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C2 popunjavanje praznina pomoću konveksne
kombinacije ploha pod rubnim ogranǐcenjima

SAŽETAK

Dane su dvije metode za izvod-enje ploha. Jedna za povezi-
vanje dviju ploha sa C2 neprekinutošću koja odgovara i
dvjema graničnim linijama, a druga za G1 popunjavanje
posebnog slučaja trostrane rupe. Plohe se izvode kao kon-
veksna kombinacija plošnih i krivuljnih sastvanih dijelova
sa odgovarajućom korektivnom funkcijom, a dane su u
parametarskom obliku.

Ključne riječi: C2 neprekinutost, konveksna kombinacija,
Coonsove plohe, popunjavanje rupa, plošno modeliranje

C2 Filling of Gaps by Convex Combination of Sur-
faces under Boundary Constraints

ABSTRACT

Two surface generation methods are presented, one for
connecting two surfaces with C2 continuity while match-
ing also two prescribed border lines on the free sides of the
gap, and one for G1 filling a three-sided hole in a special
case. The surfaces are generated as convex combination
of surface and curve constituents with an appropriate cor-
rection function, and are represented in parametric form.

Key words: C2 continuity, Convex combination, Coons
surfaces, Filling of holes, Surface modelling
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1 Introduction

In this paper trigonometric convex combinations of sur-
faces and curves are applied for filling gaps between two
surfaces and holes bounded by three surfaces. Trigono-
metric blending functions have been applied forG 1 curve
construction already by B¨ar (1977), then for definingG 2

spline curves as convex combinations of arcs and straight
line segments by Szilv´asi-Nagy and P.Vendel (2000). An
extension of those curve constructions to surfaces has been
given by Szilvási-Nagy (2000). Continuity conditions and
a rational parametric form of the blending functions are
presented here.

Convex combinations of points, curves or surfaces are fre-
quently used for solving interpolation problems, for exam-
ple Little (1983). Well-known interpolating surfaces de-
fined by convex combination of boundary curves are the
Coons surfaces (see e.g. in Farin 1990). Curves defined
over triangles are interpolated by aC2 surface using quintic
polynomials by Alfeld and Barnhill (1984). Here, similarly
to Coons’s method, the input data are “wire frame data”
consisting of curves and first and second cross-boundary

derivatives. A transfinite blending function interpolant for
the simplex inRn is decribed by Gregory (1985). The term
transfinite means that the interpolant matches function and
derivative values given on all faces of the simplex. That is,
surfaces appear in the combination. The method is based
on an explicit representation of a finite dimensional Her-
mite interpolation polynomial for the simplex.

The surface generation methods presented in this paper for-
mally follow the construction method of Coons by build-
ing a convex combination of the boundary data and apply-
ing proper correction functions. However, the geometric
concept of our construction is rather similar to the transfi-
nite interpolation surface of Gregory. The use of surface
patches in a Coons-type blend is novel in our algorithms.
The surfaces in the combination are defined over the same
parameter domain. The resulting surface matches one bor-
dering line of each surface and the tangent planes along
this line. Moreover, the second cross-derivatives are also
equal along the contact curves in the rectangular case (first
algorithm). This fact can be used for filling a gap between
two surfaces or a hole between three surfaces. The con-
stituents are either the extensions of the surfaces bordering
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the gap or the hole, or patches (two or three) joiningC 1

or C2 continuously to one of the surfaces which are to be
connected. In this way these patches transfer the boundary
data to the convex combination. There are several known
methods forC1 or C2 fitting of rectangular and triangu-
lar patches (Farin, 1990, Chapter 19 and Hoschek, 1992,
Chapter 7). These constructions will not be the subject of
this paper.

