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1 Introduction

Silos are industrial structures which experience a signif-
icant percentage of damage and collapse in comparison
with other engineering structures: over 1000 silos, bins and
hoppers fail in North America each year [7]. The main rea-
son for such a state lies in the fact that a satisfactory theory
about the motion of granular materials in silos has not yet
been fully developed [5, 6, 11].

More or less validated differential equations (versions of
Janssen–Koenen equation) and their exact or approximate
solutions exist for filling stages and content at rest [13].
As the moving part of the total mass is small (only cap of
the contents moves in form of avalanches) and the arching
is negligible, these states do not cause significant dynamic
effects; principles of continuum mechanics excluding iner-
tial forces are therefore acceptable.

On the other hand, in the course of the discharge stages
the usual state of the content is that of a nonuniform, rela-
tively slow flow of material, characterized by arching and
a large number of collisions between particles, and, there-

fore, by high dissipation of energy which leads to potential
instabilities in solving equations derived from thermody-
namical or hydrodynamical analogies (these analogies are
more appropriate for the rapid flow of the content, but, un-
fortunately, prerequisites for its occurrence are rare in the
regimes of silo usage) [4].

Recently, new computational methods, usually calleddis-
crete or distinct element methods, were developed with
the aim to more closely model the behaviour of multibody
(N–body) or particle assemblages [2, 18, 19].

These discrete numerical approaches comprise three main
parts: (i) interaction model, (ii) determination of the inter-
acting bodies, and (iii) numerical integration of the gov-
erning equations.

With respect to the interactions between bodies, discrete
systems can be broadly classified into three groups [17]:

1. systems governed by long range forces, e. g. gravita-
tional systems, where coupling is all–to–all,

2. systems in which interactions are medium range, e. g.
molecular systems, and, finally,
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3. systems with short range, mostly impact and contact,
interactions, as the one with which we are concerned
here, where each particle is usually coupled with dozen
particles or thereabout.

The shapes of the particles can be approximated using var-
ious geometric solids [17], but the complexity of the form
severely influences the computational time needed to de-
termine the geometric details of the contact. Therefore, we
opted for the simplest shape, the ball. However, to avoid
crystalization, balls are given varying radii

ri � rmin��rmax� rmin������� (1)

wherermax andrmin are predefined extreme radii and�����
is the random number generator with a uniform distribution
on the unit segment. (If more complex shapes are needed,
they can be realized by connecting two or more balls with
some overlap. Similar idea was used to model the silo wall,
section 4.)

The number of balls currently in the system will be denoted
by n�t�.

If friction is omitted, rotational degrees of freedom need
not be taken into account. Equations of motion of the cen-
troid of theith particle are then

üi�t� � M�1
i fi�t��g� (2)

whereüi�t� is the acceleration of the centroid,M i the diag-
onal mass matrix andg is the acceleration vector due to the
gravity. The total applied force vectorf i�t� on the centroid
of the particlei, interacting with theki�t� particles, is given
by

fi�t� �
ki�t�

∑
j�1
j ��i

fi� j�t�ni� j�t�� (3)

The short range interaction forcef i� j�t� between particles
i and j is modelled by the linear spring and the viscous
damper in parallel (the so-called viscoelastic Kelvin or
Voigt body) if the balls overlap and by the linear spring
(Hookean body) if they are within the reach of cohesion
and move apart. Maximum overlap or minimum distance
between two balls is given by

δi� j�t� � ri � r j��ui�t��u j�t��� (4)

where ui�t� and u j�t� are position vectors of the balls’
centers. Clearly, the overlapδi� j�t�� 0 is the numeri-
cal/geometrical counterpart of the squeezing of the balls
during contact. The unit vectorn i� j�t� on the line joining
centers of the balls is defined by

ni� j�t� �
ui� j�t�

�ui� j�t��
�

ui�t��u j�t�

�ui�t��u j�t��
� (5)

System of equations (2) fori � 1� � � � �n�t� is an approx-
imate description of the large displacements and strains
problem. Although material linearity is assumed, the geo-
metric nonlinearity still remains. Because of the frequent
collisions, the paths, velocities and accelerations are not
smooth functions. Not only the magnitudes, but also the
types of the interaction forces between particles depend on
the particles’ positions and velocities and therefore change
intensively in time. Described nonlinear problem has no
analytical solution and some step by step technique should
be used to numerically integrate equations of motion (our
approach, a variation of the predictor–corrector method, is
described in [9]).

