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Unique representation d = 4k(k* — 1) in
D(4)-quadruples {k — 2,k + 2,4k, d}

YASUTSUGU FuJiTA*

Abstract. Let k > 3 be an integer. We show that if d is a positive
integer such that the product of any two distinct elements of the set
{k—2,k+2,4k,d} increased by 4 is a square, then d must be 4k(k*—1).
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1. Introduction

Let n be a nonzero integer. A set of m positive integers {a1,...,an} is called
a D(n)-m-tuple if a;a; + n is a square for all ¢ and j with 1 < i < j < m.
Diophantus found a D(256)-quadruple {1,33,68,105}, and Fermat found a D(1)-
quadruple {1, 3,8,120} (cf. [5]).

In 1969, Baker and Davenport ([2]) showed that if the set {1,3,8,d} is a D(1)-
quadruple, then d = 120. This result has been generalized in three directions: first,
Dujella ([7]) showed that if {k — 1,k + 1,4k, d} is a D(1)-quadruple with an integer
k > 2, then d = 4k(4k* — 1); secondly, Dujella and Pethé ([10]) showed that if
{1,3,¢,d} is a D(1)-quadruple with 3 < ¢ < d, then d = Tc+4+4+/(c+ 1)(3¢c + 1);
and thirdly, Dujella ([8]) showed that if {For, Fort2, Farta,d} is a D(1)-quadruple
(where F), is the v-th Fibonacci number), then d = 4Fb;11Fopi2Fok13. These
results lead us to the following.

Conjecture 1 [[1]]. If {a,b,c,d} is a D(1)-quadruple with a < b < ¢ < d, then
d = a4+ b+ c+ 2abc + 2rst, where r,s,t are positive integers given by ab+ 1 =
r?, ac+1=352 be+1=t>.

Note that this conjecture immediately implies that there does not exist a D(1)-
quintuple, which is a longstanding conjecture. It has been known that there does
not exist a D(1)-sextuple and that there exist only finitely many D(1)-quintuples
(19)-

As for D(4)-quadruples, Mohanty and Ramasamy ([13]) showed that the D(4)-
quadruple {1, 5,12,96} cannot be extended to a D(4)-quintuple, and Kedlaya ([12])
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showed that if {1,5,12,d} is a D(4)-quadruple, then d = 96. This result also has
been generalized by Dujella and Ramasamy ([11]) as follows: if { Fay, 5Fok, 4Fopt2,d}
is a D(4)-quadruple, then d = 4Loy Fyxy2, where L, is the v-th Lucas number.

In this paper, we ameliorate the result of Kedlaya in another direction.

Theorem 1. Let k > 3 be an integer. If {k—2,k+2,4k,d} is a D(4)-quadruple,
then d must be 4k(k? —1).

It is easy to check that {k — 2,k + 2,4k, 4k(k? — 1)} is a D(4)-quadruple for
k > 3 (cf. [6, Section 4]). We will prove this theorem on similar lines to Theorem 1
in [7].

These results lead us to the following.

Conjecture 2 [[11]]. If {a,b,c,d} is a D(4)-quadruple with a < b < ¢ < d,
then d = a + b+ ¢ + (abe + rst)/2, where r,s,t are positive integers given by
ab+4=1% ac+4=s% bc+4 =t

Note that this immediately implies that there does not exist a D(4)-quintuple.
It has been known that there does not exist a D(4)-8-tuple and that there exist
only finitely many D(4)-7-tuples ([11]).

In case k = 3, Theorem 1 is valid because of the result of Kedlaya; in case k is
even, say k = 2k’, Theorem 1 follows from the result on the D(1)-triple {k' — 1, k' +
1,4k} ([7]). Hence, it suffices to show Theorem I on the assumption that k > 5 is
an odd integer.

2. Fundamental solutions of simultaneous Diophantine equa-
tions

In this section we translate the assumption of Theorem 1 into simultaneous Dio-
phantine equations and determine their fundamental solutions.

