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A novel least squares optimization of parameters in Michaelis-Menten enzyme kinetics has

been developed. The method is based on elimination of linear parameter from so called normal

equations which transforms a non-linear, two-parameter optimization problem into one of find-

ing a root of non-linear equation. The algorithm is simple and has guaranteed convergence

with initial guess of zero for KM. Data set from literature is used to illustrate feasibility of the

method and accuracy of the solution in comparison with linearization methods and general op-

timization technique.
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INTRODUCTION

In order to determine kinetic parameters by the linear

least squares method, linearization of kinetic equations

is still an established practice in chemical and enzyme

kinetics. Although simplicity of linear optimization is

tempting, that approach has some pitfalls, for example

changing error statistics. For the Michaelis-Menten model

three different linearization models are available: Line-

weaver-Burk plot (1/v versus 1/S), Eadie plot (v versus

v/S) and Hanes plot (S/v versus S). Generally, the linear-

ization models will give a different estimation of model

parameters and all of them will also differ from the re-

sult of nonlinear optimization.

We propose a variant of nonlinear optimization bas-

ed on elimination of linear parameter from so called nor-

mal equations which transforms a non-linear, two-para-

meter optimization problem into one of finding a root of

non-linear equation.

THEORY

Micheaelis-Menten kinetics is described by the follow-

ing equation:

v =
V S

K S

max

M �
(1)

where S is a concentration of substrate, v is the initial ve-

locity of reaction, Vmax is the saturation velocity and KM

is Michaelis-Menten constant.

In order to determine Vmax and KM from a collected

series of measurements of v as function of S the mea-

surements are fitted to the model (Eq. (1)). Linearized

models transform the above equation into the form which

can be graphed as a straight line. Lineweaver-Burk1 plot

(1/v versus 1/S) is defined by the following equation:

1 1 1

v V

K

V S
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max max

M (2)
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The intercept in this plot is 1/Vmax and slope is KM/Vmax.

Eadie2 plot (v versus v/S) has the following form:

v = Vmax – KM

v

S
(3)

The intercept in Eadie plot is Vmax and slope is KM.

Hanes3 plot (S/v versus S) has the following form:

S

v
=

K

V

M

max

+
1

Vmax

S (4)

The intercept in Hanes plot is KM/Vmax and slope is

1/Vmax.

The above described linear transformations allow

use of linear regression to estimate slope and intercept of

the straight line by the linear least squares method, and

afterwards the KM and Vmax are calculated from the

straight line parameters. They were developed and

widely used before the age of computers. However, they

are still heavily entrenched, probably because the bio-

chemistry courses typically do not assume knowledge of

non-linear regression, and the linear plots can be very il-

lustrative in teaching basic enzyme kinetics. It is worth

to point out that in computer age the linear transforma-

tions are not proper way for analyzing this type of data

in spite of their visual appeal.

The common problem with these transformations is

the fact that transformed data usually do not satisfy the

assumptions of linear regression, namely that the scatter

of points around the straight line follows a Gaussian dis-

tribution, and that the standard deviation is equal at eve-

ry value of the independent variable. Wong4 points out

that the linearization does not yield correct estimate of

the parameters and strongly recommends use of non-lin-

ear optimization techniques. The whole chapter 11 in his

book4 is dedicated to general non-linear optimization

methods. However, non-linear optimization methods re-

quire a good initial guess, careful balancing of parame-

ters and there is no guarantee of convergence to the glo-

bal minimum. These facts may explain continuing study

and use of linearization methods. Hoppe and Cumme5

performed series of numerical experiments to find a pro-

per weighting in linearization methods. Page6 used linear

regression results as initial guess for non-linear optimiza-

tion. Marszalek et al.7 constructed specialized program

(LEHM) for fitting Michaelis-Menten and Hill8,4 models

and they also use linearization results for initial guess and

Marquardt9 algorithm for nonlinear optimization, which

is more complicated than the approach proposed here.

Modern bioinformatics package EMBOSS10 uses Line-

weaver-Burk plot.

In order to avoid these difficulties and complications

we developed a specialized nonlinear estimation method

valid only for Michaelis-Menten model (with possible

extension to Hill’s model) which has a guaranteed con-

vergence with initial guess zero for KM and has no prob-

lem of balancing the parameters. The main idea of our

approach is to reduce the dimensionality of the problem

by eliminating linear parameter Vmax from normal equa-

tions and find the root of a resulting non-linear equation.

