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Multi-step iterative process with errors for

common fixed points of a finite family of
nonexpansive mappings∗
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†
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Abstract. In this paper, we study a multi-step iterative scheme
with errors involving N nonexpansive mappings in the Banach space.
Some weak and strong convergence theorems for approximation of com-
mon fixed points of nonexpansive mappings are proved using this itera-
tion scheme. The results extend and improve the corresponding results
of [1].
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1. Introduction and preliminaries

Let K be a nonempty convex subset of a normed linear space E, and let {Ti}N
i=1 be

N self-maps of K. Khan and Fukhar-ud-din [1] introduced the following iterative
scheme.

The sequence{xn} defined by



x1 = x ∈ K,
xn+1 = anSyn + bnxn + cnun,

yn = a′nTxn + b′nxn + c′nvn, ∀n ≥ 1.

(1.1)

where {an}, {bn}, {cn}, {a′n}, {b′n} and {c′n} are six real sequences in [0,1] with
0 < δ ≤ an, a′n ≤ 1 − δ < 1, an + bn + cn = a′n + b′n + c′n = 1, and {un}, {vn} are
bounded sequences in K.
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If cn = c′n = 0, then the above scheme means that



x1 = x ∈ K,
xn+1 = anSyn + bnxn,

yn = a′nTxn + b′nxn, ∀n ≥ 1.

(1.2)

where {an}, {bn}, {a′n} and {b′n} are four real sequences in [0,1] satisfying an+bn =
a′n + b′n = 1. This scheme has been studied by Das and Debata [2] and Takahashi
and Tamura [3].

Now, we further generalize the scheme given in (1.1) as follows.
The sequence {xn} is defined by




x1 = x ∈ K,
xn+1 = a(1)n T1x

(1)
n + b(1)n xn + c(1)n u

(1)
n ,

x
(1)
n = a(2)n T2x

(2)
n + b(2)n xn + c(2)n u

(2)
n ,

x
(2)
n = a(3)n T3x

(3)
n + b(3)n xn + c(3)n u

(3)
n ,

...
x

(N−2)
n = a(N−1)

n TN−1x
(N−1)
n + b(N−1)

n xn + c(N−1)
n u

(N−1)
n ,

x
(N−1)
n = a(N)

n TNx
(N)
n + b(N)

n xn + c(N)
n u

(N)
n ,

x
(N)
n = xn for all n ≥ 1.

(1.3)

The scheme is expressed in a compact form as

x(i−1)
n = a(i)n Tix

(i)
n + b(i)n xn + c(i)n u

(i)
n , for all n ≥ 1, i ∈ I, (1.4)

where I = {1, 2, 3, · · · , N}, xn+1 = x
(0)
n , {a(i)n }, {b(i)n } and {c(i)n } are three real

sequences in [0,1] with 0 < δ ≤ a
(i)
n ≤ 1 − δ < 1, a(i)n + b(i)n + c(i)n = 1, and {u(i)

n }
and {v(i)n } are two bounded sequences in K.

Since their introduction nonexpansive mappings have been extensively studied
by many authors in different frames of work. The purpose of this paper is to study
the weak and strong convergence of a multi-step iteration scheme (1.4) for N nonex-
pansive mappings in a uniformly convex Banach space. The results presented in this
paper extend and improve the corresponding results of [1] from two nonexpansive
mappings to a family of nonexpansive mappings.

To proceed in this direction, we first recall the following definitions.
A Banach space E is said to satisfy the Opial’s condition if whenever {xn} is a

sequence in E which converges weakly to x, then

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖ for all y ∈ E,with y �= x

A mapping T : K → E is called demiclosed with respect to y ∈ E if for each
sequence {xn} in K and each x ∈ E, xn ⇀ x, and Txn → y imply that x ∈ K and
Tx = y.
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In the sequel we shall need the following lemmas.
Lemma 1.1 [Schu[4]]. Suppose that E is a uniformly convex Banach space

and 0 < p ≤ tn ≤ q < 1 for all positive integers n. Also suppose that {xn} and {yn}
are two sequences of E such that lim supn→∞ ‖xn‖ ≤ d, lim supn→∞ ‖yn‖ ≤ d and
limn→∞ ‖tnxn +(1− tn)yn‖ = d hold for some d ≥ 0, then limn→∞ ‖xn − yn‖ = 0.