2 Blending surface between two surfaces
with boundary constraints

A blending surface is one that smoothly connects two
given surfaces and satisfies additional geometric con-
straints. Filip (1989) applied cubic Hermite blend of two
boundary curves of the given surfaces and two arbitrary
rail curves. The literature describes many different meth-
ods for constructing blending surfaces, recently Hartmann
(2001) used rational functions. Some of these methods are
extended to three or more surfaces, for example that of
Schichtel (1993). These blending surfaces defined as linear
combinations of given curves or surfaces with one param-
eter blending functions are different from both the Coons
and our patches, they are not the subject of this paper.

In this algorithm two regular surfacesr1(u,v) andr2(u,v)
and two curvesr3(v) and r4(v) are given. The curves
join the corresponding corner points of the two surfaces as
boundary lines of the required surface patch. The blend-
ing surface is defined over the parameter domain(u,v) ∈
[0,1]× [0,1] such that its boundary curves forv = 0 and
v = 1 match the boundaries of the gap determined from the
left by r1(u,0) and from the right byr2(u,1), respectively,
while the upper border line foru = 0 coincides with the
curver3(v) and the lower border line foru = 1 coincides
with the curver4(v) (v ∈ [0,1]) (Fig. 1). The drawn parts
of the given underlying surfaces in Fig. 2 are parametrized
as follows: r1(u,v): (u,v) ∈ [0,1]× [−1,0], andr2(u,v):
(u,v) ∈ [0,1]× [1,2].
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Figure 1: Two surfaces and two curves bordering a gap.

Figure 2: The input surfaces and curves determining a gap.

The blending surfacef(u,v) is generated by a trigonomet-
ric convex combination of the surfaces and curves and by
an appropriate correction function (Fig. 3).

Figure 3: The filled gap shown in Fig. 2.

Theorem 1 Let two surfaces be given by the differentiable
vector functions r1(u,v) and r2(u,v) over a parameter do-
main containing the unit square [0,1]× [0,1] moreover, two
curve segments given by the differentiable vector functions
r3(v) and r4(v), v ∈ [0,1]. In the corner points

r1(0,0) = r3(0), r1(1,0) = r4(0),
r2(0,1) = r3(1), r2(1,1) = r4(1)

are required.
Then the surface defined by the following vector equation

f(u,v) = cos2(
π
2
· v)r1(u,v)+sin2(

π
2
· v)r2(u,v)

+ cos2(
π
2
·u)r3(v)+sin2(

π
2
·u)r4(v)

− q(u,v), (1)

where q(u,v) = [cos2(
π
2
· v)r1(0,v)

+ sin2(
π
2
· v)r2(0,v)]cos2(

π
2
·u)

+ [cos2(
π
2
· v)r1(1,v)

+ sin2(
π
2
· v)r2(1,v)]sin2(

π
2
·u),

and (u,v) ∈ [0,1]× [0,1],

is differentiable and fits the boundary curves r1(u,0),
r2(u,1), r3(v) and r4(v).

42



KoG•6–2002 M. Szilvási-Nagy, T. P. Vendel, H. Stachel:C 2 Filling of Gaps by Convex Combination of Surfaces ...

Proof. The border lines of the patchf(u,v) are to be
checked by substitutingu = 0, u = 1, v = 0, andv = 1
into the equation (1) in turn. The computation results
with f(0,v) = r3(v), f(1,v) = r4(v), f(u,0) = r1(u,0),
f(u,1) = r2(u,1), u ∈ [0,1], v ∈ [0,1] as stated in the The-
orem.�

Theorem 2 The surface defined in (1) joins to the given
surface r1(u,v) with first order (C1) continuity along the
boundary line r1(u,0), u ∈ [0,1], when the curves r3(v)
and r4(v) join with C1 continuity to the border lines u = 0
and u = 1 of the surface r1(u,v), respectively.

Proof. According to the conditionsr1,v(0,0) = r3,v(0) and
r1,v(1,0) = r4,v(0), where the subscriptv denotes the dif-
ferentiation with respect tov. According to Theorem 1
f(u,0) = r1(u,0), therefore the partial derivativesfu(u,0)
andr1,u(u,0) are equal along the common boundary curve
v = 0, u ∈ [0,1]. The tangent vector of av parameter line
of the surfacef(u,v) at a point of this curve is

fv(u,0) = r1,v(u,0)+cos2(
π
2
·u)(r3,v(0)− r1,v(0,0))

+ sin2(
π
2
·u)(r4,v(0)− r1,v(1,0)).

