Common fixed point theorems of different compatible type mappings using Ciric's contraction type condition

G. V. R. Babu* and K. N. V. V. Vara Prasad ${ }^{\dagger}$

Abstract

The purpose of this paper is to establish necessary and sufficient conditions for the existence of common fixed points for a compatible pair of selfmaps under Ciric's contraction type condition. These theorems improve and generalize the results of Mukherjee and Verma [11] and Jungck [9] to a pair of selfmaps. Also established the existence of common fixed points for a pair of compatible mappings of type (B), and obtain a result on the existence of common fixed points for a pair of compatible mappings of type (A) as corollary. Greguš fixed point theorem follows as a special case to our results.

Key words: compatible mappings, compatible mappings of type (A), compatible mappings of type (B), common fixed point, linear map, affine map, Banach space, Ciric's contraction type condition, reciprocal continuity

AMS subject classifications: $47 \mathrm{H} 10,54 \mathrm{H} 25$
Received June 12, 2006 Accepted June 22, 2006

1. Introduction

Finding necessary and sufficient conditions for the existence of fixed points is an interesting aspect. In 1986, Fisher and Sessa [6], established common fixed points for a pair of selfmaps in which one map is linear and nonexpansive. It was improved to affine maps by Mukherjee and Verma [11]. Further it is improved by Jungck [9] to continuous maps for a compatible pair of selfmaps. The aim of this paper is to find necessary and sufficient conditions for the existence of common fixed points for a pair of selfmaps under weak commutativity hypotheses using Ciric's contraction type condition, which improve and generalize the results of Fisher and Sessa [6], Mukherjee and Verma [11], and Jungck [9].

[^0]Throughout this paper, X denotes a Banach space with norm $\|\cdot\| ; T$ and I are selfmaps of $X ; N$ is the set of all natural numbers.

Definition 1.1(Sessa [11]). Two selfmaps T and I of X are said to be weakly commuting if $\|T I x-I T x\| \leq \| T x-$ Ix $\|$ for all $x \in X$.

In 1986, Jungck [8] introduced the concept of compatible mappings as a generalization of weakly commuting maps.

Definition 1.2(Jungck [5]). Two selfmaps T and I of X are said to be compatible if

$$
\lim _{n \rightarrow \infty}\left\|I T x_{n}-T I x_{n}\right\|=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} I x_{n}=t
$$

for some $t \in X$.
Clearly, every weakly commuting pair of maps is compatible, but its converse is not true [8].

Definition 1.3. Let C be a convex subset of X. A mapping $I: C \rightarrow C$ is called affine if $I(\alpha x+\beta y)=\alpha I x+\beta I y$ for all $x, y \in C$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$.

Pant [12] introduced the concept of reciprocal continuity for a pair of selfmaps.
Definition 1.4(Pant [12]). Two selfmaps T and I of X are said to be reciprocal continuous if

$$
\lim _{n \rightarrow \infty} T I x_{n}=T t \quad \text { and } \quad \lim _{n \rightarrow \infty} I T x_{n}=I t
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} I x_{n}=t \quad \text { for some } t \in X
$$

Clearly, every continuous pair of selfmaps is reciprocal continuous, but its converse need not be true [12].

In 1986, Fisher and Sessa [6] obtained the following common fixed point theorem of Greguš type.

Theorem 1.5(Fisher and Sessa [6]). Let T and I be weakly commuting selfmaps of a closed convex subset C of X with $T(C) \subseteq I(C)$ and satisfying the inequality

$$
\begin{equation*}
\|T x-T y\| \leq a\|I x-I y\|+(1-a) \max \{\|I x-T x\|,\|I y-T y\|\} \tag{1}
\end{equation*}
$$

for all $x, y \in C$, where $0<a<1$. If I is linear, nonexpansive in C, then T and I have a unique common fixed point in C.

In 1988, Mukherjee and Verma [11] improved Theorem 1.5 by using affine map in place of linear map I.

Theorem 1.6 (Mukherjee and Verma [8]). Let T and I be weakly commuting selfmaps of a closed convex subset C of X satisfying the inequality (1) with $T(C) \subseteq$ $I(C)$. If I is affine, nonexpansive in C, then T and I have a unique common fixed point in C.

In 1990, Jungck [9] improved and generalized Theorem 1.5, by replacing the nonexpansive property of I by continuity and weak commutativity by compatibility in the following way.

Theorem 1.7(Jungck [9]). Let T and I be compatible selfmaps of a closed convex subset C of X. Assume that $T(C) \subseteq I(C)$ and satisfying the inequality (1). If I is continuous and linear in C, then T and I have a unique common fixed point in C.

Ciric's contraction type condition: there exist real numbers a, b, c with $0<a<1, b \geq 0, a+b=1,0 \leq c<\eta$ such that

$$
\begin{align*}
\|T x-T y\| \leq & a \max \{\|I x-I y\|, c[\|I x-T y\|+\|I y-T x\|]\} \\
& +b \max \{\|I x-T x\|,\|I y-T y\|\} \tag{2}
\end{align*}
$$

for all $x, y \in X$, where $\eta=\min \left\{\frac{2+a}{5+a}, \frac{2-a}{4}, \frac{4}{9+a}\right\}$.
Here we observe that $\eta<\frac{1}{2}$.
By choosing I as the identity map, we obtain Ciric's contraction condition for a single selfmap T which is introduced by Ciric[2].

In Section 2, we prove a common fixed point theorem (Theorem 2.2) for a compatible pair of selfmaps, in which one map is affine and continuous satisfying the Ciric's contraction type condition (2). Also we improve Theorem 2.2 for a pair of reciprocal continuous maps. Our theorems generalize the results of Mukherjee and Verma [11] and Jungck [9]. In Section 3, we prove the existence of common fixed points for a pair of compatible mappings of type (B), and obtain a result on the existence of common fixed point for a pair of compatible mappings of type (A) as corollary. Also, Greguš fixed point theorem follows as a special case to our results.

2. Main results

Proposition 2.1. Let T and I be selfmaps of X which are compatible and satisfy the Ciric's contraction type condition (2). If I is continuous then $T w=I w$ for some $w \in X$ if and only if $A=\cap\left\{\overline{T K_{n}}: n \in N\right\} \neq \phi$, where $K_{n}=\{x \in X$: $\left.\|I x-T x\| \leq \frac{1}{n}\right\}$.

