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Uniform density u and corresponding Iu -
convergence∗
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Abstract. The concept of a uniform density of subsets A of the
set N of positive integers was introduced in [1] and [2]. Corresponding
Iu - convergence to the notion of uniform density u can be found in [8].
This paper studies Iu - convergence in detail.
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We recall some known notions. Let A ⊆ N . If m, n ∈ N , by A(m, n) we denote
the cardinality of the set A ∩ [m, n]. Numbers

d(A) = lim
n→∞ inf

A(1, n)
n

, d(A) = lim
n→∞ sup

A(1, n)
n

are called the lower and the upper asymptotic density of the set A, respectively. If
there exists the limit

lim
n→∞ sup

A(1, n)
n

,

then d(A) = d(A) = d(A) is said to be the asymptotic density of A. The uniform
density of A ⊆ N was introduced in [1] and [2] as follows: Put

an = min
m≥0

A(m + 1, m + n), an = max
m≥0

A(m + 1, m + n).

It can be shown (see [2]) that the following limits exist

u(A) = lim
n→∞

an

n
, u(A) = lim

n→∞
an

n
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and they are called the lower and the upper uniform density of the set A, respec-
tively. If u(A) = u(A), then u(A) = u(A) is called the uniform density of A. It is
clear that for each A ⊆ N we have

u(A) ≤ d(A) ≤ d(A) ≤ u(A). (1)
Hence if there exists u(A), then there also exists d(A) and u(A) = d(A). The
converse is not true (see Example 1.).

The concept of statistical convergence was introduced in [4] (see also [3], [5], [10],
[11]) as follows: Let x = (xn)∞1 be a sequence of complex numbers. The sequence
x is said to be statistically convergent to a complex number L provided that for
every ε > 0 we have d(Aε) = 0, where Aε = {n ∈ N : |xn − L| ≥ ε}. If x = (xn)∞1
converges statistically to L, then we write lim - stat xn = L.

A generalized approach to convergence is done in [6] by means of the notion of
an ideal I of subsets of N (i.e. I is an additive and hereditary class of sets).

A sequence x is said to be I - convergent to L provided that for every ε > 0 the
set Aε belongs to I, we write I - lim xn = L. Put I = Id = {A ⊂ N : d(A) = 0},
then Id - convergence coincides with statistical convergence. Hence lim - stat xn = L
= Id - lim xn. In the case I = Iu = {A ⊂ N : u(A) = 0} we obtain Iu - convergence.
If x = (xn)∞1 is Iu - convergent to L, we write Iu - lim xn = L.

We can easily verify that if Iu - lim xn = L1, Iu - lim yn = L2, then Iu - lim
(xn + yn) = L1 + L2 and if a is constant, then Iu - lim axn = aL1. By M1 we
denote the set of all Iu - convergent sequences; M1 is a linear space. Analogously,
we have for M0, the set of all statistically convergent sequences (see [11]). Let c be
the set of all convergent sequences. By (1) we have c ⊆ M1 ⊆ M0.

The following examples show that c �= M and M1 �= M0 even in case of bounded
sequences.

Example 1. Let P be the set of all primes. Define xk = 1 for k ∈ P and xk = 0
otherwise. Because of u(P ) = 0 (see [2]), we have that x = (xk)∞1 is Iu - convergent
to 0, but not convergent.

Example 2. It is easy to see that for the set

A =
∞⋃

k=1

{10k + 1, 10k + 2, . . . , 10k + k}

we have d(A) = 0, u(A) = 0, u(A) = 1. Put xk = 1 for k ∈ A and xk = 0 for
k /∈ A. Then Id - lim xk = 0, but x = (xk)∞1 is not Iu - convergent.

We recall the notion of strong p - Cesàro convergence and almost convergence.
A sequence x = (xk)∞1 is said to be strong p - Cesàro convergent (0 < p < ∞) to a
number L if

lim
n→∞

1
n

n∑
k=1

|xk − L|p = 0

(see [3]). By wp denote the set of all strong p - Cesàro convergent sequences. A
bounded sequence x = (xk)∞1 is almost convergent to a number L if every Banach
limit of x is equal to L, which is equivalent to the condition

lim
p→∞

1
p

p∑
i=1

xn+i = L
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uniformly in n(see [9], [10], p 59-62). By F we denote the set of all almost convergent
sequences.

It is shown in [9] that almost convergence and statistical convergence are not
compatible even in the case of bounded sequences.