Lemma 1.2 [Tan and Xu[5]]. Let {sn} and {tn} be two nonnegative sequences
satisfying

sn+1 ≤ sn + tn for all n ≥ 1.

If
∑∞

n=1 tn <∞, then limn→∞ sn exists.
Lemma 1.3 [Browder[6]]. Let E be a uniformly convex Banach space satis-

fying the Opial’s condition and let K be a nonempty closed convex subset of E. Let
T be a nonexpansive mapping of K into itself, then I−T is demiclosed with respect
to zero.

2. Main results

In this section, let F (T ) denote the set of all fixed points of T .
Lemma 2.1. Let E be a normed space and K its nonempty bounded convex

subset. Let {Ti}N
i=1 : K → K be N nonexpansive mappings and let {xn} be the

sequence as defined in (1.4) with
∑∞

n=1 c
(i)
n < ∞, i ∈ I = {1, 2, 3, · · · , N}. If

F = ∩N
i=1F (Ti) �= ∅, then limn→∞ ‖xn − x∗‖ exist for all x∗ ∈ F = ∩∞

i=1F (Ti).
Proof. Since K is bounded, there exists M > 0, such that ‖xn − u

(i)
n ‖ ≤

M, for all i ∈ I. Assume that F = ∩∞
i=1F (Ti) �= ∅. Let x∗ ∈ F = ∩∞

i=1F (Ti).
Then

||xn+1 − x∗|| = ||a(1)n T1x
(1)
n + b(1)n xn + c(1)n u(1)

n − x∗||
= ||a(1)n (T1x

(1)
n − x∗ + c(1)n (u(1)

n − xn))
+(1− a(1)n )(xn − x∗ + c(1)n (u(1)

n − xn))||
≤ a(1)n ||T1x

(1)
n − x∗|| + (1− a(1)n )||xn − x∗|| + c(1)n ||u(1)

n − xn||
≤ a(1)n ||x(1)

n − x∗||+ (1− a(1)n )||xn − x∗||+ c(1)n M

= a(1)n ||a(2)n T2x
(2)
n + b(2)n xn + c(2)n u(2)

n − x∗||
+(1− a(1)n )||xn − x∗||+ c(1)n M

= a(1)n ||a(2)n (T2x
(2)
n − x∗ + c(2)n (u(2)

n − xn))
+(1− a(2)n )(xn − x∗ + c(2)n (u(2)

n − xn))||
+(1− a(1)n )||xn − x∗||+ c(1)n M

≤ a(1)n (a(2)n ||x(2)
n − x∗||+ (1 − a(2)n )||xn − x∗||+ c(2)n M)

+(1− a(1)n )||xn − x∗||+ c(1)n M

= a(1)n a(2)n ||x(2)
n − x∗||+ a(1)n (1− a(2)n )||xn − x∗||

+(1− a(1)n )||xn − x∗||+ a(1)n c(2)n M + c(1)n M
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= a(1)n a(2)n ||x(2)
n − x∗|| + (1− a(1)n a(2)n )||xn − x∗|| + a(1)n c(2)n M + c(1)n M

≤ a(1)n a(2)n (a(3)n ||x(3)
n − x∗|| + (1− a(3)n )||xn − x∗|| + c(3)n M)

+(1− a(1)n a(2)n )||xn − x∗|| + a(1)n c(2)n M + c(1)n M

= a(1)n a(2)n a(3)n ||x(3)
n − x∗|| + (1− a(1)n a(2)n a(3)n )||xn − x∗||

+a(1)n a(2)n c(3)n M + a(1)n c(2)n M + c(1)n M

· · · · · · · · · · · · · · · · · · · · · · · ·
≤ a(1)n a(2)n · · · a(N)

n ||x(N)
n − x∗|| + (1− a(1)n a(2)n · · ·a(N)

n )||xn − x∗||
+a(1)n a(2)n · · ·a(N−1)

n c(N)
n M + a(1)n a(2)n · · · a(N−2)

n c(N−1)
n M

+ · · ·+ a(1)n c(2)n M + c(1)n M

≤ a(1)n a(2)n · · · a(N)
n ||x(N)

n − x∗|| + (1− a(1)n a(2)n · · ·a(N)
n )||xn − x∗|| +MΣN

i=1c
(i)
n

= ||xn − x∗|| +MΣN
i=1c

(i)
n .