Proof. Suppose that $T w=I w$ for some $w \in X$. Then $w \in K_{n}$ for all n and thus $T w \in T K_{n} \subseteq \overline{T K_{n}}$ for all n. Hence $T w \in A$ so that A is nonempty.

Conversely, assume that $A \neq \phi$. If $w \in A$ then for each n, there exists $y_{n} \in T K_{n}$ such that $\left\|w-y_{n}\right\|<\frac{1}{n}$. Consequently, for each n, there exists $x_{n} \in K_{n}$ such that $y_{n}=T x_{n}$ and $\left\|w-T x_{n}\right\|<\frac{1}{n}$ for all n. On taking limits as $n \rightarrow \infty$, we get $T x_{n} \rightarrow w$ as $n \rightarrow \infty$. Since $x_{n} \in K_{n}$, we have $\left\|I x_{n}-T x_{n}\right\| \leq \frac{1}{n}$. Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I x_{n}=\lim _{n \rightarrow \infty} T x_{n}=w \tag{3}
\end{equation*}
$$

Since T and I are compatible mappings, we have

$$
\begin{equation*}
\left\|I T x_{n}-T I x_{n}\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{4}
\end{equation*}
$$

Since I is continuous, from (4) if follows that

$$
\begin{equation*}
I I x_{n}, T I x_{n}, I T x_{n} \rightarrow I w \quad \text { as } \quad n \rightarrow \infty \tag{5}
\end{equation*}
$$

On taking $x=w$ and $y=I x_{n}$ in (2), we get

$$
\begin{aligned}
\left\|T w-T I x_{n}\right\| \leq & a \max \left\{\left\|I w-I I x_{n}\right\|, c\left[\left\|I w-T I x_{n}\right\|+\left\|I I x_{n}-T w\right\|\right]\right\} \\
& +b \max \left\{\|I w-T w\|,\left\|I I x_{n}-T I x_{n}\right\|\right\}
\end{aligned}
$$

On taking limits as $n \rightarrow \infty$ and using (4) and (5), we have

$$
\begin{aligned}
\|T w-I w\| \leq & a \max \{\|I w-I w\|, c[\|I w-I w\|+\|I w-T w\|]\} \\
& +b \max \{\|I w-T w\|, 0\} \\
= & (a c+b)\|I w-T w\| \\
= & {[1-a(1-c)]\|I w-T w\|, \quad(\text { since }[1-a(1-c)]<1) }
\end{aligned}
$$

a contradiction. Thus $I w=T w$.
Theorem 2.2. Let T and I be compatible selfmaps of X and satisfying the condition (2). If I is continuous and affine on X and $T(X) \subseteq I(X)$, then T and I have a unique common fixed point in X.

Proof. Let x_{0} in X be arbitrary. Since $T(X) \subseteq I(X)$, let x_{1}, x_{2} and x_{3} be points in X such that $I x_{1}=T x_{0}, I x_{2}=T x_{1}$ and $I x_{3}=T x_{2}$ so that

$$
\begin{equation*}
I x_{r}=T x_{r-1} \text { for } r=1,2,3 \tag{6}
\end{equation*}
$$

On using the inequality (2), we have

$$
\begin{align*}
\left\|T x_{r}-I x_{r}\right\|= & \left\|T x_{r}-T x_{r-1}\right\| \\
\leq & a \max \left\{\left\|I x_{r}-I x_{r-1}\right\|, c\left[\left\|I x_{r}-T x_{r-1}\right\|+\left\|I x_{r-1}-T x_{r}\right\|\right]\right\} \\
& +b \max \left\{\left\|I x_{r}-T x_{r}\right\|,\left\|I x_{r-1}-T x_{r-1}\right\|\right\} \\
\leq & a \max \left\{\left\|T x_{r-1}-I x_{r-1}\right\|, c\left[\left\|I x_{r}-I x_{r}\right\|+\left\|I x_{r-1}-T x_{r-1}\right\|\right.\right. \\
& \left.\left.+\left\|T x_{r-1}-T x_{r}\right\|\right]\right\} \\
& +b \max \left\{\left\|I x_{r}-T x_{r}\right\|,\left\|I x_{r-1}-T x_{r-1}\right\|\right\} \tag{7}
\end{align*}
$$

If $\left\|T x_{r-1}-I x_{r-1}\right\|<\left\|T x_{r}-I x_{r}\right\|$, then from (7), we have

$$
\begin{aligned}
\left\|T x_{r}-I x_{r}\right\| & <a \max \left\{\left\|T x_{r}-I x_{r}\right\|, 2 c\left\|T x_{r}-I x_{r}\right\|\right\}+b\left\|T x_{r}-I x_{r}\right\| \\
& =(a+b)\left\|T x_{r}-I x_{r}\right\|,
\end{aligned}
$$

a contradiction. Thus from (7), we have

$$
\left\|T x_{r}-I x_{r}\right\| \leq\left\|T x_{r-1}-I x_{r-1}\right\| \text { for } r=1,2,3
$$

Therefore

$$
\left\|T x_{r}-I x_{r}\right\| \leq\left\|T x_{0}-I x_{0}\right\| \text { for } r=1,2,3
$$