What is more, neighbours of theith particle, needed to per-
form the summation in (3), are not known in advance, but,
as the particle system is in permanent motion, must be de-
termined in each time step. Contact detection algorithm
which facilitate efficient determination of the interacting
particles will be more fully described in the sequel.

2 On spatial sorting and searching

The neighbour is defined here as a particle which is close
enough to the observed particle so that any of the afore-
mentioned short range interactions can be ‘activated’. De-
termination of the interacting particles is calledcontact
detection. More generally, contact detection is a deter-
mination of contact or overlap among members of a set
of n geometric entities in anm–dimensional (Euclidean)
space. Thus, it is a fundamental operation in a wide va-
riety of diverse computation areas such as computational
geometry and computer graphics (including CAD), par-
ticle physics and astrophysics, cartography and medical
imaging, robotics and computational mechanics. . . And in
particular, in computational mechanics contact detection
is not restricted to discrete element methods. Finite ele-
ment modelling of discontinous contact and fracture phe-
nomena, unstructured multilevel/multigrid solution proce-
dures, mesh generation algorithms, adaptive remeshing
and remeshing necessitated by large mesh distortions (even
in applications to ‘oldfashioned’ continuum mechanics) all
require some form of contact detection. Closely related al-
gorithms are used in recently developed meshless methods
to obtain nodal connectivity and cloud overlap informa-
tion, too.

The straightforward algorithm to find interacting particle
pairs is to simply test each particle against every other in a
nested loops:
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for i� 1 ton�t��1 do
for j � i�1 ton�t� do

test particlei against particlej
end for

end for

Obviously, for a system containingn�t� particles, the num-
ber of required tests is proportional ton�t�2, denoted by
O�n�t�2�. This is a very time consuming process for sys-
tems with many discrete elements (say 10 000 or more).1

It was estimated that even with the most sophisticated con-
tact detection algorithms these operations can amount to
almost 60% of the total calculation time for large, short
range, dynamic discrete systems [17].

These more advanced algorithms usually consist of two
(possibly overlapping) phases calledspatial or neighbour
searching andcontact or geometric resolution [17]. Spa-
tial searching is the identification of the potential neigh-
bours, while contact resolution determines whether candi-
date pairs actually interact, i. e. distances between candi-
dates or depths of their mutual penetrations are calculated
and compared to threshold values.2 As the number of po-
tential neighbours is small, the computational cost of con-
tact resolution depends almost only on the complexity of
the geometric representation of particles.

On the other hand, the cost of neighbour searching is de-
pendent on the total numbern�t� of particles. Irregularly
shaped particles are approximated with bounding boxes or
bounding spheres, or even with equivalent spheres whose
radius is obtained by taking the size of the largest particle
in the system, e. g. [12].

Again, spatial searching is commonly performed in two
steps. In the first step the complete set of particles is spa-
tially ordered using some sorting algorithm and appropri-
ate data structure is built. Then, in the second step, this
sorted set is searched for potential neighbours. Spatial sort-
ing and searching algorithms and corresponding data struc-
tures are mainly based on spatial decomposition. They can
be roughly divided into two categories: region of inter-
est (so-called search space) is either ‘covered’ with a grid,
or partitioned in a hierarchical manner. Hierarchical de-
compositions, e. g. octrees and 3d–trees [1, 3], are spatial
generalizations of the well known one–dimensional binary
search trees [8, 15]; average time complexity of neighbour
searching is thusO�n�t� logn�t��, although it can degrade
to O�n�t�2� for highly unbalanced trees. Grid techniques,
on the other hand, have time complexityO�n�t��, but they

are much more sensitive to the uneven distribution of par-
ticles (clusters and empty space) and to the ball size vari-
ances, i. e. the ratiormax�rmin [12, 14].