Suppose that {k —2,k+ 2,4k, d} is a D(4)-quadruple. Then there exist integers
x,y, z such that

(k—2)d+4=2° (k+2)d+4=1y> 4kd+4 = 42>

Eliminating d, we obtain simultaneous Diophantine equations:

(k —2)y* — (k+2)z? = —16, (1)
(k —2)2% — ka® = 3k — 2, (2)
(k+2)2% — ky? = -3k + 2. (3)

We describe the solutions of equations (1) and (2).
Lemma 1 [(cf. [11, Lemma 2])].  Let {a,b} be a D(4)-pair with 0 < a <b

and let r be a positive integer such that ab+ 4 = r2. There exist a positive integer
19 and integers y(()l), acgf), 1=1,...,19, with the following properties:

(i) (yéi),x(()i)) is a solution of

ay® — ba* = 4(a —b). (4)
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(i) y(()i) and Jiéi) satisfy the following inequalities

a(b—a)

@) «
r—292 ’ |y0|—

1<) < r=2k-a)
a

(iii) If (y,x) is a positive solution of (4), then there exist i € {1,...,i0} and an
integer m > 0 such that

yva+avh = (y§"Va + z Vb) (r +2\/%> '

Proof. Although [11, Lemma 2] is concerned with a D(4)-triple {a,b, ¢} and
the attached equations

az® — cx? = 4(a — ¢), (5)
bz? —cy® =4(b—c), (6)
one can show the statements for the equations (5) and (6) independently (see the

proof of [11, Lemma 2]). Thus, Lemma 1 follows. O
Lemma 2. Let k> 5 be an odd integer.

(i) If (y,x) is a positive solution of (1), then there exists an integer m > 0 such
that

m

WE—2+avEF2 =2k =2+ VE+2) (L V2k2_4> (7)

(i) If (z,x) is a positive solution of (2), then there exist an integer n > 0 and a
solution (zo,x0) of (2) with

1<z <k—2 (8)
such that

VE=2+2VE = (20VE— 2+ 20V (b= 1+ V/E(b — 2))" )

Proof. (i) Let (y,x) be a positive solution of (1). Then, replacing a,b,r in
Lemma 1 by k — 2,k + 2, k, respectively, we see that there exist an integer m > 0
and a solution (y1,x1) of (1) with

L \/(k_Q)(klj—Qg(k_Q)) L, 1)

such that

m

yWk—2+avVk+2= (p1Vk -2+ 21Vk +2) (#)
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[k —14
=4y — "
'A% A 2a

which cannot be an integer for odd k. Hence we have 1 = 2 and y; = +2. However
y >0 and

If x1 =1, then

(—2vVE—2+2VEk +2) (L V2k2_4> = 2Vk—2+2Vk + 2;

hence we have y; = 2. Therefore we obtain (7).

(ii) Let (z,x) be a positive solution of (2). Then, replacing a,b,r,y in Lemma 1
by k —2, 4k, 2(k — 1), 2z, respectively, we see that there exist an integer n > 0 and
a solution (zg,xo) of (2) with

(k — 2)(4k — (k —2)) 3k + 2
ISQCOS\/ 2k—1)-2 V2 <k-2

such that (9) holds (the last inequality holds because of k > 5). This completes the
proof of Lemma 2. O

If we express a positive solution (y, ) of (1) as y = v}, * = v, with an integer
m in (7), then v], and vy, satisfy the following relation

k+VEk2—4
Vi Vk =24 vppivVk +2 = (v, Vk =2+ vV +2) - %,
that is,
! 1 !
Um+1 = 5(/{31}7” + (k + 2)Um)7
1
V1 = §(kvm + (k = 2)v;,),
which, together with (7), implies
Vo = 2, V1 = Q(k — 1), Um+2 = k’vm+1 — Um,. (11)

Similarly, if we express a positive solution (z,x) of (2) as z = w),, * = w,, with an
integer n in (9), then w], and w,, satisfy the following relation