On using (2) and (8), we have

$$
\begin{aligned}
\left\|T x_{2}-I x_{1}\right\| & =\left\|T x_{2}-T x_{0}\right\| \\
& \leq a \max \left\{\left\|I x_{2}-I x_{0}\right\|, c\left[\left\|I x_{2}-T x_{0}\right\|+\left\|I x_{0}-T x_{2}\right\|\right]\right\} \\
& +b \max \left\{\left\|I x_{2}-T x_{2}\right\|,\left\|I x_{0}-T x_{0}\right\|\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq a \max \left\{\left\|I x_{2}-I x_{1}\right\|+\| I x_{1}\right.-I x_{0} \| \\
& c\left[\left\|I x_{2}-T x_{0}\right\|\right.+\left\|I x_{0}-I x_{1}\right\| \\
&\left.\left.+\left\|I x_{1}-T x_{1}\right\|+\left\|T x_{1}-T x_{2}\right\|\right]\right\} \\
&+b \max \left\{\left\|I x_{2}-T x_{2}\right\|,\left\|I x_{0}-T x_{0}\right\|\right\} \\
&=a \max \left\{\left\|T x_{1}-I x_{1}\right\|+\left\|T x_{0}-I x_{0}\right\|,\right. \\
& c\left[\| T x_{1}-\right. I x_{1}\|+\| T x_{1}-I x_{1} \| \\
&\left.\left.+\left\|I x_{1}-T x_{1}\right\|+\left\|I x_{2}-T x_{2}\right\|\right]\right\} \\
&+b \max \left\{\left\|I x_{2}-T x_{2}\right\|,\left\|I x_{0}-T x_{0}\right\|\right\} \\
& \leq a \max \left\{\left\|I x_{0}-T x_{0}\right\|+\left\|I x_{0}-T x_{0}\right\|,\right.
\end{aligned} \quad \begin{aligned}
& c\left[\left\|I x_{0}-T x_{0}\right\|+\left\|I x_{0}-T x_{0}\right\|\right. \\
&\left.\left.\quad+\left\|I x_{0}-T x_{0}\right\|+\left\|I x_{0}-T x_{0}\right\|\right]\right\} \\
&+b \max \left\{\left\|I x_{0}-T x_{0}\right\|,\left\|I x_{0}-T x_{0}\right\|\right\} \\
&=a \max \left\{2\left\|I x_{0}-T x_{0}\right\|, 4 c\right.\left.\left\|I x_{0}-T x_{0}\right\|\right\}+b\left\|I x_{0}-T x_{0}\right\| \\
&=(2 a+b)\left\|T x_{0}-I x_{0}\right\| \\
&=(1+a)\left\|T x_{0}-I x_{0}\right\| .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\|T x_{2}-I x_{1}\right\|=\left\|T x_{2}-T x_{0}\right\| \leq(1+a)\left\|T x_{0}-I x_{0}\right\| . \tag{9}
\end{equation*}
$$

Write $z=\frac{1}{2} x_{2}+\frac{1}{2} x_{3}$.
Since I is affine and using (6), we have

$$
\begin{equation*}
I z=\frac{1}{2} I x_{2}+\frac{1}{2} I x_{3}=\frac{1}{2} T x_{1}+\frac{1}{2} T x_{2} . \tag{10}
\end{equation*}
$$

Hence

$$
\|T z-I z\| \leq \frac{1}{2}\left\|T z-T x_{1}\right\|+\frac{1}{2}\left\|T z-T x_{2}\right\|
$$

Write $M(x, y)=\max \left\{\|I z-T z\|,\left\|T x_{0}-I x_{0}\right\|\right\}$, and we denote it simply by M.
On using the inequality (2), we have

$$
\begin{align*}
\left\|T z-T x_{1}\right\| \leq a \max \left\{\left\|I z-I x_{1}\right\|, c[\| I z\right. & \left.\left.-T x_{1}\|+\| I x_{1}-T z \|\right]\right\} \\
& +b \max \left\{\|I z-T z\|,\left\|I x_{1}-T x_{1}\right\|\right\} \tag{11}
\end{align*}
$$

Thus from (8), we have

$$
\begin{align*}
\left\|T z-T x_{1}\right\| \leq & a \max \left\{\left\|I z-I x_{1}\right\|, c\left[\left\|I z-T x_{1}\right\|+\left\|I x_{1}-I z\right\|+\|I z-T z\|\right]\right\} \\
& +b M \tag{12}
\end{align*}
$$

Now, from (8), (9) and (10), we get

$$
\begin{align*}
\left\|I z-I x_{1}\right\| & \leq \frac{1}{2}\left\|I x_{2}-I x_{1}\right\|+\frac{1}{2}\left\|I x_{3}-I x_{1}\right\| \\
& =\frac{1}{2}\left\|T x_{1}-I x_{1}\right\|+\frac{1}{2}\left\|T x_{2}-I x_{1}\right\| \\
& \leq \frac{1}{2}\left\|T x_{0}-I x_{0}\right\|+\frac{1}{2}(1+a)\left\|T x_{0}-I x_{0}\right\| \\
& =\left(1+\frac{a}{2}\right)\left\|T x_{0}-I x_{0}\right\| . \tag{13}
\end{align*}
$$

Now on using (6), (8) and (10), we have

$$
\begin{equation*}
\left\|I z-T x_{1}\right\|=\frac{1}{2}\left\|T x_{2}-T x_{1}\right\|=\frac{1}{2}\left\|T x_{2}-I x_{2}\right\| \leq \frac{1}{2}\left\|T x_{0}-I x_{0}\right\| . \tag{14}
\end{equation*}
$$

On substituting (13) and (14) in (12), we have

$$
\begin{align*}
\left\|T z-T x_{1}\right\| \leq & a \max \left\{\left(1+\frac{a}{2}\right)\left\|T x_{0}-I x_{0}\right\|,\right. \\
& \left.\quad c\left[\frac{1}{2}\left\|T x_{0}-I x_{0}\right\|+\left(1+\frac{a}{2}\right)\left\|T x_{0}-I x_{0}\right\|+\|I z-T z\|\right]\right\}+b M \\
= & a \max \left\{\left(1+\frac{a}{2}\right)\left\|T x_{0}-I x_{0}\right\|,\right. \\
& \left.c\left[\left(\frac{3+a}{2}\right)\left\|T x_{0}-I x_{0}\right\|+\|I z-T z\|\right]\right\}+b M \\
\leq & a \max \left\{\left(1+\frac{a}{2}\right) M, c\left(\frac{5+a}{2}\right) M\right\}+b M . \tag{15}
\end{align*}
$$

Again, on using the inequality (2), we have

$$
\begin{aligned}
\left\|T z-T x_{2}\right\| \leq & a \max \left\{\left\|I z-I x_{2}\right\|, c\left[\left\|I z-T x_{2}\right\|+\left\|I x_{2}-T z\right\|\right]\right\} \\
& +b \max \left\{\|I z-T z\|,\left\|I x_{2}-T x_{2}\right\|\right\}
\end{aligned}
$$