The following Theorem 1 shows that in the case of bounded sequences Iu- con-
vergence and almost convergence can be compared.

Theorem 1. Suppose x = (xk)∞1 is a bounded sequence. If x is Iu - convergent
to L, then x is almost convergent to L.

Proof. Let p, n ∈ N be arbitrary. We estimate

S(n, p) =
∣∣∣xn+1 + xn+2 + . . . + xn+p

p
− L

∣∣∣.

We have

S(n, p) ≤ S(1)(n, p) + S(2)(n, p), (2)

where

S(1)(n, p) =
1
p

∑
1 ≤ j ≤ p,
n + j ∈ Aε

|xn+j − L|,

S(2)(n, p) =
1
p

∑
1 ≤ j ≤ p,
n + j /∈ Aε

|xn+j − L|.

By using the definition of Aε = {n ∈ N : |xn − L| ≥ ε} we have

S(2)(n, p) < ε for every n = 1, 2, . . . . (3)

The boundedness of x = (xk)∞1 implies that there exists M > 0 such that

|xk − L| ≤ M (k = 1, 2, . . . ). (4)

Then (4) implies

S(1)(n, p) ≤ M
Aε(n + 1, n + p)

p
≤ M

max
m

Aε(m + 1, n + p)

p
= M

ap

p
.

Using the last estimation which holds for every n = 1, 2, . . . and (2), (3) we obtain
the assertion of Theorem 1. ✷

Remark 1. The converse of the previous theorem does not hold. For instance,
let y = (yk)∞1 be the sequence defined by yk = 1 if n is even and yk = 0 if n is odd.
The sequence y is almost convergent to 1/2 but it is not Iu - convergent.

In [3] a connection between strong p - Cesàro convergence and statistical conver-
gence is articulated. In the case of bounded sequences both of these kinds of con-
vergence are equivalent. A similar result can be obtained for Iu - convergence. First
of all, we define a new kind of convergence, so-called uniformly strong p - Cesàro
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convergence, which is a generalization of the notion of strong almost convergence
(see [8]).

Definition 1. The sequence x = (xk)∞1 is said to be uniformly strong p-Cesàro
convergent (0 < p < ∞) to a number L if

lim
k→∞

1
k

n+k∑
i=n+1

|xi − L|p = 0

uniformly in n.
By uwp denote the set of all uniformly strong p - Cesàro convergent sequences.

It is immediate that uwp ⊂ wp (0 < p < ∞). Example 2 shows that the inclusion
is strict.

Theorem 2.

a) If 0 < p < ∞ and a sequence x = (xk)∞1 is uniformly strong p - Cesàro
convergent to L, then it is Iu - convergent to L.

b) If x = (xk)∞1 is bounded and Iu - convergent to L, then it is uniformly strong
p - Cesàro convergent to L for every p, 0 < p < ∞.

Proof.
a) Let x be uniformly strong p - Cesàro convergent to L, 0 < p < ∞. Suppose

ε > 0. Then, for every n ∈ N we have
k∑

j=1

|xn+j − L|p ≥
∑

1 ≤ j ≤ k,
|xn+j − L| ≥ ε

|xn+j − L|p ≥ εpAε(n + 1, n + k),

and further,

1
k

k∑
j=1

|xn+j − L|p ≥ εp
max
m≥0

Aε(m + 1, m + k)

k
= εp ak

k

for every n = 1, 2, 3 . . . . This implies lim
k→∞

ak

k
= 0, and u(Aε) = 0, so that Iu-lim xn

= L.
b) Now, suppose that x is a bounded sequence and Iu - lim xn = L. Let

0 < p < ∞ and ε > 0. According to the assumption, we have

u(Aε) = 0. (5)

The boundedness of x = (xk)∞1 implies that there exists M > 0 such that
|xk − L| ≤ M (k = 1, 2, . . . ). Observe that for every n ∈ N , we have that

1
k

k∑
j=1

|xn+j − L|p =
1
k

k∑
1 ≤ j ≤ k,
n + j ∈ Aε

|xn+j − L|p +
1
k

k∑
1 ≤ j ≤ k,
n + j /∈ Aε

|xn+j − L|p

≤ M

max
m≥0

Aε(m + 1, m + k)

k
+ εp ≤ εp + M

ak

k
(6)
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Using (5) and (6) we obtain lim
k→∞

1
k

k∑
j=1

|xn+j − L|p = 0, uniformly in n. ✷

Corollary 1. If x = (xk)∞1 is a bounded sequence, then x is Iu - convergent
to L if and only if x is uniformly strong p - Cesàro convergent to L for every p,
0 < p < ∞.

