A note on medial quasigroups

Vladimir Volenec* and Vedran Krčadinac ${ }^{\dagger}$

Abstract

In this short note we prove two results about medial quasigroups. First, let φ and ψ be binary operations defined by multiplication, left and right division in a medial quasigroup. Then φ and ψ are mutually medial, i.e. $\varphi(\psi(a, b), \psi(c, d))=\psi(\varphi(a, c), \varphi(b, d))$. Second, four points a, b, c, d in an idempotent medial quasigroup form a parallelogram if and only if $d=(a / b)(b \backslash c)$.

Key words: medial quasigroup, parallelogram
AMS subject classifications: 20N05
Received May 24, 2006
Accepted July 3, 2006
Let (Q, \cdot) be a quasigroup. We will denote left and right division in Q by \backslash and /, i.e. $a \backslash c=b \Longleftrightarrow a b=c \Longleftrightarrow c / b=a$. By a formula we mean any expression built up from a number of variables using the operations \cdot, \backslash and $/$. More precisely:

1. the variables x, y, \ldots are formulae;
2. if φ, ψ are formulae, then so are $\varphi \cdot \psi, \varphi \backslash \psi$ and φ / ψ.

A formula φ containing (at most) two variables gives rise to a new binary operation $Q \times Q \rightarrow Q$, which we will also denote by the letter φ.

A quasigroup is medial if the identity $a b \cdot c d=a c \cdot b d$ holds. It is known that (Q, \cdot) is medial if and only if either (and therefore both) of the quasigroups (Q, \backslash) and $(Q, /)$ are medial. Our first result states that binary operations defined by formulae in a medial quasigroup are mutually medial:

Theorem 1. Let φ, ψ be binary operations defined by any two formulae in a medial quasigroup Q. Then the following identity holds:

$$
\varphi(\psi(a, b), \psi(c, d))=\psi(\varphi(a, c), \varphi(b, d)) .
$$

Proof. It is easily verified that the operations ., \and / are mutually medial, i.e. the identities $a b \backslash c d=(a \backslash c)(b \backslash d), a b / c d=(a / c)(b / d)$ and $(a \backslash b) /(c \backslash d)=$ $(a / c) \backslash(b / d)$ hold. For example, if we denote $x=a \backslash c$ and $y=b \backslash d$, then $a x=c$

[^0]and $b y=d$. Using mediality we get $c d=a x \cdot b y=a b \cdot x y \Longrightarrow a b \backslash c d=x y=$ $(a \backslash c)(b \backslash d)$.

A binary operation defined by a formula φ is mutually medial with multiplication, left and right division:

$$
\begin{gather*}
\varphi(a b, c d)=\varphi(a, c) \cdot \varphi(b, d) \tag{1}\\
\varphi(a \backslash b, c \backslash d)=\varphi(a, c) \backslash \varphi(b, d) \tag{2}\\
\varphi(a / b, c / d)=\varphi(a, c) / \varphi(b, d) \tag{3}
\end{gather*}
$$

This is obvious for $\varphi(a, b)=a$ and $\varphi(a, b)=b$, and follows by induction for more complicated formulae. Supposing the identities are true for φ_{1} and φ_{2}, we see that they also hold for $\varphi=\varphi_{1} \cdot \varphi_{2}$:

$$
\begin{aligned}
\varphi(a b, c d) & =\varphi_{1}(a b, c d) \cdot \varphi_{2}(a b, c d)=\varphi_{1}(a, c) \varphi_{1}(b, d) \cdot \varphi_{2}(a, c) \varphi_{2}(b, d) \\
& =\varphi_{1}(a, c) \varphi_{2}(a, c) \cdot \varphi_{1}(b, d) \varphi_{2}(b, d)=\varphi(a, c) \cdot \varphi(b, d)
\end{aligned}
$$

The argument is similar for identities (2), (3) and formulae $\varphi=\varphi_{1} \backslash \varphi_{2}, \varphi=\varphi_{1} / \varphi_{2}$.
Finally, mutual mediality of φ and ψ is obtained by induction on ψ :

$$
\begin{aligned}
\varphi(\psi(a, b), \psi(c, d)) & =\varphi\left(\psi_{1}(a, b) \psi_{2}(a, b), \psi_{1}(c, d) \psi_{2}(c, d)\right) \\
& \stackrel{(1)}{\underline{(}} \varphi\left(\psi_{1}(a, b), \psi_{1}(c, d)\right) \cdot \varphi\left(\psi_{2}(a, b), \psi_{2}(c, d)\right) \\
& =\psi_{1}(\varphi(a, c), \varphi(b, d)) \cdot \psi_{2}(\varphi(a, c), \varphi(b, d)) \\
& =\psi(\varphi(a, c), \varphi(b, d)) .
\end{aligned}
$$

Identity (2) is used if $\psi=\psi_{1} \backslash \psi_{2}$, and identity (3) if $\psi=\psi_{1} / \psi_{2}$.
Corollary 1. If (Q, \cdot) is a medial quasigroup, then the binary operation defined by a formula φ is also medial.

