will write Dg(c).

Moreover, decryption of any encryption of a bit yields the encrypted bit, i.e.

VneN V(e,d) € K(1™) Vbe {0,1} Vr e {0,137 : Dy((Ec(b,7))) = b

3. Semantic Security

A minimal requirement for an encryption scheme is that it must be impossible to
retrieve an encrypted plaintext for anybody not knowing the decryption key. How-
ever, as already pointed out, this condition may be too weak—in some applications
even partial information gained from the plaintext could endanger security. This
is why we demand it to be “infeasible to learn anything about the plaintext from
the ciphertext” or, in other words, “whatever an eavesdropper can compute about
the cleartext given the ciphertext, he can also compute without the ciphertext” [2].
Schemes fulfilling this requirement, such as the Goldwasser-Micali scheme, are called
semantically secure.

Since the actual definition of semantic security in [2] is rather technical, we settle
for giving some intuitive notions.
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Let M be the set of all possible messages, and for all m € M, let p,, be the
probability that m is sent. In a semantically secure cryptosystem, even if the adver-
sary knows these probabilities, it must be hard for him to extract any information
about messages from their encryption.

Let f: M — V be a function defined on M that represents such information
about messages. Let v™ be a value for f(m) that has maximal probability p™ to
occur when m is chosen at random.® Consider the following two games: (Note that
we assume that the adversary knows the public key e)

Game 1. Randomly pick m € M and ask the adversary to guess the value of f(m)
without telling him m. The best the adversary can do, is always guess v™;
thus, the probability of being right is p™.

Game 2. Let the adversary choose a function f defined on M. Randomly pick
m € M. Compute an encryption of m and give it to the adversary. Now ask
the adversary to guess f(m).

Informally, a cryptosystem is semantically secure if the adversary cannot win Game
2 with higher probability than Game 1.

4. The Quadratic Residuosity Problem

In this section we present number-theoretical results that underlie the Goldwasser-
Micali encryption scheme. For the sake of readability, proofs are not given here;
the interested reader is referred to the appendix.

By Zf:={aeN|1<a<n-1A ged(a,n) =1} we denote the multiplicative
group of Z,, i.e. all numbers less than n that have multiplicative inverses modulo
n.

Definition 3 [Quadratic Residues|. An element a € Z} is said to be a
quadratic residue (square) modulo n if there exists an x € Z,, such that 2> = a
(mod n). Every such x is called a square root of a modulo n. If no such x exists,
then a is called a quadratic non-residue modulo n. We denote the set of all
quadratic residues modulo n by Q,, the set of all quadratic non-residues by Q,,.

Lemma 1. Let p be a prime. Then |Q,| = |Q,| = 3|Z;| = p2;1'

Lemma 2. Let p and q be odd primes, n := pq, a € Z;,. Then a € @y, if and
only ifa € Qp and a € Q4. For n = pq, we have |Q,| = %(p —1)(g—1).

Definition 4 [Legendre Symbol]. Let p be an odd prime, a an integer, s.t.
ged(a,p) = 1. The Legendre Symbol is defined to be

G-{4 & %

Lemma 3. Let p be an odd prime, a,b € Z,,. Then (9)(5) = (%’).
The Jacobi symbol is an extension of the Legendbre symbol for composite

()= (3)()

5That is, vM is a value in V with probability pM = maXuEV(Zmeffuu)pm)
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By definition, Lemma 3 obviously holds for composite n instead of p, too.

We now turn to the question of computing the Legendre (Jacobi) symbol. For
prime p this can easily be done by the following criterion, which therefore yields an
algorithm for deciding quadratic residuosity in Zp.

Proposition 1 [Euler’s Criterion]. Let p be an odd prime. Then a € Zy, is a
quadratic residue modulo p if and only if a?~Y/2 =1 (mod p)

For composite n = pq, there also exist efficient algorithms to compute the Jacobi
symbol of a number a, even if the prime factorization of n is not known.

However, in contrast to the case Z,, this does not yield a tool for deciding
quadratic residuosity in Z: A quarter of the numbers in Z} are quadratic residues
while half of them have Jacobi symbol 1. The numbers having Jacobi symbol 1
while being quadratic non-residues are called pseudosquares.

Definition 5 [Quadratic Residuosity Problem (QRP)]. Given a composite
integer n = pq and a € Z;, with (&) = 1, decide whether or not a is a quadratic
residue modulo n.

There is no efficient procedure known for solving the Quadratic Residuosity
Problem if the factorization of n is unknown. The Quadratic Residuosity As-
sumption states that for sufficiently large primes p and g, for every real-life algo-
rithm it is infeasible to solve QRP.

However, if the factorization n = pq is known, it is easy to solve QRP by
computing (%), since a is a pseudosquare if and only if (¢) = (¢) = —1. It is
these two facts that Goldwasser and Micali have based the fﬁst semantically secure
cryptosystem upon.

5. The Goldwasser-Micali Encryption Scheme

We present the three algorithms /C, £ and D of the Goldwasser-Micali encryption
scheme as given in [3].
Algorithm 1 [Key Generation K].
1. Select two large random primes p and q, p # q.
2. Setn « pq.
3. Select a pseudosquare y € Z,, (i.e. y is quadratic non-residue and (£) =1).
4. The public key is (n,y), the private key is (p, q).
Algorithm 2 [Encryption £]. Let message m be a binary stringm = mims ... my,
let (n,y) be the public key.
1. Fori=1...¢ do:
(a) Select x € Z7, at random.
(b) If m; =0, set ¢; « x? mod n; otherwise set ¢; +— yx? mod n.

2. The ciphertext is ¢ = (c1,¢a,...,C).

Algorithm 3 [Decryption D]. Let ¢ = (c1,¢2,...,¢0) be a ciphertext and
(p,q) the private key.
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1. Foriv=1...4 do:
(a) Compute e; = (%) using Proposition 1.