Wl VE =2 4 wp 1 VE = (W VE = 2 + w, VE) (k — 1+ VE(k — 2)),
that is,
wy o = (k= Dw), + kwy,
Wpt1 = (K — Dw, + kwl,

which, together with (9), implies

wo = g, w1 = (k— )axog + (k —2)z0, wpy2 =2(k — Dwpy1 — wy. (12)
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By induction we see from (11) that v, = 2 (mod (k — 2)) for all m > 0 and from
(12) that w, = z¢ (mod (k — 2)) for all n > 0. Hence if v,, = wy, then we have
xo =2 (mod (k —2)). It follows from (8) that xo = 2, and that zp = £1. Hence by
(12) we have

wo =2, wy =2(k—1) £ (k—2), wpte = 2(k — )wpy1 — wy. (13)

If we define w_,, = 2(k — D)w_p+1 — W_p12 for n > 1 recursively, we may rephrase
(13) in terms of the two-sided sequence {w,} (n € Z) as

wo = 2, wp = 3k — 4, Wnp+2 = 2(/{3 — l)wn_H — Wp. (14)

To sum up, we obtain the following.

Lemma 3. Let k > 5 be an odd integer. Let (z,y,z) be a positive solution
of the simultaneous Diophantine equations (1) and (2). Then, there exist integers
m >0 and n such that x = v, = w,, where the sequence {vy,} is given by (11) and
the two-sided sequence {wy,} is given by (14).

3. A lower bound for log z

In this section, we give a lower bound for log z in terms of k.
Lemma 4. Let k > 5 be an integer. If v, = wy,, then we have

n=0 or —2 (mod 2k).

Proof. We see from (11) and (14) that

(v mod (2k — 2))ms0 = (2,0,-2,-2,0,2,2,0,...),
(wn, mod (2k —2))p>0 = (2,—k,—2,k,2,—k,...),
(wy, mod (2k —2))n<o = (2,k,—2,—k,2,k,...).
Note that by the recursive formula (11) the values v, mod (2k — 2) and v,,11
mod (2k — 2) determine the value v,,+2 mod (2k — 2), whence the sequence (v,
mod (2k — 2))m>0 is periodic with period 6, and similarly that the sequences (w,
mod (2k —2))p>0 and (w, mod (2k — 2)),<o are periodic with period 4. Hence, if
Um = Wy, then we may write n = 2] for some integer [. We then have

2
2

(v mod 2k(k — 2))m>0 = (2,2k — 2,2k —2,2,2,2k — 2,...),
(w2[ mod Qk(k — 2))[20 = (2, —2k 4+ 6, —4k + 10, -6k + 14, . .. ),
(w21 mod 2k(k - 2))[50 = (2, 2k — 2,4/{: - 6,6k —10,... )

We can prove by induction that for all integers [,
wy = —2lk 4+ 2(21 4+ 1) (mod 2k(k — 2)).
Hence we have

—2lk+22l+1)=2 or 2k —2 (mod 2k(k — 2)).



74 Y. FuJiita

If —21k+2(2l4+1) = 2 (mod 2k(k —2)), then we have 2I(k—2) = 0 (mod 2k(k—2)),
that is, n = 21 = 0 (mod 2k). If =2k +2(21 + 1) = 2k — 2 (mod 2k(k — 2)), then
we have 2(I + 1)(k — 2) = 0 (mod 2k(k — 2)), that is, n = 2l = —2 (mod 2k). This
completes the proof of Lemma 4. O

Lemma 5. Let k > 5 be an integer. Let (x,y,2) be a positive solution of the
simultaneous Diophantine equations (1) and (2) with z € {1,2k?> — 1}. Then we
have

logz > 2(k — 1) log(2k — 3).
Proof. Note that if z = 1 (resp. 2k% — 1), then d = 0 (resp. 4k(k* — 1)). By
(9) and (14), we may write z = |s,| for some integer n, where
so=1, 51 =3k —1, spp2 =2(k —1)sp41 — Sn,
that is,