On using (8), we have

$$
\begin{align*}
\left\|T z-T x_{2}\right\| \leq & a \max \left\{\left\|I z-I x_{2}\right\|, c\left[\left\|I z-T x_{2}\right\|+\left\|I x_{2}-I z\right\|+\|I z-T z\|\right]\right\} \\
& +b M . \tag{16}
\end{align*}
$$

From (6), (8) and (10), we get the following:

$$
\begin{equation*}
\left\|I z-I x_{2}\right\|=\frac{1}{2}\left\|I x_{2}-I x_{3}\right\|=\frac{1}{2}\left\|I x_{2}-T x_{2}\right\| \leq \frac{1}{2}\left\|T x_{2}-I x_{0}\right\|, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|I z-T x_{2}\right\|=\frac{1}{2}\left\|T x_{1}-T x_{2}\right\|=\frac{1}{2}\left\|I x_{2}-T x_{2}\right\| \leq \frac{1}{2}\left\|T x_{0}-I x_{0}\right\| . \tag{18}
\end{equation*}
$$

On substituting (17) and (18) in (16), we get

$$
\begin{align*}
\left\|T z-I x_{2}\right\| \leq & a \max \left\{\frac{1}{2}\left\|T x_{0}-I x_{0}\right\|, c\left[\frac{1}{2}\left\|T x_{0}-I x_{0}\right\|+\frac{1}{2}\left\|T x_{0}-I x_{0}\right\|\right.\right. \\
& +\|I z-T z\|]\}+b M \\
\leq & a \max \left\{\frac{1}{2} M, 2 c M\right\}+b M \tag{19}
\end{align*}
$$

On substituting (15) and (19) in (11), we have

$$
\begin{align*}
\|T z-I z\| \leq & \frac{1}{2}\left[a \max \left\{\left(1+\frac{a}{2}\right) M,\left(\frac{5+a}{2}\right) c M\right\}+b M\right] \\
& +\frac{1}{2}\left[a \max \left\{\frac{1}{2} M, 2 c M\right\}+b M\right] \\
= & \frac{a}{2}\left[\max \left\{\left(1+\frac{a}{2}\right) M,\left(\frac{5+a}{2}\right) c M\right\}\right] \\
& +\frac{a}{2}\left[\max \left\{\frac{1}{2} M, 2 c M\right\}\right]+b M . \tag{20}
\end{align*}
$$

Now the following four possible cases may arise in (20).
Case 1. $\max \left\{\left(1+\frac{a}{2}\right) M,\left(\frac{5+a}{2}\right) c M\right\}=\left(1+\frac{a}{2}\right) M$ and $\max \left\{\frac{1}{2} M, 2 c M\right\}=\frac{1}{2} M$.
Now from (20), we have

$$
\begin{align*}
\|T z-I z\| & \leq\left[\frac{a}{2}\left(1+\frac{a}{2}\right)+\frac{a}{2} \cdot \frac{1}{2}+b\right] M=\left[\frac{a(2+a)}{4}+\frac{a}{4}+(1-a)\right] M \\
& =\lambda_{1} \cdot M \tag{21}
\end{align*}
$$

where $\lambda_{1}=\frac{a^{2}-a+4}{4} \quad(<1)$.
Case 2. $\max \left\{\left(1+\frac{a}{2}\right) M,\left(\frac{5+a}{2}\right) c M\right\}=\left(1+\frac{a}{2}\right) M$ and $\max \left\{\frac{1}{2} M, 2 c M\right\}=2 c M$. Thus from(20), we have

$$
\begin{align*}
\|T z-I z\| & \leq\left[\frac{a}{2}\left(1+\frac{a}{2}\right)+\frac{a}{2} 2 c+b\right] M=\left[\frac{a(2+a)}{4}+a c+(1-a)\right] M \\
& =\lambda_{2} \cdot M \tag{22}
\end{align*}
$$

where $\lambda_{2}=\frac{a^{2}-2 a+4+4 a c}{4} \quad(<1)$.
Case 3. $\max \left\{\left(1+\frac{a}{2}\right) M,\left(\frac{5+a}{2}\right) c M\right\}=\left(\frac{5+a}{2}\right) c M$ and $\max \left\{\frac{1}{2} M, 2 c M\right\}=2 c M$. In this case, again from (20), then we have

$$
\begin{align*}
\|T z-I z\| & \leq\left[\frac{a}{2}\left(\frac{5+a}{2}\right) c+\frac{a}{2} 2 c+b\right] M=\left[\frac{a c(5+a)}{4}+a c+1-a\right] M \\
& =\lambda_{3} \cdot M \tag{23}
\end{align*}
$$

where $\lambda_{3}=\frac{a^{2} c+9 a c+4-4 a}{4} \quad(<1)$.
Case 4. $\max \left\{\left(1+\frac{a}{2}\right) M,\left(\frac{5+a}{2}\right) c M\right\}=\left(\frac{5+a}{2}\right) c M$ and $\max \left\{\frac{1}{2} M, 2 c M\right\}=\frac{1}{2} M$. It follows that

$$
\frac{2+a}{5+a} \leq c \leq \frac{1}{4}
$$

and since

$$
c \leq \eta \leq \frac{2+a}{5+a}
$$

this case doesn't arise.
Now, from (21), (22) and (23), we have

$$
\begin{equation*}
\|T z-I z\| \leq \lambda \cdot M, \text { where } \lambda=\max \left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\} \tag{24}
\end{equation*}
$$

Thus it follows that

$$
\|T z-I z\| \leq \lambda \max \left\{\|I z-T z\|, T x_{0}-I x_{0} \|\right\}
$$

Therefore

$$
\|T z-I z\| \leq \lambda \cdot\left\|T x_{0}-I x_{0}\right\|
$$

This implies

$$
\inf \left\{\|T z-I z\|: z=\frac{1}{2} x_{2}+\frac{1}{2} x_{3}\right\} \leq \lambda\left\|T x_{0}-I x_{0}\right\|
$$

Since $x_{0} \in X$ is arbitrary, we have

$$
\inf \left\{\|T z-I z\|: z=\frac{1}{2} x_{2}+\frac{1}{2} x_{3}\right\} \leq \lambda \inf \{\|T x-I x\|: x \in X\}
$$