(b) If e; = 1, set m; — 0; otherwise set m; «— 1.
2. The decrypted message is m = (my, ma, ..., my).
Remark 1.

Key Generation: The pseudosquare y required in Step 3 can be found by a proba-
bilistic algorithm that picks y at random until (%) = (%) =-1.

Encryption: If m; =0, then it is encrypted to a random quadratic residue modulo
n, while for m; = 1 a random pseudosquare is chosen. In fact, according to
Lemma 4 and multiplicativity of the Jacobi symbol, a pseudosquare times a
quadratic residue yields a pseudosquare.

Decryption:  Knowing the factors of n, it is easy to decide whether a c; is a
quadratic residue or not: (<) = 1 if and only if ¢; is a quadratic residue,

which s the case if and only if m; = 0.

Remark 2 [Security of the scheme]. Assuming the hardness of QRP (Def-
inition 5), the Goldwasser-Micali encryption scheme is semantically secure: For
x € 77 is picked at random, x? is a random quadratic residue and yx? is a random
pseudosquare modulo n. So, in order to decrypt a single bit of the ciphertext, an
attacker would have to solve the quadratic residuosity problem. For a detailed proof
based on mathematical definitions, see [2].

The Goldwasser-Micali cryptosystem was the first system based upon the con-
cept of probabilistic encryption and furthermore the first system proven to be se-
mantically secure (assuming the intractability of the quadratic residuosity problem).
It is, nevertheless, not a practicable scheme since in general, one plaintext-bit is ex-
panded into n bits of ciphertext.

A  Proofs

This appendix contains the proofs of the results stated in Section 4..

Lemma 4. Let a be a quadratic residue modulo n, b a quadratic non-residue
modulo n. Then ab is a quadratic non-residue modulo n.

Proof. Since a is a quadratic residue, there exists ¢ € Z7 s.t. ¢ = a (mod n).
Assume ab were a quadratic residue, too; let d € Z} be s.t. d> = ab (mod n). This
implies b = d?a™! = (dc™1)? (mod n). So de~! would be a root of b, contradicting
its assumed non-residuosity. O

Proof.[Proof of Lemma 1] We show that for p prime, half of the elements of
Z, are quadratic residues.

Since Z3 is cyclic, it has a generator. Let g be s.t. Z = {g" |0 < i < p —1}.
We show that ¢ is a quadratic non-residue modulo p: Assume that there is some
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a € Zyst.a* =g (mod p). Thus g?~1/2 =a~1 =1 (mod p) (by Fermat’s Little
Theorem®), which contradicts the fact that the order of the generator g is p — 1.
g%, g% ..., gP " are distinct quadratic residues, while g, gg?,...,gg?~!, being
products of g and a quadratic residue, are quadratic non-residues by Lemma 4. O
Proof. [Proof of Lemma 2] We show that for n = pgq, a is a quadratic residue
modulo n if and only if it is a quadratic residue both modulo p and modulo gq.
“=" Let a € Q. There exists ¢ € Z%, s.t. ¢ = a (mod n). Therefore”, ¢? = a
(mod p); thus, ¢ is a square root of a modulo p. Analogously, ¢ is a square root of
a modulo q.
“«<" Let a € Qp and a € Q4. There exist ¢, and ¢, s.t. cﬁ =a (mod p) and cg =a
(mod ¢). By the Chinese Remainder Theorem there is one solution < n to the
following system of congruences:

r=c¢, (modp)

=¢; (modq)

Thus 22 = a (mod p) and 22 = a (mod q), therefore 22 = a (mod n).8 O

Proof. [Proof of Lemma 3] We show that for a,b € Zj, we have () (%) =

%’). As in the proof of Lemma 1, let g be a generator of Z; and let i be s.t. a = g

(
(mod p). We know that () = 1 if and only if i is even. Let j be s.t. b = g’
(mod p). Thus ab= ¢*™7/ (mod p) and i+ j is even if and only if neither or both of
i and j are even. O

Proposition 2 [Euler’s Criterion]. Let p be an odd prime. Then for every

a €
(E) =1 ifand only if a®P"/2=1 modp
p
Proof. The map ¢: Zy — Z3, a — a?=1/2 is a group homomorphism.® Let
Y Ly — {£1}, a — (%) By Lemma 3, this is a group homomorphism, too. If
a € ker(¢), then a = ¢ for some ¢ € Z, so'”

ola) = aP—1)/2 — (02)(10*1)/2 R

by Fermat’s Little Theorem. Thus ker(¢)) C ker(¢). By Lemma 3, ker(t)) has index
2 in Zjy, i.e. it contains half of the elements of Z, so either ker(y) = ker(¢)) or
@(a) = 1 for all a. In the latter case, the polynomial z®~1/2 — 1 would have p — 1
roots!! in the field Z*, so ker(p) = ker(v)). O

*

»y We have aP~! =1

6Fermat’s Little Theorem states the following: For p prime and a € Z
(mod p).
"Per definitionem c? = a (mod n) iff n|c? — a, so obviously p|c? — a.
81f two distinct primes p and ¢ divide 2 — a, then they both appear in the prime factorization
of 2 — a, thus also their product pg = n divides 22 — a.
9Since Zy is an abelian group, we have: ¢(a) p(b) = aP=1)/2p(P=1)/2 = (qb)(P=1)/2 = ,(ab).
10The kernel ker(yp) of a group homomorphism ¢: G — H is a subgroup of the domain G
containing exactly those elements that are mapped to the neutral element in H, i.e. ker(¢)) :=
{a € Glela)=1}.
1A basic result from field theory is the following: A polynomial of degree d over a field can
have at most d roots.

2 =
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