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Abstract

Modern cognitive science cannot be understood without recent developments in computer sci-
ence, artificial intelligence (AI), robotics, neuroscience, biology, linguistics, and psychology.
Classic analytic philosophy as well as traditional AI assumed that all kinds of knowledge
must eplicitly be represented by formal or programming languages. This assumption is in con-
tradiction to recent insights into the biology of evolution and developmental psychology of the
human organism. Most of our knowledge is implicit and unconscious. It is not formally repre-
sented, but embodied knowledge which is learnt by doing and understood by bodily interacting
with ecological niches and social environments. That is true not only for low-level skills, but
even for high-level domains of categorization, language, and abstract thinking. Embodied
cognitive science, AI, and robotics try to build the embodied mind in an artificial evolution.
From a philosophical point of view, it is amazing that the new ideas of embodied mind and
robotics have deep roots in 20th-century philosophy.

1. Introduction

Modern cognitive science cannot be understood without recent develop-
ments in computer science, artificial intelligence (AI), robotics, neurosci-
ence, biology, linguistics, and psychology. Classic analytic philosophy as
well as traditional AI assumed that all kinds of knowledge must explicitly
be represented by formal or programming languages. This assumption is in
contradiction to recent insights into the biology of evolution and develop-
mental psychology of the human organism. Most of our knowledge is im-
plicit and unconscious. It is not formally represented, but embodied know-
ledge which is learnt by doing and understood by bodily interacting with
ecological niches and social environments. That is true not only for low-
level skills, but even for high-level domains of categorization, language,
and abstract thinking. Embodied cognitive science, AI, and robotics try to
build the embodied mind in an artificial evolution. Neuromorphic engi-
neering is, of course, a dramatic challenge of ethics. From a philosophical
point of view, it is amazing that traditional concepts of cognitive science
and AI with formal representations of knowledge are in a traditional line
of philosophers from Descartes, Leibniz, Kant, and Husserl, up to Carnap
and Quine, while the idea of an embodied mind has roots in the philosophy
of Heidegger, Merleau-Ponty, and Dewey.

2. Classical Interpretations of Cognition:
Artificial Intelligence and Philosophy of Mind

In the beginning of classical cognitive science, there was René Descartes’
dualism of mind and brain, mind and the external material world. Accord-
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ing to Descartes, the human body with the brain is a material machine. It is
directed by innate ideas (ideae innatae) which are stored by the human
mind in the brain in a clear and distinct manner (clare et distincte). Human
mind (res cogitans) is separated from the external world (res extensa) in a
strict epistemic dualism. Recognition is made possible by an isomorphic
correspondence between internal representations of ideas and external
situations and events. Later on, David Hume criticizes that there is neither
a causal mechanism in nature nor a causal law in our mind, but only an un-
conscious reflex of associating sense-impressions (e.g., flashes of lightning
and thunder). There are no sharp and definite concepts founded on per-
ceptions, but only more or less fuzzy patterns allowing more or less prob-
able assertions about random events.
In Immanuel Kant’s epistemology, recognition is an active process, con-
structing internal representations of the world by a priori categories. Thus,
causal connections of events are actually realized by the category of causal-
ity in our mind. Concepts are regulated by formal schemes (»Schema«).
Intuition is made possible by spatial and temporal ordering of events.
Although based on sensory data, the external world is a subjective con-
struction of pure reason. That is the main message of Kant’s transcenden-
tal constructivism for modern cognitive science.
A further important step of cognitive philosophy was Edmund Husserl’s
phenomenology of consciousness. Husserl is in the tradition of Cartesian
cognitivism, but emphasizes representational intentionality: in order to
perceive, act, and relate to objects, there must be some internal represen-
tation that enable us to direct our mind toward each object. In classical
artificial intelligence (AI), Husserl’s intentional content of consciousness
corresponds to the formal representation of a computer program.
How are formal representations of a computer program made possible?
From a logical and mathematical point of view, Alan Turing defines a com-
puter independent of all technical and physical details: a Turing machine is
a formal procedure, consisting of: a) a control box in which a finite pro-
gram is placed, b) a potentional infinite tape, divided lengthwise into squa-
res, c) a device for scanning, or printing on one square of the tape at a
time, and for moving along the tape or stopping, all under the command of
the control box. Every computable procedure (algorithm) can be realized
by a Turing machine (Church’s thesis). Every Turing program can be simu-
lated by a universal Turing machine. Technically, a universal Turing ma-
chine is more or less a general purpose computer.
On the background of Turing’s theory of computability, we get his compu-
tational cognitivism which assumes computational functionalism. According
to computational functionalism, the brain as biological wetware corres-
ponds to the physical hardware of a computer. The mind with concepts and
logical inferences is understood as the software of a computer (Turing)
program with data structures and algorithms. Then, Turing argues as fol-
lowing: if human mind is computable, it can be represented by a Turing
program (Church’s thesis) which can be computed by a universal Turing
machine, i.e. technically by a general purpose computer. Turing and classi-
cal artificial intelligence (AI) believed that the human mind is computable
in the sense of computational functionalism. Thus, it follows that it is com-
putable by a general purpose computer with sufficient computational
power.
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Even if people do not believe in Turing’s strong AI-thesis, they often claim
classical computational cognitivism in the following sense: computational
processes operate on symbolic representations referring to situations in the
outside world. Further on, these formal representations should obey Tar-
ski’s correspondence theory of truth: imagine a real world situation X1