On the other hand

$$
\inf \{\|T x-I x\|: x \in X\} \leq \inf \left\{\|T z-I z\|: z=\frac{1}{2} x_{2}+\frac{1}{2} x_{3}\right\}
$$

It follows that

$$
\begin{equation*}
\inf \{\|T x-I x\|: x \in X\}=0 \tag{25}
\end{equation*}
$$

Define $K_{n}=\left\{x \in X:\|T x-I x\| \leq \frac{1}{n}\right\} \quad$ and

$$
H_{n}=\left\{x \in X:\|T x-I x\| \leq \frac{a+1}{(1-a) n}\right\} \quad \text { for } n=1,2,3, \ldots
$$

Then $K_{n} \neq \phi$ and also that

$$
K_{1} \supseteq K_{2} \supseteq K_{3} \supseteq \ldots \supseteq K_{n} \supseteq \ldots
$$

Consequently, $T K_{n}$ is nonempty for $n=1,2,3, \ldots$, and

$$
\overline{T K_{1}} \supseteq \overline{T K_{2}} \supseteq \overline{T K_{3}} \supseteq \ldots \supseteq \overline{T K_{n}} \supseteq \ldots
$$

For any $x, y \in K_{n}$, by (2), we have

$$
\begin{align*}
\|T x-T y\| \leq & a \max \{\|I x-I y\|, c[\|I x-T y\|+\|I y-T x\|]\} \\
& +b \max \{\|I x-T x\|,\|I y-T y\|\} \\
\leq & a \max \{\|I x-T x\|+\|T x-T y\|+\|T y-I y\|, \\
& c[\|I x-T x\|+\|T x-T y\|+\|I y-T y\|+\|T y-T x\|]\} \\
& +b \max \{\|I x-T x\|,\|I y-T y\|\} \\
\leq & \left.a \max \left\{\frac{1}{n}+\|T x-T y\|+\frac{1}{n}\right\}, c\left[\frac{1}{n}+\|T x-T y\|+\frac{1}{n}+\|T x-T y\|\right]\right\} \\
& +b \max \left\{\frac{1}{n}, \frac{1}{n}\right\} \\
\leq & a \max \left\{\frac{2}{n}+\|T x-T y\|, c\left[\frac{2}{n}+2\|T x-T y\|\right]\right\}+\frac{b}{n} . \tag{26}
\end{align*}
$$

Here we consider the following two possible cases of (26).

Case I. $\max \left\{\frac{2}{n}+\|T x-T y\|, c\left[\frac{2}{n}+2\|T x-T y\|\right]\right\}=\frac{2}{n}+\|T x-T y\|$. Now from in (26), we have

$$
\|T x-T y\| \leq \frac{2 a}{n}+a\|T x-T y\|+\frac{b}{n}=\frac{2 a+b}{n}+a\|T x-T y\|
$$

Therefore

$$
\begin{align*}
(1-a)\|T x-T y\| & \leq \frac{a+1}{n} \\
\|T x-T y\| & \leq \frac{a+1}{(1-a) n} \tag{27}
\end{align*}
$$

Case II. $\max \left\{\frac{2}{n}+\|T x-T y\|, c\left[\frac{2}{n}+2\|T x-T y\|\right]\right\}=c\left[\frac{2}{n}+2\|T x-T y\|\right]$. From (26), we have

$$
\begin{aligned}
\|T x-T y\| & \leq a c \frac{2}{n}+2 a c\|T x-T y\|+\frac{b}{n} \\
& =2 a c\left[\frac{1}{n}+\|T x-T y\|\right]+\frac{b}{n} \\
& <a\left[\frac{1}{n}+\|T x-T y\|\right]+\frac{b}{n} \\
& =\frac{1}{n}+a\|T x-T y\| .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\|T x-T y\|<\frac{1}{(1-a) n} \leq \frac{a+1}{(1-a) n} \tag{28}
\end{equation*}
$$

Thus in both cases we get

$$
\|T x-T y\| \leq \frac{a+1}{(1-a) n}, \text { so that } x, y \in H_{n}
$$

Hence

$$
\lim _{n \rightarrow \infty} \operatorname{diam}\left(T K_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{diam}\left(\overline{T K_{n}}\right)=0
$$

On using Cantor's intersection theorem, $A=\bigcap\left\{\overline{T K_{n}}: n \in N\right\}$ contains exactly one point w (say).

Thus from Proposition 2.1, we have

$$
\begin{equation*}
T w=I w . \tag{29}
\end{equation*}
$$

We now show that w is a common fixed point of T and I. On taking $x=w$ and $y=x_{n}$ in (2), we have

$$
\begin{aligned}
\left\|T w-T x_{n}\right\| \leq & a \max \left\{\left\|I w-I x_{n}\right\|, c\left[\left\|I w-T x_{n}\right\|+\left\|I x_{n}-T w\right\|\right]\right\} \\
& +b \max \left\{\|I w-T w\|,\left\|I x_{n}-T x_{n}\right\|\right\}
\end{aligned}
$$

On taking limits as $n \rightarrow \infty$ and using (4) and (29), we get

$$
\begin{aligned}
\|T w-w\| \leq & a \max \{\|T w-w\|, c[\|T w-w\|+\|w-T w\|]\} \\
& +b \max \{\|T w-T w\|,\|w-w\|\} \\
= & a \max \{\|T w-w\|, 2 c\|T w-w\|\}\left(\text { since } c<\frac{1}{2}\right) \\
\leq & a\|T w-w\|<\|T w-w\|,
\end{aligned}
$$

a contradiction. Thus $T w=w$, so that

$$
T w=I w=w
$$

Thus w is a common fixed point of T and I. Uniqueness of the common fixed point follows from the Ciric's contraction type condition.
An alternate proof: The proof is similar upto the identity (25). Here we show that

$$
\begin{equation*}
\max \{\|T x-T y\|,\|I x-I y\|\} \leq \frac{3-a}{1-a} \max \{\|I x-T x\|,\|I y-T y\|\} \tag{30}
\end{equation*}
$$