3 Fixed cubes scheme

Silo content is densely packed and evenly distributed, ex-
cept maybe in small areas under arches and vaults (and,
of course, above the heap in filling phase). It is also rea-
sonable to assume that particles have approximately equal
sizes, i. e. that we can take for balls’ radiirmax�rmin� 1�05.
Therefore we developed a variation of the grid based spa-
tial sorting and searching algorithm.

The main idea of the fixed cubes scheme is to cover the
search space with cubes (figure 1a) and sort balls in them.
Then, during the calculation of forces, contact resolution
is made only through the contents of the cubes which in-
tersect the observed ball, and not through the whole region
of the silo model. The cube that contains the center of the
observed ball will be calledthe central cube.

(a) (b)

Figure 1: Fixed cubes scheme: (a) covering the region of
calculation, (b) central cube and its 26 neigh-
bours (6 cubes are omitted for clearness).

If the sizea of a cube is selected such that

a � 2rmax�∆� (6)

where∆� 0 is some small number, then all possible neigh-
bours of the ball must be completely or partially contained
in 26 cubes around the central cube (3�3�3 cubes sub-
space). These cubes will be calledsurrounding cubes.

1 With respect to time, discrete systems can be pseudo–static, where relative position of particles do not change appreciably in time, or dynamic,
where individual particles move significantly [12]. If the system is pseudo–static, the performance of a searching algorithm is not very important, because
neighbours must be determined only once or occasionally, after several time steps.

2 In our application, as the cohesion can be activated only if particles move apart, directions of motion and/or velocities should be determined, too.
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It should be noted that the efficiency of this scheme re-
quires careful selection of the size∆. If ∆ is too large, we
have larger cubes, so that smaller number of surrounding
cubes contain neighbours (i. e. more than 19 cubes can be
immediately eliminated from the search, subsection 3.2),
but there are more particles in each cube and contact reso-
lution will be too long. On the other hand, assuming small
time steps and small velocities, sorting procedure can be
performed before the predictor phase only, but too small∆
(or ∆ � 0) may cause overlapping of the cubes by balls in
the corrector phase, resulting in incorrect neighbour detec-
tion.

3.1 Central cube and its neighbours

According to the coordinates of the ball centerx i�t�, yi�t�,
zi�t�, integer coordinates of the central cube are obtained
from:

kx�t� �

�
xi�t�

a

�
� ky�t� �

�
yi�t�

a

�
� kz�t� �

�
zi�t�

a

�
� (7)

where��	 means ’ceiling’ of the given quotient [8]. Then
the cube is assigned a unique index according to the for-
mula

k1�t� � n2
c

�
kz�t��1

�
�nc

�
ky�t��1

�
� kx�t�� (8)

wherenc denotes the number of cubes in the globalx and
y directions (figure 1a). Now, depending onk 1�t� andnc

it is easy to find indices of the remaining 26 cubes. For
example, a cube above the central cube has an index given
by k1�t��n2

c (figure 1b).

3.2 Elimination of 19 cubes

The condition (6), which can be rewritten asa � 2rmax,
gives three additional rules which arise from one another:

1. one ball cannot touch two opposite faces of the central
cube at the same time,

2. ball can intersect up to three faces, three edges and con-
tain one corner of the central cube,

3. ball can intersect up to 7 neighbouring cubes.

From the given statements it can be recognized that, de-
pending on the position of the ball center in the local co-
ordinate system (or octants/cells) of the central cube (fig-
ure 2a), one can eliminate 19 of 26 cubes. This is done by
examining inequalities

dx�t�� 0� dy�t�� 0� dz�t�� 0� (9)

wheredx�t�, dy�t� and dz�t� are local coordinates of the
ball center given by

dx�t� � xi�t��a

�
kx�t��

1
2

�
�

dy�t� � yi�t��a

�
ky�t��

1
2

�
�

dz�t� � zi�t��a

�
kz�t��

1
2

�
�

(10)

For example, in the case of the ball center placed in the
eighth cell (hatched in figure 2b), parts of the correspond-
ing ball can be contained in up to seven cubes, denoted
by k2�t�� � � �k8�t�, whose elements are jointed with the ele-
ments of the observed cell, or bound the observed cell, as
presented in figure 2b. Similarly, other cells have their own
seven neighbouring cubes.