Since Σ∞
n=1c

(i)
n <∞, hence, using Lemma 1.2, we have that

lim
n→∞ ||xn − x∗|| exists for each x∗ ∈ F = ∩N

i=1F (Ti).

This completes the proof of Lemma 2.1. ✷

Lemma 2.2. Let E be a uniformly convex Banach space and K its nonempty
bounded convex subset. Let {Ti}N

i=1 : K → K be nonexpansive mappings, and
{xn} the sequence as defined in (1.4) with

∑∞
n=1 c

(i)
n < ∞, i = 1, 2, 3, · · · , N . If

F = ∩N
i=1F (Ti) �= ∅, then limn→∞ ‖Tixn − xn‖ = 0 for all i ∈ I.

Proof. By Lemma 2.1, limn→∞ ||xn−x∗|| exists. Suppose limn→∞ ||xn−x∗|| = d
for some d ≥ 0. Now,

||x(i−1)
n − x∗|| = ||a(i)n Tix

(i)
n + b(i)n xn + c(i)n u

(i)
n − x∗||

= ||a(i)n (Tix
(i)
n − x∗ + c(i)n (u(i)

n − xn))
+(1− a(i)n )(xn − x∗ + c(i)n (u(i)

n − xn))||
≤ a(i)n ||Tix

(i)
n − x∗||+ (1 − a(i)n )||xn − x∗|| + c(i)n ||u(i)

n − xn||
≤ a(i)n ||x(i)

n − x∗||+ (1 − a(i)n )||xn − x∗|| + c(i)n M

= a(i)n ||a(i+1)
n Ti+1x

(i+1)
n +b(i+1)

n xn+c(i+1)
n u(i+1)

n −x∗||
+(1− a(i)n )||xn−x∗||+c(i)n M

≤ a(i)n (a(i+1)
n ||x(i+1)

n − x∗||+ (1− a(i+1)
n )||xn − x∗|| + c(i+1)

n M)
+(1− a(i)n )||xn − x∗|| + c(i)n M

= a(i)n a
(i+1)
n ||x(i+1)

n − x∗|| + a(i)n (1− a(i+1)
n )||xn − x∗||

+(1− a(i)n )||xn − x∗|| + a(i)n c
(i+1)
n M + c(i)n M

= a(i)n a
(i+1)
n ||x(i+1)

n −x∗||+ (1−a(i)n a
(i+1)
n )||xn−x∗||

+a(i)n c
(i+1)
n M+c(i)n M

· · · · · · · · · · · · · · · · · ·
≤ a(i)n a

(i+1)
n · · · a(N)

n ||x(N)
n − x∗||+ (1 − a(i)n a

(i+1)
n · · · a(N)

n )||xn − x∗||
+MΣN

k=ic
(k)
n

= ||xn − x∗|| +MΣN
k=1c

(k)
n .
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Taking limsup on both sides in the above inequality, we have

lim sup
n→∞

||x(i−1)
n − x∗|| ≤ d. (2.1)

Next, consider

||Tix
(i)
n − x∗ + c(i)n (u(i)

n − xn)|| ≤ ||Tix
(i)
n − x∗|| + c(i)n ||u(i)

n − xn||
≤ ||x(i)

n − x∗|| + c(i)n M

Taking limsup on both sides in the above inequality and then using (2.1), we have
that

lim sup
n→∞

||Tix
(i)
n − x∗ + c(i)n (u(i)

n − xn)|| ≤ d for each i ∈ I. (2.2)

Also,

||xn − x∗ + c(i)n (u(i)
n − xn)|| ≤ ||xn − x∗||+ c(i)n ||u(i)

n − xn||
≤ ||xn − x∗||+ c(i)n M

gives that

lim sup
n→∞

||xn − x∗ + c(i)n (u(i)
n − xn)|| ≤ d for each i ∈ I. (2.3)