Write $R=R(x, y)=\max \{\|I x-T x\|,\|I y-T y\|\}$. From the inequality (2), we have

$$
\begin{aligned}
\|T x-T y\| \leq & a \max \{\|I x-I y\|, c[\|I x-T y\|+\|I y-T x\|]\} \\
& +b \max \{\|I x-T x\|,\|I y-T y\|\} \\
\leq & a \max \{\|I x-T x\|+\|T x-T y\|+\|T y-I y\|, \\
& c[\|I x-T x\|+\|T x-T y\|+\|I y-T y\|+\|T y-T x\|]\} \\
& +b \max \{\|I x-T x\|,\|I y-T y\|\} \\
\leq & a \max \{R+\|T x-T y\|+R\}, c[2 R+2\|T x-T y\|]\}+b R \\
\leq & a \max \{2 R+\|T x-T y\|, 2 c[R+\|T x-T y\|]\}+b R \\
= & (2 a+b) R+a\|T x-T y\| \\
= & (1+a) R+a\|T x-T y\| .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|T x-T y\| \leq \frac{1+a}{1-a} R \tag{31}
\end{equation*}
$$

Now

$$
\begin{align*}
\|I x-I y\| & \leq\|I x-T y\|+\|T x-T y\|+\|T y-I y\| \\
& \leq R+\frac{1+a}{1-a} R+R \\
& =\frac{3-a}{1-a} R . \tag{32}
\end{align*}
$$

From (31) and (32), the inequality (30) follows.
Now, by (25), we can choose a sequence $\left\{x_{n}\right\} \in X$ such that

$$
\begin{equation*}
\left\|I x_{n}-T x_{n}\right\| \leq \frac{1}{n} \text { for } n=1,2,3, \ldots \tag{33}
\end{equation*}
$$

From (30) and (33), we have

$$
\max \left\{\left\|I x_{n}-T x_{m}\right\|,\left\|T x_{n}-T x_{m}\right\| \leq \frac{3-a}{1-a} \cdot \frac{1}{n} \text { for } 1 \leq n \leq m\right.
$$

Therefore, both $\left\{I x_{n}\right\}$ and $\left\{T x_{n}\right\}$ are Cauchy sequence in X and from (33), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I x_{n}=\lim _{n \rightarrow \infty} T x_{n}=w(\text { say }), w \in X \tag{34}
\end{equation*}
$$

Since T and I are compatible mappings and I is continuous, we have

$$
\begin{equation*}
I I x_{n}, \quad T I x_{n} . \quad I T x_{n} \rightarrow I w \text { as } n \rightarrow \infty \tag{35}
\end{equation*}
$$

Now we show that $I w=w$. Suppose that $I w \neq w$. On substituting $x=x_{n}$ and $y=I x_{n}$ in (2), we have

$$
\begin{aligned}
\left\|T x_{n}-T I x_{n}\right\| \leq & a \max \left\{\left\|I x_{n}-I I x_{n}\right\|, c\left[\left\|I x_{n}-T I x_{n}\right\|+\left\|I I x_{n}-T x_{n}\right\|\right]\right\} \\
& +b \max \left\{\left\|I x_{n}-T x_{n}\right\|,\left\|I I x_{n}-T I x_{n}\right\|\right\} .
\end{aligned}
$$

On taking limits as $n \rightarrow \infty$ and using (34) and(35), we have

$$
\begin{aligned}
\|w-I w\| \leq & a \max \{\|w-I w\|, c[\|w-I w\|+\|I w-w\|]\} \\
& +b \max \{\|w-w\|,\|I w-I w\|\} \\
= & a\|w-I w\|<\|w-I w\|
\end{aligned}
$$

a contradiction. Thus

$$
\begin{equation*}
I w=w \tag{36}
\end{equation*}
$$

Finally, we show that $T w=w$. Suppose that $T w \neq w$. On taking $x=w$ and $y=x_{n}$ in (2), we have

$$
\begin{aligned}
\left\|T w-T x_{n}\right\| \leq & \left.\left.a] \max \left\{\left\|I w-I x_{n}\right\|, c\left[\left\|I w-T x_{n}\right\|+\left\|I x_{n}-T w\right\|\right]\right\}\right]\right] \\
& +b \max \left\{\|I w-T w\|,\left\|I x_{n}-I x_{n}\right\|\right\}
\end{aligned}
$$

On taking limits as $n \rightarrow \infty$ and using (34) and (36), we have

$$
\begin{aligned}
\|T w-w\| \leq & a \max \{\|I w-w\|, c[\|w-w\|+\|w-T w\|]\} \\
& +b \max \{\|T w-T w\|,\|w-w\|\} \\
= & (a c+b)\|w-T w\| \\
= & {[1-a(1-c)]\|w-T w\|, }
\end{aligned}
$$

a contradiction. Hence

$$
\begin{equation*}
T w=w \tag{37}
\end{equation*}
$$

From (36) and (37), we have

$$
T w=I w=w .
$$

Hence w is a common fixed point of T and I. This completes the proof of Theorem 2.2.

The following is an example in support of Theorem 2.2.
Example 2.3. Let $X=\mathbb{R}$ with the usual metric. Define selfmaps T, I on X by $T x=\frac{2+x}{3}$ and $I x=\frac{3 x-1}{2}, x \in X$.

Clearly, I is continuous and affine, but I is not nonexpansive and linear. Observe that T and I are compatible mappings of X.
Now, for any $x, y \in X$,

$$
\|T x-T y\|=\left|\frac{x-y}{3}\right|=\frac{2}{9}\|I x-I y\|,
$$

so that the mappings T and I satisfy the inequality (2) with $a=\frac{2}{9}, b=\frac{7}{9}$ and $c \leq \frac{20}{47}$.

On using Proposition 2.1 and Theorem 2.2, we formulate the following theorem.
Theorem 2.4. Let T and I be compatible selfmaps of X and satisfying the condition (2). If I is continuous and affine in X and $T(X) \subseteq I(X)$, then T and I have a unique common fixed point in X if and only if

$$
A=\cap\left\{\overline{T K_{n}}: n \in N\right\} \neq \phi
$$

where $\left.K_{n}=\|x \in X:\| I x-T x \| \leq \frac{1}{n}\right\}$.
Corollary 2.5. Let T and I be compatible selfmaps of X and satisfying the inequality

$$
\begin{align*}
\|T x-T y\| \leq & a\|I x-I y\|+b \max \{\|I x-I x\|,\|I y-T y\|\} \\
& +c[\|I x-T y\|+\|I y-T x\|] \tag{38}
\end{align*}
$$

for all $x, y \in C$, where $0<a<1, b \geq 0, c \geq 0, a+c>0$ and $a+b+4 c=1$. If I is continuous and affine on X and $T(X) \subseteq I(X)$, then T and I have a unique common fixed point in X.