Wk VE=2 n 2VE—=VE—
S = W(kz—H—\/k(k—Q)) S

If n > 0, then by k£ > 5 we have

2k -1 /EE= )"

S > <1+%> (k—1+ VEk—2)" — (k—1— VE(k —2))"
k—14k(k—2)) (2k - 3)"

and if n < 0, then we have

—_

k=14 k(k—2)">Z(2k—3)™"

Hence, if n > 0, then Lemma 4 and z # 1 = sy imply that

|sn|><% . 2)(/4:—14—\//4:(/4:—2))”—2(/@—1— Kk —2)™"
1
> 5l

[\D

2z =5, > (2k — 3)%2;
if n < 0, then Lemma 4 and z # 2k? — 1 = |s_5| imply that
z=|sp| > (21<; 3)%F > (2k — 3)%+ 2,

In any case, we obtain
logz > 2(k — 1) log(2k — 3).
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4. Application of a theorem of Rickert

In this section, we show that Theorem I holds for odd k& > 63, combining the results
in Section 3. with a slight modification of a theorem of Rickert (or of Bennett).

Theorem 2 [ (cf. [4, Theorem 3.2], [14, Theorem)] or [15, Theorem)])].
Let N > 63 be an integer. Then the numbers

N -2 N +2
01 := and 0 := N+=

N N
max {

for all integers p1,pa2,q with g > 0, where

satisfy

R

b

} > (22.6N) g7t

log(11.2N)
Ai=—— = < 1.
log(0.197N?) <

Proof. Note that the assumption N > 63 implies A < 1. All we have to do is
find those real numbers satisfying the assumption in the following lemma.

Lemma 6 [ (cf. [4, Lemma 3.1], [14, Lemma 2.1])]. Let 6;,...,60,, be
arbitrary real numbers and 0y = 1. Assume that there exist positive real numbers
l,p, L, P and positive integers D, f with f dividing D and with L > D, having the
following property. For each positive integer k, we can find rational numbers p;j.
(0 <1i,7 <m) with a nonzero determinant such that f*ID"pijN (0<i,57 <m) are
integers and

<IL7" (0<i<m).

m
Zpij,ﬁj
=0

Ipiju| < PP (0 < 14,5 <m),
Then

max{ bm } > cq 1A
q

holds for all integers p1,...,DPm,q with ¢ > 0, where

a"':' m

.
q

A= % and ¢ ' =2mf 'pDP (max{1, 2f_1l}))\ .
Here, we used “k” instead of “k” which is used in [4] and [14]. Note that I, p, L,
P, piji in [4, Lemma 3.1] denote f~'l, f~'p, L/D, DP, f~'D*p;j. in the lemma
above, respectively. In our situation, we take m = 2 and 61, 6> as in Theorem 2. The
only difference from Theorem 3.2 in [4] is that we may take f = 2 and D = 32N,
whereas in [4] f =1 and D = 64N are taken (note that Cj in [4] denotes f~1D*
in our notation). The validity of this substitution follows from the fact that

H (ai - aj) =16

0<i<j<2
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is even, where ag = —2, a1 = 0, ag = 2. Indeed, let p;;(x) be those polynomials
appearing in [14, Lemma 3.3], which have rational coefficients of degree at most x
(14, (3.7)]). Following [14], we take p;j,. = p;;j(1/N) for varying values of x. Then
we see from the expression (3.7) in [14] of p;;(1/N) that

2'N*p;;(1/N) € Z

for some integer [; we may take [ = 5x — 1 by a consideration similar to the proof
of Lemma 4.3 in [14]. Hence we obtain

27Y2°N)"p;;(1/N) € Z.

Thus, by exactly the same arguments as the ones following Lemma 3.1 in [4]
(with ag = =2, a1 = 0, ag = 2), the numbers

1/2 -1 2
1 1 1 27 2 27 2
=(1+-—" P=ct—, I=2(1-= L=""(1-=) N
P <+N—2) ’ ERIE 64( N) ’ 4( N)
and f =2, D = 32N, p;j. = pi;(1/N) satisty the assumption in Lemma 6. Since
N > 63, we have

L
DP < 11.2N, 2pDP < 22.6, 5> 0.197N?2.