By assumption, the second and third terms are zero vectors,
consequentlyfv(u,0) = r1,v(u,0) at the points of the con-
nection line. This meansC1 continuity betweenf(u,v) and
r1(u,v) at the pointsv = 0, u ∈ [0,1]. Therefore, the tan-
gent planes of the two surfaces along the connection line
are obviously the same.�

Remark 1. The analogous statement about theC1 con-
nection of the blending surfacef(u,v) defined in (1) and
r2(u,v) along the connection linev = 1 yields if r3(v) and
r4(v) join with C1 continuity to the border linesu = 0 and
u = 1 of r2(u,v), respectively. The proof is similar to that
of Theorem 2.

Remark 2. In the case ifr1(u,v) (and analogously
r2(u,v)) is a cylindrical surface,G1 continuous connec-
tion betweenr1(u,v) (orr2(u,v)) andf(u,v) can be assured
under weaker conditions, namely, whenr3,v(0) is parallel
to r1,v(0,0) andr4,v(0) is parallel tor1,v(1,0) (G1 condi-
tion instead ofC1). As the derivatives with respect tov
of the cylindrical surfacer1(u,v) (see Fig. 4) are all par-
allel, the terms in the expression offv(u,0) are parallel
to r1,v(u,0), which ensures the parallelity of the normals
fu(u,0)× fv(u,0) andr1,u(u,0)× r1,v(u,0).
The tangent plane continuity is equivalent to theG1 conti-
nuity. In this case the joining surface patches admit a lo-
cal reparametrisation in which the joining surfaces areC 1

(Boehm, 1988 and Gregory, 1989).

The conditions in Remark 2 allow flexible constructions
of blending surfaces between cylindrical surfaces. In the
next example the upper and lower curves connect the bor-
der lines of the two cylindrical surfaces withG1 continu-
ity. The convex combination surface generated in the ratio-
nal parametric form of the trigonometric blendig functions
(see in Section 4.) fits the prescribed boundary curves and
joins with tangential continuity (G1) to the two cylindri-
cal surfaces (Fig. 4.). Similar modelling problems occur
e.g. in planning canals over a landscape by joining cylin-
drical or toroidal surfaces while also matching prescribed
bordering curves.

Figure 4:G1 continuous input data resultG1 connection.

Theorem 3 If the boundary curves r3(v) and r4(v) join
C2 continuously to the boundary lines u = 0 and u = 1 of
the surfaces r1(u,v) and r2(u,v) at the corner points, then
adding the correction function

m(u,v) = s(v) · [r1(u,v)− r2(u,v)

− cos2(
π
2
·u)(r1(0,v)− r2(0,v))

− sin2(
π
2
·u)(r1(1,v)− r2(1,v))]

to the expression of f(u,v) in (1), where

s(v) =
1
16

(−2v+1)3sin2(π(2v+1))

results C2 connection of f(u,v) with r1(u,v) and r2(u,v).

Proof. The requirements of Theorem 2 are obviously full-
filled for both surfacesr1(u,v) andr2(u,v). As the val-
ues of s(v) and s′(v) at v = 0 and v = 1 are zero, the
new termm(u,v) in (1) does not influence theC0 andC1

continuities. The second derivatives aresvv(0) = 1 and
svv(1) =−1 therefore, the differencesfvv(u,0)−r1,vv(u,0)
andfvv(u,1)− r2,vv(u,1) become zero.�

C2 continuous filling of a gap is shown in Fig. 5. This
example shows also the shape influence of the underlying
surfaces, where the surfacer1(u,v) has periodic bulges and
r2(u,v) is planar. The resulting surface is the combination
of such a bulge and a planar rectangle and two bordering
straight line segments.
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Figure 5: Shape influence of the constituents,C2 connec-
tion.