Proof. Set $a+4 c=a_{1}$. Then $a_{1}+b=1$ and we have

$$
\begin{aligned}
\|T x-T y\| \leq & a\|I x-I y\|+b \max \{\|I x-T x\|,\|I y-T y\|] \\
& +c \cdot \frac{4}{1} \cdot \frac{1}{4}[\|I x-T y\|+\|I y-T x\|] \\
\leq & (a+4 c) \max \left\{\|I x-I y\|, \frac{1}{4}[\|I x-I y\|+\|I y-T x\|]\right\} \\
& +b \max \{\| I x-T x\},\|I y-T y\|\}
\end{aligned}
$$

Since $\frac{1}{4} \leq \min \left\{\frac{2+a}{5+a}, \frac{2-a}{4}, \frac{4}{9+a}\right\}$ and $a_{1}+b=1$, where $a_{1}=a+4 c$, the conclusion of this corollary follows from Theorem 2.2.

On choosing $c=0$ in (2), we have the following corollary.
Corollary 2.6. Let T and I be compatible selfmaps of X and satisfying the condition (1). Suppose that I is continuous, affine and $T(X) \subseteq I(X)$. Then T and I have a unique common fixed point in X.

Corollary 2.7(Fisher [5]). Let T be a selfmap of a closed convex subset C of X and satisfying the condition

$$
\begin{equation*}
\|T x-T y\| \leq a\|x-y\|+b \max \{\|T x-x\|,\|T y-y\|\} \tag{39}
\end{equation*}
$$

for all $x, y \in C$, where $0<a<1$ with $a+b=1$. Then T has a unique fixed point in C.

Proof. Follows by choosing I as the identity map of C in Corollary 3.3.
In the following, we prove a common fixed point theorem for a compatible pair of selfmaps T and I, which are reciprocal continuous on X.

Theorem 2.8. Let T and I be compatible selfmaps of X, which are reciprocal continuous on X, satisfying the Ciric's contraction type condition (2). If I is affine on X and $T(X) \subseteq I(X)$, then T and I have a unique common fixed point in X if and only if $A=\cap\left\{\overline{T K_{n}}: n \in N\right\} \neq \phi$, where $\left.K_{n}=\|x \in X:\| I x-T x \| \leq \frac{1}{n}\right\}$.

Proof. If w is a common fixed point of T and I, then $A \neq \phi$ follows trivially by Proposition 2.1.

Conversely, assume that $A \neq \phi$. If $w \in A$ then for each n, there exists $y_{n} \in T K_{n}$ such that $\left\|w-y_{n}\right\|<\frac{1}{n}$. Consequently, for each n, there exists $x_{n} \in K_{n}$ such that $y_{n}=T x_{n}$ and $\left\|w-T x_{n}\right\|<\frac{1}{n}$ for all n. On taking limits as $n \rightarrow \infty$, we get $T x_{n} \rightarrow w$ as $n \rightarrow \infty$.

Since $x_{n} \in K_{n}$, we have $\left\|I x_{n}-T x_{n}\right\| \leq \frac{1}{n}$. Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I x_{n}=\lim _{n \rightarrow \infty} T x_{n}=w \tag{40}
\end{equation*}
$$

Since T and I are reciprocally continuous mappings, we have

$$
\lim _{n \rightarrow \infty} T I x_{n}=T w \text { and } \lim _{n \rightarrow \infty} I T x_{n}=T w
$$

Now since T and I are compatible mappings

$$
\begin{equation*}
T w=\lim _{n \rightarrow \infty} T I x_{n}=\lim _{n \rightarrow \infty} I T x_{n}=I w \tag{41}
\end{equation*}
$$

Now on substituting $x=w$ and for each n, substituting $y=I x_{n}$ in (2) and using (40) and (41), as in the alternate proof of Theorem 2.2, it is easy to see that $T w=w$. Thus from (41), w is a common fixed point of T and I.

Example 2.9. Let $X=\mathbb{R}$ with the usual metric. Define selfmaps T and I on X by

$$
T x=\left\{\begin{array}{cl}
\frac{1}{2}, & \text { if } x \leq 0 \quad \text { and } x=\frac{5}{2} \\
\frac{1+x}{2}, & \text { if } x>0 \text { and } x \neq \frac{5}{2}
\end{array} \quad \text { and } \quad I x=\frac{3 x-1}{2}, \quad x \in X .\right.
$$

Clearly, I is affine, but I is not nonexpansive and linear. The mappings T and I are reciprocal continuous and compatible on X.

Observe that the inequality (2) holds with $a=\frac{1}{3}, b=\frac{2}{3}$ and for any $c \geq 0$ with $c \leq \frac{7}{16}$. Thus, all the hypotheses of Theorem 2.4 is satisfied and has a unique fixed point 1.

Now, for $x=2$,

$$
\|T I(2)-I T(2)\|=\frac{5}{4} \not \leq 1=\|T(2)-I(2)\| .
$$

Thus T and I are not weakly commuting, so that Theorem 1.6 is not applicable. Since I is not linear, Theorem 1.7 is also not applicable.

Hence, from this example, we conclude that Theorem 2.4 is a generalization of Theorem 1.6 and Theorem 1.7.
3. Compatible mappings of type (A), compatible mappings of type (B) and common fixed point theorems

Definition 3.1(Lal et al. [10]). Two selfmaps T and I of X are said to be compatible mappings of type (A), if

$$
\lim _{n \rightarrow \infty}\left\|T I x_{n}-I I x_{n}\right\|=0 \text { and } \lim _{n \rightarrow \infty}\left\|I T x_{n}-T T x_{n}\right\|=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim _{n \rightarrow \infty} I x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t, \text { for some } t \in X
$$

Here we note that compatible mappings and compatible mappings of type (A) are independent (Lal et al. [10]).

Pathak et al. [13] introduced the concept of compatible mappings of type (B) as a generalization of compatible mappings of type (A).