Therefore, Theorem 2 immediately follows from Lemma 6. O

Lemma 7. Let N = k > 63 be an integer and let 61, 0> be as in Theorem 2.

Then all positive solutions (x,y,z) of the simultaneous Diophantine equations (2)
and (3) satisfy

x

max{‘&l - —

z

,(92 - %’} < 155272,

Proof. We have

k-2 x|

k 22 k 2

—1
1 [ 2 Ly
k+2 1 7\
JEr2 YL [14 2 —2
‘ A ~ <l<;z2| 3k+2|<2 1+k> < 1.5z7°.
O

Proposition 1. Let k > 63 be an odd integer. If {k — 2,k + 2,4k, d} is a
D(4)-quadruple, then we have d = 4k(k* — 1).

Proof. Suppose that d # 4k(k? — 1). Since this implies z # 2k? — 1, we may
apply Lemma 5. Theorem 2 (with N = k) and Lemma 7 (with p1 =z, p2 =y, ¢ =
z) together imply that

_‘k’—Q x?

and

(22.6k) 712717 < 155272
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Since A < 1, we have 2!~ < 35.03k and

log(35.1k)
1 .
ogz < 1

Since
1 log(0.197k%)  2log(0.444k)

< < ,
1—X " log(0.0175k) = log(0.0175k)

we see from Lemma 5 and (15) that

log(0.444k) log(35.1k)
1 =: .
k=l < ek =3y log0.0tm5k) /W)

It is easy to see from

2k — 3 < 35.1k and 0.0175k < 0.444k

that f(k) is decreasing. Since f(63) < 55, we must have k£ < 63, which is a
contradiction. Therefore we obtain d = 4k(k? — 1). O

5. Completion of the proof of Theorem 1

In this section, we complete the proof of Theorem 1 using the reduction method
of Dujella and Pethé (based on that of Baker and Davenport). On account of
Proposition 1, it suffices to show Theorem 1 for odd integers k with 5 < k < 61.
Throughout this section, let k& be such an integer and assume that {k—2, k+2, 4k, d}
is a D(4)-quadruple with d # 4k(k? — 1), which implies that v,, = w, for some
integers m > 1 and n ¢ {0, —2}.

Lemma 8. Let k > 5 be an integer. If v, = w, for some nonzero integers m
and n, then we have

0 < A:=mloga; — |n|logas + logaz < 0.8a; %™, (16)
where
Vk2—4 2(Vk =2+ 2
al::7k+ i , ag i =k —14+k(k—2), ag = (Vk +VE+DVE

2 (k21 2VRivhT 2

Proof. We know by (11) and (14) that

1 V=4
Um:ﬁ{(vk—Q—ka’—FQ) (f)

CWVES2-VETD) ("“_7 \/2"“2_4> }

and

1 n
wn = {(i\/k —2 4+ 2VER)(k — 1+ Vk(k — 2))

—(EVE =2 - 2VE) (k-1 — Rk — 2))"} ,
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where the plus (resp. minus) sign corresponds to the case n > 0 (resp. n < 0).
Putting

VE —\/2% \/2k:+2 <k+\/2k2_4> . —\W(k—li )

we see from v, = w, that

P .=

4 3k+2
P+ —P = _— . 1
+k+2 =@+ 4k @ (17)
Since 4/(k+2) <1, P>1,Q > 1 and
3k+2 L4
P-Q= - ——P
©= @ k42
1_ p-1 p_ —1-1
k+2<@ )= s (P QPO

we have P > ). The assumption m > 1 implies that

L VE=24+VERD kR 2VE— (k- 1)

>k,
\/k+ 2 VEk+2
and the relation (17) implies that
3k+2 . 3k +2
sp-2TlEfglsp TE
@> @ 4k
Hence by k£ > 5 we have
3l<:+2 L4
P—-Q = ——P
Q== @ k+2
3k+2 3k + 2 o4
S (- T=pt) pto_— p
(T e