(a) (b)

Figure 2: Example of elimination: (a) local coordinate
system (cells) of the central cube, (b) the eighth
cell – remaining cubes

3.3 Intersected cubes

Finally, it is now possible to determine which of the 7 can-
didateski�t� intersect the observed ball. This is done by
examining distances between the surface of the ball, i. e.
sphere, and faces, edges and corner of the observed cell,
which also belong to remaining 7 cubes.

First, distances between the center of the ball and the faces
of the cell are calculated,

δx�t� �
1
2

a��dx�t�� �

δy�t� �
1
2

a��dy�t�� �

δz�t� �
1
2

a��dz�t�� �

(11)
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followed by an examination of distances between the
sphere and faces,

∆x�t� � ri�δx�t�� 0� k2�t��

∆y�t� � ri�δy�t�� 0� k3�t��

∆z�t� � ri�δz�t�� 0� k5�t��

(12)

edges,

∆x�y�t� � ri�
�

δ2
x�t��δ2

y�t�� 0�

k2�t�� k3�t�� k4�t��

∆x�z�t� � ri�
�

δ2
x�t��δ2

z �t�� 0�

k2�t�� k5�t�� k6�t��

∆y�z�t� � ri�
�

δ2
y�t��δ2

z �t�� 0�

k3�t�� k5�t�� k7�t��

(13)

and corner of that cell,

∆x�y�z�t� � ri�
�

δ2
x�t��δ2

y�t��δ2
z �t�� 0�

k2�t�� k3�t�� k4�t�� k5�t�� k6�t�� k7�t�� k8�t��
(14)

as shown in the example of the eighth cell depicted in fig-
ure 3. For each test (12)–(14), satisfaction of the criterion
� 0 means that the ball intersects listed cubes.

Figure 3: The center of the ball placed in the eighth cell

It should be pointed out that the ball, which do not inter-
sect a face of the cell, can reach neither edges nor corners

of that face. Therefore, (12)–(14) should be examined in
the following order:

faces
 edges
 corner� (15)

This logic (avoiding time argumentt) can then be writ-
ten as

∆x 
 ∆y 
 ∆x�y 
 ∆z 
 ∆x�z 
 ∆y�z 
 ∆x�y�z� (16)

Of course, during examinations, cube indicesk i�t� must
correspond to the chronology of examining distances given
by (16). According to our convention (t is omitted), it
holds that:

k2 
 k3 
 k4 
 k5 
 k6 
 k7 
 k8� (17)

As mentioned in the subsection 3.1, these indices are, de-
pending onk1�t� andnc, known a apriori and could be eas-
ily determined, as given by algorithm 1.

Algorithm 1: Forming the vectork of indices of cubes
which could be intersected by the ball whose
center is in the eighth cell.

1: cell 8 �nc�kx�ky�kz� �� k

2: k1 � n2
c�kz�1��nc�ky�1�� kx �central cube; (8)�

3: k2 � k1�1 �∆x � 0; 1st eq. in (12)�

4: k3 � k1�nc �∆y � 0; 2nd eq. in (12)�

5: k4 � k1�nc �1 �∆x�y � 0; 1st eq. in (13)�

6: k5 � k1�n2
c �∆z � 0; 3rd eq. in (12)�

7: k6 � k1�n2
c �1 �∆x�z � 0; 2nd eq. in (13)�

8: k7 � k1�n2
c �nc �∆y�z � 0; 3rd eq. in (13)�

9: k8 � k1�n2
c �nc �1 �∆x�y�z � 0; (14)�

Cubes which bind other cells can be similary found and
stored using appropriate procedurecell i, 1� i� 8.

3.4 Special configurations and ambiguous cases

There exist some limiting, very rare, but in the case of a
large number of balls possible positions, where indices of
the central cube, the cell and the remaining cubes are ge-
ometrically ambiguous or undefined if no additional deci-
sions are provided.

�������� �����	
 ���� If the center of the ball falls on
the common face, at the edge or at the corner of some
cubes, that is, if one or more expressions

xi�t� moda � 0�

yi�t� moda � 0�

zi�t� moda � 0�

(18)
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are satisified, it is easy to verify that because of the ‘ceil-
ing’ operations in (7), equation (8) chooses the cube with
the highest integer coordinates (the highest index) as cen-
tral.