In [3], [5] and [11] it is shown that statistical convergence can be characterized
by the convergence in the usual sense along a great set of indexes, great in the sense
of asymptotic density. The following theorem shows that the Iu - convergence can
be characterized by the convergence along a great set of indexes, great now being
in the sense of uniform density. In [6] it is shown that a similar statement is not
true for the I - convergence where I is an arbitrary ideal.

Theorem 3. A sequence x = (xk)∞1 is Iu - convergent to L if and only if there
exists a set

K = {k1 < k2 < . . . < kn < . . . } ⊆ N

such that u(K) = 1 and lim
n→∞xkn = L.

Proof. If there exists a set with the mentioned properties and ε is an arbitrary
positive number, we can choose a number m ∈ N such that for each n > m we have

|xkn − L| < ε. (7)

Let Aε = {n ∈ N : |xkn − L| ≥ ε}. Then, on the basis of (7), we have

Aε ⊆ N − {km+1, km+2, . . . }

where on the right-hand side there is a set with the uniform density 0. Therefore,
u(Aε) = 0; hence Iu - lim xk = L.

Now suppose that a sequence x = (xk)∞1 is Iu - convergent to L. Let Kj be the
complement of the set A1/j for j = 1, 2, . . . ,

Kj = N −
{
n ∈ N : |xkn − L| ≥ 1

j

}

Then, by the definition of Iu - convergence, we have

u(Kj) = 1 for j = 1, 2, . . . .

By the definition of Kj we have

K1 ⊇ K2 ⊇ . . . ⊇ Kj ⊇ Kj+1 ⊇ . . . . (8)

Let us choose an arbitrary number s1 ∈ K1. By the definition of Kj there exists
a number s2 > s1, s2 ∈ K2 such that for each n ≥ s2 we have

min
m≥0

K2(m + 1, m + n)

n
>

1
2
.

Again on the basis of the definition of Kj there exists a number s3 > s2, s3 ∈ K3,
such that for each n ≥ s3 we have
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min
m≥0

K3(m + 1, m + n)

n
>

2
3
.

In this manner we can construct an increasing sequence of positive integers

s1 < s2 < . . . < sj < . . .

such that sj ∈ Kj and that for each n ≥ sj we have

min
m≥0

Kj(m + 1, m + n)

n
> 1 − 1

j
for j = 1, 2, . . . . (9)

Define K as follows:
if 1 ≤ k ≤ s1, then k ∈ K; suppose that j ≥ 1 and that sj < k ≤ sj+1, then k ∈ K
if and only if k ∈ Kj . Let K = {k1 < k2 < . . . < kn < . . . }. According to (8) and
(9), for each n, sj ≤ n < sj+1 we have

min
m≥0

K(m + 1, m + n)

n
≥

min
m≥0

Kj(m + 1, m + n)

n
> 1 − 1

j
.

From this it is obvious that u(K) = 1.
Let ε > 0 be given and select j such that 1/j < ε. Let n ≥ sj , n ∈ K. Then

there exists a number r ≥ j such that sr ≤ n < sr+1. According to the definition
of K, n ∈ Kr, we have

|xn − L| <
1
r
≤ 1

j
< ε.

Thus |xn − L| < ε for each n ≥ sj , n ∈ K. Hence lim
n→∞xkn = L. ✷

Corollary 2. If a sequence x = (xk)∞1 is uniformly strong p - Cesàro convergent
(0 < p < ∞) or Iu - convergent to L, then there exists a sequence y = (yk)∞1
convergent to L and a sequence z = (zk)∞1 Iu - convergent to 0, such that x = y + z
and u(B) = 0, where B = {n ∈ N : zk �= 0}.

Proof. First observe that if x is uniformly strong p - Cesàro convergent to L
(0 < p < ∞), then x is Iu - convergent to L. From the previous theorem there
exists a set

K = {k1 < k2 < . . . < kn < . . . } ⊆ N

such that u(K) = 1 and lim
n→∞xkn = L. We define y and z as follows: If k ∈ K, put

yk = zk and zk = 0, and if k /∈ K, we put yk = L and zk = xk − L. ✷

Remark 2. If a sequence x = (xk)∞1 is uniformly strong p - Cesàro convergent
(0 < p < ∞) or Iu - convergent to L, then x has a subsequence which converges to
L.
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