3k + 2 3k+2\ " 4 )
1- - P
<< 1k ( 152 ) k+2>

k3 — (8k2 — 16k —
3 (8 6k —8) P« 3p-1.
4k3 + (5k% — 8k — 4) 1
It follows from 0 5 5
_ P2k 2.
0< Iz < 1 < 4k: < 0.03

that

P Q
- _1lo 1__
Q- g( P )
3 5 (3..\
cipe (3)
3

4

“p2 (1 + %sz) < 0.8P2.
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Since

—2m
po o <k+ VEZ = 4)
2 )

we obtain (16). O
The first inequality of (16) immediately implies that

m > |n|. (18)
Indeed, if m < |n| — 1, then we would have
kT =1 !
2 E—1+Ek(k—-2)

A < [n|log (

o 2(Vk =2+ VE+2)VE 2
S\ EVE 21 2vEVET2 ktrViZ 1

<lo 1 2 k(k—2)+2k(k+2)
S\ Rk 2) NEGES)
VE(k+2)+2/k(k—2) <0
k(k—1)+ky/k(k —2) ’
which is a contradiction.
In order to bound m above, we need the following theorem due to Baker and
Wiistholz.

Theorem 3 [[3, Theorem]|. For a linear form A # 0 in logarithms of
algebraic numbers aq, . .., q; with rational integer coefficients B, ..., 0, we have

log |A| > —18(1 4+ D)!11(32d) 21/ (o) - - - B/ () log(21d) log 3,
where §:=max{|G1],..., |0}, d :=[Q(a1,...,q;) : Q] and

2
< log

B (a) = é max{h(a),|logal,1}

with the standard logarithmic Weil height h(a) of «.
Let af be the “conjugate” of as:
oo 22+ VE VR
P (VR —2+2VEWE+ 2
Applying Theorem 3 with | =3, d =4, 8 =m and

1
h/(Oél) = §1ogoz1,
h/(O(Q) = %10g0{2,
1
B (as) < 1 {log ((3k +2)(k + 2)?) + log(asy) }

1 1
<7 log(16k2(3k + 2)(k +2)) < I log(77k),
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we have
4 5 1 1 1 4
log A > —18-4!-3%(32-4) - §1oga1 . §loga2 . Zlog(??k ) -log 24 - log m.
Since ag < 2k — 1, we see from (16) that

T £ 1.2-10"1og(2k — 1) log(77k%).

logm

It follows from k& < 61 that
m < 5-10%7,

The following is based on the Baker-Davenport lemma ([2, Lemma]).

Lemma 9 [[10, Lemma 5 a)]]. Let M be a positive integer. Let p/q be
the convergent of the continued fraction expansion of k such that ¢ > 6M. Put
e := ||pg|| — M ||kq||, where || - || denotes the distance from the nearest integer. If
€ > 0, then the inequality

O<mk—n+pu<AB™™
has no solution in the range

log(Ag/e) _

M.
logB — s

Now dividing (16) by log as leads us to the inequality

0<mk—|n|+p<AB™™, (19)
where
_ 1ogoz1, :: 1ogoz3’ e 0.8 B=al
log o log ao log ao

We apply Lemma 9 to the inequality (19) with M = 5-10'7. Note that (18),
n & {0,—2} and Lemma 4 together imply that if & > 7 (resp. k = 5), then

m > |n| > 2k —22>12 (resp. m > 8).

We have to examine 29 - 2 = 58 cases (the doubling comes from the signs “+” in
a3), of which the second convergent of k with ¢ > 6M is needed only in two cases.
Thus, in case k > 7, we obtain m < 12, which is a contradiction; in case k = 5,
we obtain m < 14, in which case the second step of reduction with M = 13 gives
m < 4, which is a contradiction. This completes the proof of Theorem 1.

Acknowledgment We would like to thank the referee for valuable remarks.
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