Several experiments have shown that monoton polynomial
parameter transformations of the underlying surfaces inv
direction have no noticeable influence on the shape of the
resulting surface.

3 Combination of three surfaces

The two parameter representation of the sphere has in-
spired the following trigonometric convex combination of
three surfaces defined over the unit square(u,v) ∈ [01, ]×
[0,1].

Theorem 4 If three surfaces represented by the differen-
tiable vector functions r1(u,v), r2(u,v) and r3(u,v) over
the unit square (u,v) ∈ [0,1]× [0,1] have common corner
points at (u,v) = (1,0) and (u,v) = (1,1), then the surface
described by the vector function

f(u,v) = cos2(
π
2
·u)cos2(

π
2
· v)r1(u,v)

+ cos2(
π
2
·u)sin2(

π
2
· v)r2(u,v)

+ sin2(
π
2
·u)r3(u,v)−q(u,v), (2)

where

q(u,v) = sin2(
π
2
·u)cos2(

π
2
· v)[r3(u,0)− r1(u,0)]

+ sin2(
π
2
·u)sin2(

π
2
· v)[r3(u,1)− r2(u,1)]

and (u,v) ∈ [0,1]× [0,1]

is differentiable and fits the boundary curves r1(u,0),
r2(u,1) and r3(1,v).

Proof. The boundary lines of the blending surfacef(u,v)
are to be computed by substituting the parameter values
according to the bordering lines of the unit square in the
u,v parameter plane in turn.

f(1,v) = r3(1,v)−cos2(
π
2
· v)[r3(1,0)− r1(1,0)]

− sin2(
π
2
· v)[r3(1,1)− r2(1,1)] = r3(1,v),

f(u,0) = cos2(
π
2
·u)r1(u,0)+sin2(

π
2
·u)r3(u,0)

− sin2(
π
2
·u)[r3(u,0)− r1(u,0)] = r1(u,0),

f(u,1) = cos2(
π
2
·u)r2(u,1)+sin2(

π
2
·u)r3(u,1)

− sin2(
π
2
·u)[r3(u,1)− r2(u,1)] = r2(u,1),

since the corner points standing in the same brackets are
equal.�
In Fig. 6 Three cylindrical surfaces are given obeying
the conditions of Theorem 4. The drawn pieces are in
turn r1(u,v): (u,v) ∈ [0,1]× [−1,0], r2(u,v): (u,v) ∈
[0,1]× [1,2] andr3(u,v): (u,v) ∈ [1,2]× [0,1]. The gen-
erated surface patch joins continuously to the three neigh-
bours along their boundary curves.

Figure 6: Combination of three surfaces,G1 connection

The filling of a three-sided hole with a surface joining con-
tinuously to the surrounding surfaces is a classical prob-
lem, the so called suit case corner problem. The method
presented here also gives a solution for this problem in a
special case. The restriction in the algorithm is that two
of the patches in the convex combination are three-sided
degenerate surfaces meeting with their singular points at a
corner of the hole. These are e.g. parts of two different
rotational surfaces represented as degenerate rectangular
patches (this is usually the case in CAD systems), or trian-
gular patches, each joining withG1 continuity to one bor-
dering surface, then reparametrized. Such a reparametriza-
tion of a triangular domain described by the barycentric
coordinates 0≤ u,v,w ≤ 1, u + v + w = 1, is given by
u = t − s · t, v = s · t, 0≤ s, t ≤ 1.
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The surface generated by equation (2) fills the three-sided
hole. It is a degenerate rectangular patch, where the bound-
ary line u = 0 is just a point, i.e. one corner point of the
triangular hole. Surfaces with singular points (e.g. cones)
are also allowed in the construction, therefore nothing can
be stated about the tangent plane at the singular point in
general.
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Figure 7: Three-sided hole formed by three surfaces.

In Fig. 7 a sketch of three surfaces is shown.