Definition 3.2(Pathak et al.[13]). Two selfmaps T and I of X are said to compatible mappings of type (B), if
$\lim _{n \rightarrow \infty}\left\|I T x_{n}-T T x_{n}\right\| \leq \frac{1}{2}\left[\lim _{n \rightarrow \infty}\left\|I T x_{n}-I t\right\|+\lim _{n \rightarrow \infty}\left\|I t-I I x_{n}\right\|\right]$
and
$\lim _{n \rightarrow \infty}\left\|T I x_{n}-I I x_{n}\right\| \leq \frac{1}{2}\left[\lim _{n \rightarrow \infty}\left\|T I x_{n}-T t\right\|+\lim _{n \rightarrow \infty}\left\|T t-T T x_{n}\right\|\right]$,
whenever $\left\{x_{n}\right\}$ is a sequence in X such that
$\lim _{n \rightarrow \infty} I x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t$, for some $t \in X$.
Clearly, every compatible mappings of type (A) are compatible mappings of type (B), but its converse need not be true (Pathak et al. [13]).

Proposition 3.3(Pathak et al. [13]). Two selfmaps T and I of X are compatible mappings of type (B). Suppose that $\lim _{n \rightarrow \infty} I x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t$, for some $t \in X$. Then $\lim _{n \rightarrow \infty} T T x_{n}=$ It, if I is continuous at t.

Proposition 2.1 remains true, if we replace compatible mappings by compatible mappings of type (B).

Proposition 3.4. Let T and I be selfmaps of X which are compatible mappings of type (B) and satisfy the Ciric's contraction type condition (2). If I is continuous then $T w=I w$ for some $w \in X$ if and only if $A=\cap\left\{\overline{T K_{n}}: n \in N\right\} \neq \phi$, where $K_{n}=\left\{x \in X:\|I x-T x\| \leq \frac{1}{n}\right\}$.

Proof. Follows as on the lines of Proposition 2.1 and using Proposition 3.4.
Theorem 3.5. Let T and I be selfmaps of X, which are compatible mappings of type (B) and satisfying the condition (2). If I is continuous and affine on X and $T(X) \subseteq I(X)$, then T and I have a unique common fixed point in X.

Proof. Follows as on the lines of proof of Theorem 2.2 and Proposition 3.4.
Theorem 3.6. Let T and I be selfmaps of X, which are compatible mappings of type (B) and satisfying the condition (2). If I is continuous and affine in X and $T(X) \subset I(X)$, then T and I have a unique common fixed point in X if and only if $A=\cap\left\{\overline{T K_{n}}: n \in N\right\} \neq \phi$, where $K_{n}=\left\{x \in X:\|I x-T x\| \leq \frac{1}{n}\right\}$.

Corollary 3.7. Let T and I be selfmaps of X, which are compatible mappings of type (A) and satisfying the condition (2). If I is continuous and affine in X and $T(X) \subset I(X)$, then T and I have a unique common fixed point in X if and only if $A=\cap\left\{\overline{T K_{n}}: n \in N\right\} \neq \phi$, where $K_{n}=\left\{x \in X:\|I x-T x\| \leq \frac{1}{n}\right\}$.

Proof. Since compatible mappings of type (A) implies compatible mappings of type (B), proof follows from Theorem 3.6.

Corollary 3.8(Greguš [7]). Let T be a selfmap of a closed convex subset C of X and satisfying the inequality

$$
\|T x-T y\| \leq p\|x-y\|+q\|T x-x\|+r\|T y-y\|
$$

for all $x, y \in C$, where $0<p<1, q \geq 0, r \geq 0$ with $p+q+r=1$. Then T has a unique fixed point in C.

Acknowledgements. This work is partially supported by U. G. C. Major Research Project Grant No. F. 8-8/2003 (SR). One of the authors (G. V. R. Babu) thanks the University Grants Commission, India for the financial support.

References

[1] LJ. B. Ćirić, J. S. Ume, Greguš type common fixed point theorems in metric spaces of hyperbolic type, Publ. Math. Debrecen 65(2003), 49-63.
[2] Lu. B. Ćirić, On a generalization of Greguš fixed point theorem, Czech. Math. J. 50(125)(2000), 449-458.
[3] Lj. B. Ćirić, On Diviccaro, Fisher and Sessa open questions, Arch. Math. T. 29(1993), 145-152.
[4] LJ. B. Ćirić, On a common fixed-point theorem of a Greguš type, Publ. Inst. Math. 49(1991), 174-178.
[5] B. Fisher, Common fixed points on Banach space, Chung. Juan. J. XI(1982), 12-15.
[6] B. Fisher, S. Sessa, On a fixed point theorem of Greguš, Int. J. Math. Math. Sci. 9(1986), 22-28.
[7] M. Greguš, A fixed point theorem in Banach space, Boll. Un. Mat. Ital. 5(1980)17-A, 193-198.
[8] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9(4)(1986), 771-779.
[9] G. Jungck, On a fixed point theorem of Fisher and Sessa, Int. J. Math. Math. Sci. 13(1990), 497-500.
[10] S. N. Lal, P. P. Murthy, Y. J. Cho, An extension of Telci, Tas and Fisher's theorem, J. Korean Math. Soc., 33(1996), 891-908.
[11] R. N. Mukherjee, V. Verma, A note on a fixed point theorem of Greguš, Math. Japonica. 33(1988)5, 745-749.
[12] R. P. Pant, Common fixed points of four mappings, Bull. Cal. Math.Soc. 90(1998), 281-289.
[13] H. K. Pathak, M. S. Khan, Compatible mappings of type (B) and common fixed point theorems of Greguš, Czech. Math. J. 45(1995), 685-698.
[14] S. Sessa, On a weak commutativity condition of mappings in fixed point consideration. Publ. Inst. Math. 32(46)(1982), 149-153.

[^0]: *Department of Mathematics, Andhra University,Visakhapatnam 530 003, Andhra Pradesh, India, e-mail: gvr_babu@hotmail.com
 ${ }^{\dagger}$ Department of Mathematics, Dr. L. Bullayya College, Visakhapatnam 530 013, Andhra Pradesh, India, e-mail: knvp71@yahoo.co.in