�������� ��

 If the center of the ball falls on the plane,
on the axis, or at the origin of the local coordinate system
of the central cube, that is one or more of the following
equalities holds,

dx�t� � 0� dy�t� � 0� dz�t� � 0 (19)

(equalities in (9)), we decided to choose the same cell as in
the� 0 case.

This is deemed reasonable because the procedure given by
(11)–(14) will in the case of the positions of the center de-
scribed in this and previous paragraph provide all remain-
ing cubes irrespective of the central cube and cell index. In
these positions,one possible cube is used as central, and
one of its cells is adopted. It is irrelevant which of these
cubes/cells is used.

It is interesting to note that described positions can pro-
vide indices of all remaining cubes immediately, without
additional searching. For example, coordinates of the cen-
ter placed at the common corner of the (eight) cubes must
fulfill (18) and, with the index of the central cube given
in previous paragraph, seven remaining cubes can directly
be found using (8). Similarly, local coordinates of the ball
center placed at the center of the central cube must fulfill

(19), which means that the central cube is the only cube,
because it contains the entire ball. Analogously, by rec-
ognizing single relations in (18) and (19), other specific
positions of the ball center (on the face, at the edge, or
on local axis) can be found and remaining cubes directly
determined. However, as these special positions are very
rare, additional tests needed to recognize them introduce
unnecessary computational burden and is therefore omit-
ted.

�������� ��	����� ����� If the ball touches a face, an
edge or a corner of the chosen cell, that is, if one or more
equalities appear in (12)–(14), it is considered that the cor-
responding cubes also contain the ball, as in the� 0 case,
because possible touching between ball and its neighbours
in such a cube could activate the cohesion force.

3.5 A kind of a binary tree

It follows from the previous section that it is unnecessary
to treat equalities in (9) and (12)–(14) independently. It is
sufficient to add them to the� case and always examine
only two possibilities (� and�) in given relations.

This fact, with (16), gives for every moving ball in the
system search structure which resembles the known binary
tree [8, 15]. The flow chart of the searching procedure for
one ball is, according to (17), partially presented in fig-
ure 4.

Figure 4: Shape and indexing of the search tree when the ball’s center is placed in the eighth cell. Extreme search paths are
marked.
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The remaining seven subtrees denoted with the cell num-
bers rather than drawn are of the same shape but contain
indices of the other, for certain cell neighbouring, cubes.
The analysis of the tree shows that for extreme searching
situations 6 examinations are needed if the ball is fully con-
tained in the cube (this is a rare position and the shortest
branch in the tree) and 10 examinations if the ball contains
a corner of the cube (this is more frequent and the longest
branch in the tree). These paths are marked in figure 4.

3.6 Programming strategy for sorting procedure

Memory organization of the procedures which will be de-
scribed by pseudocode is now defined.3

The number of cubesai�t� intersected by balli and,vice
versa, balls bk�t� by cubek, are saved as components of
vectorsa�t� and b�t�, respectively. Indicesi and k are
saved as components of the matrixB�t� andA�t�, that is
bk�bk�t��t� andai�ai�t��t�. Thus, all temporary relations be-
tween cubes and balls in the system are stored. The filling
procedure for adopted vectors and matrices is given by the
algorithm 2.

Algorithm 2: Saving cubek that intersect balli and vice
versa.

1: cube �i�k�a�b�A�B� �� �a�b�A�B�

2: ai � ai �1 �add new cube�

3: ai�ai � k �store new cube index�

4: bk � bk �1 �add new ball�

5: bk�bk
� i �store new ball index�

MatricesA�t� andB�t� could also be represented as vec-
tors using the linked allocation procedure [8]. This is not
a problem for the matrixA�t� because balls are sorted in
cubes successively, in increasing order, so that the matrix
is filled from left to right and row by row. But, simulta-
neously, the matrixB�t� is filled almost randomly, so it is
necessary to use one of the insertion techniques (for exam-
ple bisection) for placing the ball index at the correct place
of the equivalent vector. Of course, this storage scheme
saves the amount of memory space because zeroes are not
stored (though some additional vectors for addressing are
needed), but also increases the amount of time taken for
sorting phase. However, the silo contents has a relatively
uniform density distribution, so that matricesA�t� andB�t�
are always well populated and ‘classical’ array representa-
tion suffices.