Theorem 5 Let three surfaces be given by the differen-
tiable vector functions r1(u,v), r2(u,v) and r3(u,v) over a
parameter domain containing the unit square [0,1]× [0,1]
such that r1(0,v) = r2(0,v) = c, r1(1,0) = r3(1,0) and
r2(1,1) = r3(1,1) hold. Then the surface described by the
vector function (2) is differentiable and fits the boundary
curves r1(u,0), r2(u,1) and r3(1,v).

Proof. The equation of the boundary lineu = 0 is

f(0,v) = cos2(
π
2
· v) · r1(0,v)+sin2(

π
2
· v) · r2(0,v).

Hence the corner points are

f(0,0) = r1(0,0), f(0,1) = r2(0,1).

The parameter lineu = 0 collapses into a point only in the
case whenr1(0,v) andr2(0,v), v ∈ [0,1] collapse also into
the same pointc. The other three boundary curves are as
in Theorem 4.�

Corollary 1 If the surfaces surrounding the hole are parts
of the same sphere in the same parametrization, then the
surface defined in (2) is also lying on this sphere.

Theorem 6 If for the given three surfaces the conditions of
Theorem 5, moreover the following parallelity conditions

r1,v(u,0) ||r3,v(u,0) r2,v(u,1) ||r3,v(u,1),

and the equalities

r1,u(1,0) = r3,u(1,0) r2,u(1,1) = r3,u(1,1)

are satisfied, then the blending surface f(u,v) given in (2)
fills the hole G1 continuously. (The subscripts u and v
denote the differentiation with respect to u and v, respec-
tively.)

Proof. According to Remark 2 the surface normals of the
blending surface and the given surfaces are to be computed
along the connection lines. The partial derivatives along
the connection linev = 0 are

fu(u,0) = r1,u(u,0)

and

fv(u,0) = cos2(
π
2
·u)r1,v(u,0)+sin2(

π
2
·u)r3,v(u,0).

Sincer1,v(u,0) andr3,v(u,0) are by assumption parallel,
the surface normals off(u,v) andr1(u,v) are also parallel
along the connection line 0< u ≤ 1. The continuity be-
tweenf(u,v) andr2(u,v) along the border linev = 1 of the
hole can be checked in a similar way.

The partial derivatives along the connection lineu = 1 due
to the conditions on the derivatives are

fu(1,v) = r3,u(1,v)

and
fv(1,v) = r3,v(1,v),

which result theG1 continuity of the two surfaces.

At the singular pointu = 0 two cases can be differentiated.
If one of the surfacesr1(u,v) andr2(u,v) has no tangent
plane or they have different tangent planes at the singular
point then the resulting surface has no tangent plane at this
point either.

If the point u = 0 of the surfacesr1(u,v) andr2(u,v) is
singular only in the parametrization, then the unit vector of
the surface normal at the singular point can be defined as
limu→0(r1,u(u,v0)× r1,v(u,v0))0 and limu→0(r2,u(u,v0)×
r2,v(u,v0))0, respectively, wherev0 ∈ [0,1] and the 0 in the
exponent denotes the normalization of the vectors. This
definition of the surface normal at singular points has been
applied also by Reif (1995). By assumption, the two sur-
faces have a common tangent plane at the corner point of
the hole, consequently these two vectors are equal to the
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common surface normal denoted byn. We show that the
resulting surfacef(u,v) has the same tangent plane at this
point (Fig. 10). Namely,

lim
u→0

fu(u,v0) = cos2(
π
2

v0) · lim
u→0

r1,u(u,v0)

+ sin2(
π
2

v0) · lim
u→0

r2,u(u,v0)

and similarly

lim
u→0

fv(u,v0) = cos2(
π
2

v0) · lim
u→0

r1,v(u,v0)

+ sin2(
π
2

v0) · lim
u→0

r2,v(u,v0), v0 ∈ [0,1].