Further, limn→∞ ||xn+1 − x∗|| = d means that

lim
n→∞ ||a(1)n (T1x

(1)
n − x∗ + c(1)n (u(1)

n − xn)) + (1− a(1)n )(xn − x∗ + c(1)n (u(1)
n − x∗))|| = d

Hence, applying Lemma 1.1, we get that

lim
n→∞ ||T1x

(1)
n − xn|| = 0

Next,

||xn − x∗|| ≤ ||xn − T1x
(1)
n || + ||T1x

(1)
n − x∗|| ≤ ||xn − T1x

(1)
n ||+ ||x(1)

n − x∗||.
It follows from (2.1) that

d ≤ lim inf
n→∞ ||x(1)

n − x∗|| ≤ lim sup
n→∞

||x(1)
n − x∗|| ≤ d

That is,

lim
n→∞ ||x(1)

n − x∗|| = d

Now limn→∞ ||x(1)
n − x∗|| = d can be expressed as

lim
n→∞ ||a(2)n (T2x

(2)
n − x∗ + c(2)n (u(2)

n − xn)) + (1− a(2)n )(xn − x∗c(2)n (u(2)
n − x∗))|| = d

Moreover, by (2.2) and (2.3) we have that

lim sup
n→∞

||T2x
(2)
n − x∗ + c(2)n (u(2)

n − xn)|| ≤ d,
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and

lim sup
n→∞

||xn − x∗ + c(2)n (u(2)
n − x∗)|| ≤ d

So again by Lemma 1.1, we obtain that

lim
n→∞ ||T2x

(2)
n − xn|| = 0

Now,

||xn − x∗|| ≤ ||xn − T2x
(2)
n || + ||T2x

(2)
n − x∗|| ≤ ||xn − T2x

(2)
n ||+ ||x(2)

n − x∗||.
From (2.1) it follows that

d ≤ lim inf
n→∞ ||x(2)

n − x∗|| ≤ lim sup
n→∞

||x(2)
n − x∗|| ≤ d

That is

lim
n→∞ ||x(2)

n − x∗|| = d

Using the same method, we get that

lim
n→∞ ||T3x

(3)
n − xn|| = 0, lim

n→∞ ||x(3)
n − x∗|| = d

lim
n→∞ ||T4x

(4)
n − xn|| = 0, lim

n→∞ ||x(4)
n − x∗|| = d

· · · · · · · · · · · ·
lim

n→∞ ||TNx
(N)
n − xn|| = 0, lim

n→∞ ||x(N)
n − x∗|| = d

i.e.

lim
n→∞ ||Tix

(i)
n − xn|| = 0, lim

n→∞ ||x(i)
n − x∗|| = d for all i ∈ I

Now, observe that

||xn − Tixn|| ≤ ||xn − Tix
(i)
n || + ||Tix

(i)
n − Tixn||

≤ ||xn − Tix
(i)
n || + ||x(i)

n − xn||
= ||xn − Tix

(i)
n || + ||a(i+1)

n Ti+1x
(i+1)
n + b(i+1)

n xn + c(i+1)
n u(i+1)

n − xn||
= ||xn − Tix

(i)
n || + ||a(i+1)

n (Ti+1x
(i+1)
n − xn) + c(i+1)

n (u(i+1)
n − xn)||

≤ ||xn − Tix
(i)
n || + a(i+1)

n ||Ti+1x
(i+1)
n − xn||+ c(i+1)

n M

Hence

lim
n→∞ ||xn − Tixn|| = 0 for all i ∈ I.