The complete search algorithm is given by pseudocode 3
and the sorting procedure by pseudocode 4.

Algorithm 3: Searching for cubes that intersect given balli.

1: search �i�∆x�∆y�∆x�y�∆z�∆x�z�∆y�z�∆x�y�z�k�a�b�A�B�

�� �a�b�A�B�

2: �a�b�A�B�� cube �i�k1�a�b�A�B� �cubek1�

3: if ∆x � 0 then �cubek2�

4: �a�b�A�B�� cube �i�k2�a�b�A�B�

5: if ∆y � 0 then �cubek3�

6: �a�b�A�B�� cube �i�k3�a�b�A�B�

7: if ∆x�y � 0 then �cubek4�

8: �a�b�A�B�� cube �i�k4�a�b�A�B�

9: if ∆z � 0 then �cubek5�

10: �a�b�A�B�� cube �i�k5�a�b�A�B�

11: if ∆x�z � 0 then �cubek6�

12: �a�b�A�B�� cube �i�k6�a�b�A�B�

13: if ∆y�z � 0 then �cubek7�

14: �a�b�A�B�� cube �i�k7�a�b�A�B�

15: if ∆x�y�z � 0 then �cubek8�

16: �a�b�A�B�� cube �i�k8�a�b�A�B�

17: else �∆x�z � 0�

18: if ∆y�z � 0 then �cubek7�

19: �a�b�A�B�� cube �i�k7�a�b�A�B�

20: else �∆x�y � 0�

21: if ∆z � 0 then �cubek5�

22: �a�b�A�B�� cube �i�k5�a�b�A�B�

23: if ∆x�z � 0 then �cubek6�

24: �a�b�A�B�� cube �i�k6�a�b�A�B�

25: if ∆y�z � 0 then �cubek7�

26: �a�b�A�B�� cube �i�k7�a�b�A�B�

27: else �∆y � 0�

28: if ∆z � 0 then �cubek5�

29: �a�b�A�B�� cube �i�k5�a�b�A�B�

30: if ∆x�z � 0 then �cubek6�

31: �a�b�A�B�� cube �i�k6�a�b�A�B�

32: else �∆x � 0�

33: if ∆y � 0 then �cubek3�

34: �a�b�A�B�� cube �i�k3�a�b�A�B�

35: if ∆z � 0 then �cubek5�

36: �a�b�A�B�� cube �i�k5�a�b�A�B�

37: if ∆y�z � 0 then �cubek7�

38: �a�b�A�B�� cube �i�k7�a�b�A�B�

39: else �∆y � 0�

40: if ∆z � 0 then �cubek5�

41: �a�b�A�B�� cube �i�k5�a�b�A�B�

3
������� �� is chosen as implementation language. Therefore, given algorithms and corresponding data structures are in a sense not very ‘contem-

porary’ or ‘fashionable’.
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Algorithm 4: Sorting balls in cubes and vice versa.

1: sort �n�nw�nc�a�x�y�z�r� �� �a�b�A�B�

2: for i� nw �1 to n do �sorting movable balls�

3: kx ��xi�a�; ky ��yi�a�; kz ��zi�a�

�integer coordinates of the central cube; (7)�

4: dx � xi�a�kx�1�2�; dy � yi�a�ky�1�2�;