Moving along av = v0 parameter line into the singular
point, the surface normal defined as limu→0(fu(u,v0) ×
fv(u,v0))0 is also parallel ton, because all the vector com-
ponents in this expression are perpendicular ton. Con-
sequently, the constructed blending surfacef(u,v) has the
same tangent plane at(u,v) = (0,0) as the surfacesr1(u,v)
andr2(u,v). �

In Fig. 8 the three-sided surfaces are ellipsoids and the
third one is a cylindrical surface. The drawn parts are
parametrized as follows.r1(u,v): (u,v) ∈ [0,1]× [−1,0];
r2(u,v): (u,v) ∈ [0,1]× [1,2]; r3(u,v): (u,v) ∈ [1,3]×
[0,1].

The example in Fig. 10. illustrates theG1 continuous fill-
ing of the three-sided hole shown in Fig. 8. Fig. 9 shows
the surface patches used in equation (2).

Similar modelling problems occur e.g. in planning a roof
by joining a conic and a planar part smoothly around a cor-
ner, while also matching a third surface (a part of a wall or
eaves).

Figure 8: Two ellipsoids and a cylinder around the hole.

Figure 9: The combined surface pieces.

Figure 10:Filling the hole shown in Fig. 8.

4 Rational parametrization of the trigono-
metrical blending functions

In the algorithms shown in Sections 2 and 3 there are no
restrictions on the type of the parametric vector functions
describing the surfaces bordering the gap or the hole. How-
ever, the implementations in the praxis usually work with
polynomial or rational spline functions. Consequently,
when the curves and surfaces are described by rational
functions, the blending functions in the convex combina-
tion should be also given in polynomial or rational form.
Based on the rational parametrization of the circle and fun-
damental identities the trigonometric blending functions in
(1) and (2) can be replaced as follows. Choosing the func-
tion

µ(t) =
4t2

(1+ t2)2 , 0≤ t ≤ 1,

the substitutions

sin2(
π
2
· t) = µ(t) and cos2(

π
2
· t) = 1−µ(t) (3)
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(t is standing instead ofu or v) lead to an equivalent def-
inition of the surface in (1) or in (2). The Theorems and
the Remarks above yield further on, since the functions
in (3) behave equally att = 0 and t = 1. Of course,
the parametrization of the resulting surface will be differ-
ent. The higher numerical stability of the rational blend-
ing functions in the neighbourhood of the singular point
yields smoother surfaces than the trigonometric functions.
However, the investigation of the boundary values of the
functions and their derivatives is more transparent in the
trigonometric form.

The surfaces shown in Figs. 4, 6 and 10 are generated in
this rational form. Similarly, the rational form is used in
the next example of a three-sided hole. The surface on the
right-hand side is a planar triangle (Fig. 11.), on the left-
hand side an ellipsoide and the lower one is a cylindrical
surface with a quintic B´ezier generator curve. The blend-
ing surface filling the hole joins withG1 continuity to the
three given surfaces.

Figure 11: Filling the hole formed by an ellipsoid, a pla-
nar triangle and a cylindrical surface by rational
blending.

5 Conclusions

The given methods for generating surfaces filling a gap be-
tween two surfaces or a three-sided hole are based on con-
vex combinations of the surfaces surrounding the gap or
the hole, respectively. This concept is a new approach of
Coons’s blending methods. The resulting surfaces fit the
given surfaces along the connection curves withC 0, C1,
G1 orC2 continuity depending on the geometric inputs and
correction functions. Both surface constructions are of im-
portance in the practice, when traditional methods (subdi-
vision algorithms in the first case or construction of control

points in the second case) do not work. As CAD-systems
frequently use degenerate rectangular patches which can-
not be handle by methods developed for triangular sur-
faces, our method forC1 or G1 filling of a three sided hole
is useful in such applications.

The assumptions in the Theorems allow parameter trans-
formations on the constituents of the convex combination.
Our experiments have shown that some parameter trans-
formations do not influence the shape of the resulting sur-
face. This shape influence of different parametrizations
and weaker continuity conditions could be the subject of
further investigations.

The computations and the drawings have been made by the
symbolical algebraic program package Maple V R5.
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