This completes the proof of Lemma 2.2. ✷

Theorem 2.1. Let E be a uniformly convex Banach space satisfying the
Opial’s condition and let K,{Ti}N

i=1 and {xn} be taken as in Lemma 2.1. If F =
∩N

i=1F (Ti) �= ∅, then {xn} converges weakly to a common fixed point of {Ti}N
i=1.
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Proof. Let x∗ ∈ F = ∩N
i=1F (Ti), then as proved in Lemma 2.1, limn→∞ ||xn −

x∗|| exists. Now we prove that {xn} has a unique weak subsequential limit in
F = ∩N

i=1F (Ti). To prove this, let z1 and z2 be weak limits of the subsequences
{xni} and {xnj} of {xn}, respectively. By Lemma 2.2, limn→∞ ‖Tixn − xn‖ = 0
and I − Ti is demiclosed with respect to zero by Lemma 1.3, therefore we obtain
Tiz1 = z1, i.e., z1 ∈ F = ∩N

i=1F (Ti). Again in the same way, we can prove that
z2 ∈ F = ∩N

i=1F (Ti). Next, we prove the uniqueness. For this suppose that z1 �= z2,
then by the Opial’s condition

lim
n→∞ ||xn − z1|| = lim

ni→∞ ||xni − z1|| < lim
ni→∞ ||xni − z2||

= lim
n→∞ ||xn − z2|| = lim

nj→∞ ||xnj − z2||
< lim

nj→∞ ||xnj − z1|| = lim
n→∞ ||xn − z1||

This is a contradition. Hence {xn} converges weakly to a point in F = ∩N
i=1F (Ti).

This completes the proof of Theorem 2.1. ✷

Now we will prove a strong convergence theorem.
Two mappings S, T :K → K, where K is a subset of E, are said to satisfy

condition (A) if there exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that 1

2 (||x−Tx||+ ||x−Sx||) ≥ f(d(x, F ))
for allx ∈ K where d(x, F ) = inf{||x− x∗|| : x∗ ∈ F = F (S) ∩ F (T )}.

Khan and Fukhar-ud-din [1] approximated a common fixed point of two nonex-
pansive mappings S and T by iterating scheme (1.1). We modify this condition for
mappings {Ti}N

i=1 : K → K as follow:
N mappings {Ti}N

i=1 : K → K where K is a subset of E, are said to satisfy
condition (A′) if there exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that 1

N ΣN
i=1||x − Tix|| ≥ f(d(x, F )) for

all x ∈ K where d(x, F ) = inf{||x− x∗|| : x∗ ∈ ∩N
i=1F (Ti)}.

Note that condition (A′) reduces to condition (A) when N = 2. We shall use
condition (A′) to study the strong convergence of {xn} defined in (1.4).

Theorem 2.2. Let E be a uniformly convex Banach space and let K, {xn} be
taken as in Lemma 2.1. Let {Ti}N

i=1 : K → K be nonexpansive mappings satisfying
condition (A′). If F = ∩N

i=1F (Ti) �= ∅, then {xn} converges strongly to a common
fixed point of {Ti}N

i=1.
Proof. By Lemma 2.1, suppose that limn→∞ ||xn − x∗|| = d for all x∗ ∈ F =

∩N
i=1F (Ti). If d = 0, there is nothing to prove. Assume d > 0, by Lemma 2.2

limn→∞ ||Tixn − xn|| = 0, i ∈ I. Moreover,

||xn+1 − x∗|| ≤ ||xn − x∗||+MΣN
i=1c

(i)
n ,

gives that
inf

x∗∈F
||xn+1 − x∗|| ≤ inf

x∗∈F
||xn − x∗||+MΣN

i=1c
(i)
n .

That is,
d(xn+1, F ) ≤ d(xn, F ) +MΣN

i=1c
(i)
n

gives that limn→∞ d(xn, F ) exists by virtue of Lemma 1.2. Now by condition (A′),
limn→∞ f(d(xn, F )) = 0. Since f is a nondecreasing function and f(0) = 0, there-
fore limn→∞ d(xn, F ) = 0. Now we can take a subsequence {xnj} of {xn} and a
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sequence {pj} ⊂ F such that ||xnj − pj || < 2−j. Then following the method of
proof of Tan and Xu [5], we get that {pj} is a Cauchy sequence in F and so it
converges. Let pj → p. Since F is closed, therefore p ∈ F and then xnj → p. As
limn→∞ ||xn − x∗|| exists, xn → p ∈ F = ∩∞

i=1F (Ti). This completes the proof of
Theorem 2.2. ✷

Remark 2.1. Theorems 2.1-2.2 extend and improve the corresponding results
of [1].
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