dz � zi�a�kz�1�2�

�local coordinates of the center; (10)�

5: if dx � 0 then �finding the cell; (9)�

6: if dy � 0 then
7: if dz � 0 then �cell 1�

8: k � cell 1 �nc�kx�ky�kz�

9: else �cell 5�

10: k � cell 5 �nc�kx�ky�kz�

11: else �dy � 0�

12: if dz � 0 then �cell 4�

13: k � cell 4 �nc�kx�ky�kz�

14: else �cell 8�

15: k � cell 8 �nc�kx�ky�kz�

16: else �dx � 0�

17: if dy � 0 then
18: if dz � 0 then �cell 2�

19: k � cell 2 �nc�kx�ky�kz�

20: else �cell 6�

21: k � cell 6 �nc�kx�ky�kz�

22: else �dy � 0�

23: if dz � 0 then �cell 3�

24: k � cell 3 �nc�kx�ky�kz�

25: else �cell 7�

26: k � cell 7 �nc�kx�ky�kz�

27: δx � a�2��dx�; δy � a�2��dy�; δz � a�2��dz�

�position of the centroid in the cell; (11)�

28: ∆x � ri�δx; ∆y � ri�δy; ∆z � ri�δz

�distances between the sphere and faces of the cell; (12)�

29: ∆x�y � ri�
�

δ2
x �δ2

y ; ∆x�z � ri�
�

δ2
x �δ2

z ;

∆y�z � ri�
�

δ2
y �δ2

z

�distances between the sphere and edges of the cell; (13)�

30: ∆x�y�z � ri�
�

δ2
x �δ2

y �δ2
z

�distance between sphere and corner of the cell; (14)�

31: �a�b�A�B��

search �i�∆x�∆y�∆x�y�∆z�∆x�z�∆y�z�∆x�y�z�k�a�b�A�B�

�searching for intersected cubes�

The efficiency of given algorithms for the densest observed
packing (bk�t� � 20) and, theoretically, the sparsest pack-
ing (bk�t� � 1) of the system with various numbers of balls,

is shown on diagrams in figure 5. They show that sorting
time is almost of orderO

�
n�t�

�
as expected [15, 12, 14]

for a well distributed (not clustered) system as the one pre-
sented here.

3.7 Contact resolution and geometry

After spatial sorting is completed, contact resolution may
be of theO

�
ñ2�t�

�
order, because of the small number of

possible neighbours in cubes that intersect the observed
ball (in our calculations ˜n�t� � bk�t�� 20).

Finally, it is quite simple to solve for geometry needed for
determining interaction forces between ballsi and j. As
indicated in the introduction, two examinations to find if
they overlap or possibly stick to each other are needed:

δi� j�t�� 0� (20)

�Nc
max;i� j�ki� j � δi� j�t�� 0� (21)

where distanceδi� j�t� is given by (4),Nc
max;i� j is the maxi-

mum cohesion force andki� j is the stiffness of the collision
model. In the latter case, an additional testing is whether
they are going apart or approaching one another along the
line joining their centers:

dn
i� j�t� � u̇i� j�t� �ui� j�t� � 0� (22)

4 Boundary conditions

The model of the silo wall is made of fixed overlapping
balls with randomized radii, again to prevent crystaliza-
tion of balls representing silage material. This model
also imitates friction due to roughness and geometric im-
perfections on the surface of the wall. Thus, in the ab-
sence of an expensive model of friction between balls
(characterized by a friction coefficient), the aim was
to simulate at least the geometric part of this phenom-
ena. Boundary balls are generated with separate proce-
durewall (dh�hh�dc�hc�kw�cw�nw�k�c�x�y�z�r� ẋ� ẏ� ż), not
shown here. Valuesdh�hh and dc�hc are diameters and
heights of conical and cylindrical parts of the silo and
kw�cw are stiffness and viscosity of the wall model. The
number of boundary wall balls isnw. Their velocities are,
of course, zero.

Two additional things must be mentioned here. First, it
is sufficient to execute the sorting procedure and store the
boundary balls in the appropriate cubes only once, in the
beginning of the calculation, as they do not move. Thus,
the sorting procedure must always be performed for the
moving balls only, as indicated in the line 2 of the algo-
rithm 4.

Second, the algorithm 2 requires that vectorsa�t�, b�t� and
matricesA�t�, B�t� should always be set to zero before
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Figure 5: Efficiency of fixed cubes algorithm for sparse and dense systems in comparison withO
�
n2�t�

�
for various num-

bers of balls: (a)n�t�� 100, (b)n�t�� 1000, (c)n�t�� 10000, (d)n�t�� 100000.

the sorting procedure is executed. But from the previous
comment it follows that this process should also be per-
formed for moving balls only. Therefore indices of bound-
ary balls must be saved and their cubes stored inA�t� and
B�t�. This is done by using the total number of boundary
ballsnw (given by the procedurewall) and saving numbers
of boundary balls in every cubew (given by first call of the
proceduresort afterwall is executed).