Of course, (Q, φ) need not be a quasigroup. Special cases of Theorem 1 and Corollary 1 have been used in [1] and [7]. Identity (1) was proved earlier by Puharev [2].

In [3], some geometric concepts have been introduced in a medial quasigruoup Q. For example, the points $a, b, c, d \in Q$ are said to form a parallelogram, denoted by $\operatorname{Par}(a, b, c, d)$, if there are points $p, q \in Q$ such that $p a=q b$ and $p d=q c$. This quaternary relation satisfies the axioms of parallelogram space (for definitions and further references see [8]). In particular, given any three points $a, b, c \in Q$ there is a unique $d \in Q$ such that $\operatorname{Par}(a, b, c, d)$. In [5], the parallelogram relation in idempotent medial quasigroups (satisfying the additional identity $a a=a$) was characterized in several more direct ways. In even more special quasigroups, explicit formulae for the fourth vertex d of a parallelogram as a function of a, b and c are known; see [1], [4], [6] and [9]. Here we give such a formula valid in a general IM-quasigroup.

Theorem 2. Let Q be an idempotent medial quasigroup and $a, b, c, d \in Q$. Then, $\operatorname{Par}(a, b, c, d)$ holds if and only if there are $x, y \in Q$ such that $x b=a, b y=c$ and $x y=d$.

Proof. Let $x, y \in Q$ be elements satisfying $x b=a, b y=c$ and $x y=d$. By taking $p=a$ and $q=x$, we see that $p a=q b$ and $p d=x b \cdot x y=x \cdot b y=q c$, i.e. $\operatorname{Par}(a, b, c, d)$ holds.

Now suppose $\operatorname{Par}(a, b, c, d)$ holds and denote $x=a / b, y=b \backslash c$. Then, $x b=a$ and $b y=c$. According to [3, Corollary 5], for any $p \in Q$ there is a unique $q \in Q$ such that $p a=q b$ and $p d=q c$. Specially, for $p=a$ we see that $a=q b \Longrightarrow q=x$ and $a d=q c=x c=x \cdot b y=x b \cdot x y=a \cdot x y$. Cancelling a from the left yields $x y=d$.

Corollary 2. In an idempotent medial quasigroup, $\operatorname{Par}(a, b, c, d)$ holds if and only if $d=(a / b)(b \backslash c)$.

Formulae for the fourth vertex of a parallelogram in hexagonal, quadratical, GS and G_{2}-quasigroups contain only multiplication. In fact, such formulae follow from Corollary 2 because left and right division can be expressed by multiplication in these four classes of quasigroups. The formulae given in [1], [4] and [9] are shorter because other identities valid in these particular classes of quasigroups were taken into account.

References

[1] V. Krčadinac, V. Volenec, A class of quasigroups associated with a cubic Pisot number, Quasigroups Related Systems 13(2005), 269-280.
[2] N. K. Puharev, Geometric questions of certain medial quasigroups (in Russian), Sibirsk. Mat. Zh. 9(1968), 891-897.
[3] V. Volenec, Geometry of medial quasigroups, Rad Jugoslav. Akad. Znan. Umjet. 421(1986), 79-91.
[4] V. Volenec, GS-quasigroups, Časopis Pěst. Mat. 115(1990), 307-318.
[5] V. Volenec, Geometry of IM-quasigroups, Rad Jugoslav. Akad. Znan. Umjet. 456(1991), 139-146.
[6] V. Volenec, Hexagonal quasigroups, Arch. Math. (Brno) 27a(1991), 113-122.
[7] V. Volenec, Quadratical groupoids, Note Mat. 13(1993), 107-115.
[8] V. Volenec, Parallelogram spaces and their corresponding algebraic and geometric structures, Math. Commun. 2(1997), 15-20.
[9] V. Volenec, R. Kolar-Šuper, Parallelograms in quadratical quasigroups, preprint.

[^0]: *Department of Mathematics, University of Zagreb, Bijenička 30, HR-10 000 Zagreb, Croatia, e-mail: vladimir.volenec@math.hr
 ${ }^{\dagger}$ Department of Mathematics, University of Zagreb, Bijenička 30, HR-10 000 Zagreb, Croatia, e-mail: vedran.krcadinac@math.hr