So called normal equations11 are developed using the

well-known least squares formalism:
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where �i is error – the difference between the experi-

mental vi and theoretical thvi value of dependent variable

for experimental point i. The associated value of inde-

pendent variable is Si and N is the number of experimen-

tal points.

Taking the derivative of the above equation with re-

spect to Vmax (knowing it has to be zero at the minimum)

one gets:
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= 0

Taking the derivative of the same equation with respect

to KM (again knowing it has to be zero at the minimum)

yields:
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= 0

Combining the two normal equations above removes lin-

ear parameter Vmax and yields nonlinear equation in KM.

This is the key point of our approach: by this procedure

two parameters non-linear optimization problem is sim-

ply transformed into one of finding the root of nonlinear

equation in single independent variable (KM).
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Transforming the above function into f(x) = 0 form yields:

f(KM) =
v S

K S
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= 0

which is non-linear function in KM and its solution is op-

timized value for KM as determined from experimental

data. The original two-parameter, non-linear optimization

problem is transformed into one dimensional problem of

finding the root of nonlinear equation. Among the methods

that could be applied, Newton-Raphson method seems to

be quite appropriate:

f(xj+1) = xj –
f x

f x

j

j

( )

' ( )
(10)

where j is iterations index and prime denotes first deriv-

ative. In our case f '(x) is:

f '(KM) =
v S
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RESULTS AND DISCUSSION

The aim of the calculation was to illustrate the algorithm

of our procedure and compare results with ones from lit-
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TABLE I. Input data set taken from Wong4 (p. 245)

S / mmol dm–3 0.25 0.30 0.40 0.50 0.70 1.00 1.40 2.00

v / �mol dm–3 min–1 2.4 2.6 4.2 3.8 6.2 7.4 10.2 11.4

Figure 1. Points from Wong’s data sets are shown as circles. The
curve is Michaelis-Menten model whose parameters were deter-
mined by our method.

TABLE II. Computer output of iteration process for our method with Wong’s data set (shown in Table I). Two values for Vmax are coming
from formulas 8a and 8b, respectively. At root point, these values become identical, as illustrated by the values in the last column

iter KM/mmol dm–3 f(KM) f ’(KM) 1Vmax(�/�Vmax) 2Vmax(�/�KM) Óä2(1Vmax) Óä2(2Vmax) ÄVmax

1 0.0 221.08 –2747.1 6.0250 4.2394 81.395 106.90 1.7856

2 0.08047 91.432 –893.37 7.1459 5.4749 59.887 76.942 1.6709

3 0.18282 37.448 –293.92 8.3768 6.8877 42.538 52.943 1.4892

4 0.31023 15.180 –97.856 9.7271 8.4584 29.186 35.015 1.2688

5 0.46536 6.0891 –32.975 11.208 10.171 19.367 22.384 1.0371

6 0.65002 2.4156 –11.253 12.830 12.014 12.458 13.909 0.81509

7 0.86468 0.94654 –3.8953 14.597 13.982 7.8172 8.4638 0.61525

8 1.1077 0.36527 –1.3730 16.503 16.059 4.8584 5.1233 0.44339

9 1.3737 0.13793 –0.49677 18.515 18.214 3.0944 3.1917 0.30090

10 1.6514 5.0261 10–2 –0.18764 20.562 20.374 2.1394 2.1700 0.18703

11 1.9192 1.7112 10–2 –7.6716 10–2 22.499 22.399 1.6973 1.7047 0.10073

12 2.1423 5.0095 10–3 –3.6606 10–2 24.093 24.052 1.5429 1.5440 4.1782 10–2

13 2.2791 9.9953 10–4 –2.2977 10–2 25.064 25.054 1.5120 1.5121 1.0193 10–2

14 2.3226 7.2133 10–5 –1.9738 10–2 25.372 25.371 1.5101 1.5101 7.8201 10–4

15 2.3263 6.0598 10–7 –1.9485 10–2 25.398 25.398 1.5101 1.5101 5.7220 10–6

16 2.3263 1.3388 10–7 –1.9483 10–2 25.398 25.398 1.5101 1.5101 1.9073 10–6

17 2.3263 –1.5637 10–8 –1.9482 10–2 25.398 25.398 1.5101 1.5101 0.0



erature. Therefore, test data set from Wong4 is used (see

Table I). Graph of data points from Table I and experi-

mental model determined by our optimization are shown

in Figure 1.