5 Calculation of interactions

Now, naı̈ve nested loops from section 2 can be written as
given in algorithm 5, where ball pairs are denoted byi and
m instead of byi and j.

To avoid multiple interactions logical vectors�t� is used
with additional testing to determine the cube which, ac-
cording to (7) and (8), contains the midpoint of the line
segment between centers:

xs �
1
2
�xi� xm�� ys �

1
2
�yi� ym�� zs �

1
2
�zi� zm�� (23)

Once sorted, interactions between boundary and moving
balls in the sense of the algorithm 5 are nothing special.
Assuming zero velocities for boundary balls, all other con-
stants of the collision model are obtained.

It should be mentioned that given vectors and matrices
could be (in a more ‘modern’ implementation) allocated
dynamically, because the system moves, so their sizes vary
during calculation, i. e.n�t�� 1, bk�t�� 1, 1� ai�t�� 8.

37
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Algorithm 5: Loops over sorted balls.

1: loops �n�nw�nc�s�a�b�A�B�x�y�z�r�
2: for i� nw �1 to n do �movable balls�

3: si � ���� �solving balli�

4: for j � 1 toai do �intersected cubes�

5: k � ai� j �current cube index�

6: for l � 1 to bk do �all balls in intersected cubes�

7: m� bk�l �current ball index�

8: if sm 	 ����� then �ball m is not solved�

9: xs � �xi � xm��2; ys � �yi � ym��2;

zs � �zi � zm��2

�midpoint coordinates; (23)�

10: kx ��xs�a� ; ky � �ys�a� ; kz ��zs�a�

�integer coordinates of cube with the midpoint; (7)�

11: ks � n2
c�kz�1��nc�ky�1�� kx �cube index; (8)�

12: if ks � k then �midpoint in the current cube�

13: test particlei against particlem

The total number of cubes is fixed during the calculation
due to the fixed cubes scheme used here, but it can be given
as the input parameter.

6 Example

Described algorithms were implemented in�����	� ��

(version by������) and incorporated in a computer pro-
gram which simulates various regimes during silo ex-
ploatation. Also, for better visualization of results fast
perspective routines using������ graphics library were
programmed.

Some snapshots during silo filling and discharge are given
in figures 6 and 7, respectively. For graphical presentation
the silo model was cut with a plane through its vertical axis
and only half of the model was rendered so that the insides
of the silo can be seen. Input data of the presented example
are given in table 1.

7 Conclusions

There is no universal spatial sorting and searching al-
gorithm whose performance is (completely) independant
of the characteristics of the analysed discrete system.
Namely, discrete systems can be densely or sparsely
packed, and, what is more important, particles can be
evenly distributed or clustered. Furthermore, the range of
bounding spheres’ radii (i. e. whether spheres have equal,
approximately equal or considerably differing radii) must
be taken into account.

Table 1: Main data of the model.

rmin 0�215 m
rmax 0�225 m
a 0�500 m
∆ 0�050 m
ncontents

max 22741
nw 3821
γ 1250 kg�m3

kc 107 N�m
kw 109 N�m
cc 108 Ns�m
cw 107 Ns�m
∆tfilling 10�4 s
∆tdischarge 10�5 s

In particular, theoreticalO�n� performance of grid based
algorithms cannot be attained if particles are clustered in
few cells only, because there are many unused cells which
nevertheless must be tested. Furthermore, the ball size
variances lead to the so-called over–reporting problem as
the size of the cells are determined by the largest particle
in the system.

But silo content has homogenous spatial distribution while
grains can be assumed to have fairly equal sizes and, there-
fore, prerequisites for the optimal behaviour of grid tech-
niques are realised. Majority of computational time in dis-
crete element simulations is spent in contact detection and
it is, therefore, sensible to develop highly specialised al-
gorithm tuned for discrete numerical modelling of silo ex-
ploatation.
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June 6th–8th, 2001, University of Glasgow, Scotland,
UK, pp. 221–238.

38
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