Table II is computer output showing progress of our

iterative optimization using Newton-Raphson method

starting with initial guess KM = 0. During the iteration

process, two different values of Vmax are obtained from

the formulas (8a) and (8b). At root point for f(KM), these

two values become identical. The final results for the pa-

rameters KM and Vmax are in row 17, printed bold. The

outline of f(KM) is shown in Figure 2 and more detailed

graph of the same function in the neighborhood of the

root is shown in Figure 3.

For the initial guess of KM (zero), Eq. (9) becomes:
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If for any two points from the data set we have

Si < Si+1 � vi < vi+1 (13)

then it can be shown that for set of N points f(KM) from

Eq. (12) is always greater than zero. In that case, the

convergence of Eq. (9) is achieved only when f '(KM) < 0.

Hence, slope of f(KM) is negative and it indicates ap-

proaching to the root from the left side, as can be seen

from the shape of f(KM) (Figure 3).

Contour plot showing logarithm of a sum of squared

residuals log10 di

i

N
2
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 = g(KM, Vmax) as a function of
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TABLE III. Comparison of linearization, general non-linear regres-
sion and our method. Except for the last row, data are from Wong.4

Errors are computed according to Bard12

Method Vmax

mmol dm min–3 –1

Lineweaver-Burk 29.5 � 14

Eadie 20.3 � 4.9

Hanes 27.4 � 5.4

Non-linear regression 25.4 � 4.0

Our method 25.4 � 4.0

Figure 2. Outline of f(KM) in interval 0–5 for Wong’s data set.
Note that initial guess zero for Newton-Raphson method will con-
verge toward the root.

Figure 3. Detail from Figure 2. The shape of f(KM) in the neigh-
borhood of the root. Note that approaching the root from left side
results in convergence.

Figure 4. Contour plot for the least squares surface for Michae-
lis-Menten model and Wong’s data set. Log scale is used (z-axis)
and contours are spaced for 0.5. The global minimum is in the
middle of the plot. General non-linear optimization routine must
find a region on the surface which satisfies the convergence crite-
ria. Note that range is different for each parameter and that the
search on the surface will be more sensitive for changes in KM.



KM and Vmax for Wong’s data set is in Figure 4. Global

minimum is inside innermost ellipsoid in the middle of

the plot. Horizontal axis of the image is change in KM in

range from 0 to 5 mmol dm–3 and vertical is change in

Vmax from 0 to 50 �mol dm–3 min–1. This illustrates that

parameters are not well balanced, namely the results of

two parameter optimization will be more sensitive to the

changes in KM than in Vmax. Our method does not have

such a potential problem because iterative search is for

the point along KM axis instead of a region on three di-

mensional surface.

Results of linear and non-linear optimization are sum-

marized in Table III. As expected, our results are the same

(within number of decimal places provided) as Wong’s us-

ing general non-linear optimization. However the method

presented here has distinct advantage of speed, simplicity

and guaranteed convergence.

CONCLUSION

A specialized non-linear least squares algorithm for de-

termining the parameters in Michaelis-Menten equation

using experimental measurement in enzyme kinetics was

developed. The proposed algorithm is fast, numerically

stable and has guaranteed convergence with initial guess

of zero for KM. Initial guess for linear parameter Vmax is

not required.
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SA@ETAK

Nelinearna optimizacija parametara u Michaelis-Mentenovoj kinetici

@eljko Jeri~evi} i @eljko Ku{ter

Razvijena je nova optimizacijska metoda za odre|ivanje parametara u Michaelis-Mentenovoj kinetici en-

zimskih reakcija. Metoda se temelji na eliminiranju linearnoga parametra iz normalnih jednad`bi, {to trans-

formira nelinearni optimizacijski problem u problem nala`enja korijena nelinearne jednad`be. Algoritam je u~in-

kovit i ima zajam~enu konvergenciju s po~etnom vrijedno{}u nula za parameter KM.

Skup podataka iz literature obra|en je za ilustraciju upotrebljivost i to~nosti rje{enja predlo`ene metode u

usporedbi s metodama linearizacije i op}om metodom nelinearne optimizacije.
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