(e.g., some boxes on a table) which is encoded by a symbolic representation
A1= encode(X1) (e.g., a description of the boxes on the table). If the sym-
bolic representation A1 is decoded, then we get the real world situation X1

as its meaning, i.e. decode(A1) = X1. A real-world operation T (e.g., a ma-
nipulation of the boxes on the table by hand) should produce the same
real-world result A2, whether performed in the real world or on the sym-
bolic representation:

decode(encode(T)(encode(X1)))=T(X1)=X2.
Thus, there is an isomorphism between the outside situation and its formal
representation in Cartesian tradition.
Computational cognitivism assumes that problem solving strategies can be
represented by formal rules. A simple rule of traffic demands: IF traffic
light is red, THEN traffic stops. We can encode the rule with formal repre-
sentations A ( »traffic light is red«) and B (»traffic stops«) by a so-called
production rule A→B. Another example is a problem of diagnosis in medi-
cine: IF patient x has a heart attack, THEN x has heart encymes in the
blood. In general, we can distinguish problem classes of classification, diag-
nosis, design, planning, and simulation which can be represented by formal
IF-THEN or production rules A→B:

Rules can be combined by forward chaining (starting with data A and de-
ducing goal D) or backward chaining (starting with goal D and seeking suffi-
cient premises):

These methods of problem solving are well-known from philosophical tra-
dition, e.g., Pappos’ methods of synthesis and analysis, their origin in Aris-
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totelian logic and their development in the philosophy of modern times.
There are also many methods of inductive logic and probabilistic reason-
ing, strategies of proofs and refutations which were implemented into
knowledge-based expert systems, but which are also well-known from ana-
lytical philosophy (e.g., Carnap, Quine) and philosophy of science (e.g.,
Popper, Lakatos).
As Clark Glymour emphasized it (Fetzer 1988, 195): Artificial Intelligence
is philosophical explication turned into computer programs. Historically,
what we think of as Artificial Intelligence arose by taking the explications
provided by philosophers and logicians, and finding computable extensions
and applications of them. Developments in programming technology have
tended to make the process of transforming certain sorts of philosophical
explications into programs nearly automatic. Production rule systems ex-
ploit the ambiguity between conditional sentences and procedural rules,
and permit one to turn theories consisting of a collection of conditionals
into a simple program. Most of the philosophical theories used in Artifical
Intelligence are not taken from the philosophical literature directly, but
that does not make them any the less philosophical. Computer science
teaches us that there is more to philosophy than we might have thought:
Artificial Intelligence is philosophy.
Knowledge-based expert systems try to represent problem solving strate-
gies for appropriate problem classes. Contrary to conventional programs,
expert systems choose appropriate rules automatically by an inference sys-
tem with forward and backward chaining. Knowledge is the key factor in
the performance of an expert system simulating problem solving of a hu-
man expert like, e.g., a scientist or a physician in a special domain. The
knowledge is of two types. The first type is the facts of a domain that are
written in textbooks and journals in the field. Equally important to the
practice of a field is the second type of knowledge, called heuristic know-
ledge, which is the knowledge of good practice and judgement in a field. It
is experimental knowledge, the art of good guessing that a human expert
acquires over years of work. The heuristic knowledge is hardest to get at
because experts rarely have the self-awareness to recognize what it is. The-
refore knowledge engineers with interdisciplinary training have to acquire
the expert’s rules, to represent them in programming language, and to put
them into a working program. This component of an expert system is called
knowledge acquisition.
But there still is a more fundamental problem with expert systems. They
are restricted to a specialized knowledge base without all the background
knowledge of a human expert. Human experts do not rely on explicit (de-
clarative) rule-based representations, but on intuition and implicit (proce-
dural) knowledge. A simple example of everyday life is car driving. The
first lessons of car driving can still be represented by rules and chaining of
rules in textbooks. But no situation in real traffic is completely identical to
the premises of a texbook rule. Further on, for using the technical equip-
ment, we need some feeling and sensitivity. How to become a good expert
of car driving? As we all know that is only possible by training, practice,
and experience. Further on, the background problem is a philosophical
challenge as Hubert Dreyfus emphasized (Dreyfus 1979): How should the
specialized knowledge base of an expert system be combined with the ge-
neralized and structuralized background knowledge of the world which in-
fluences the decisions and actions of a human expert? In medicine, when
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deciding on surgery, a good physician will also take into consideration on
objective impressions he has concerning the patient’s living conditions (fa-
mily, job, etc.) and his or her attitude towards life. In expert systems of law,
the same aspect could be shown. Despite of all consistent systems of norms,
a judge will in the end find a formal scope for possible decisions where he
will orient towards his personal outlook on life and the world. Actually,
lawyers use hermeneutic methods to interpret the text of laws, in order to
find decisions according to the formal law and the material aspects of atti-
tudes and intentions.
With increasing complexity of situations, rule-based representations decay
into a diversity of many rules and the user looses any survey. Thus, Marvin
Minsky tried to improve knowledge representation by the introduction of
frames. They are formal representations of objects and situations, consisting
of formal variables for features (called slots) and concrete values (called
fillers):

Philosophically, frames are considered as cognitive schemes of categories,
organizing our knowledge of objects and situations with internal represen-
tations. As we mentioned above, they play a fundamental role in Kant’s
epistemology. Obviously, they can also be replaced by logical rules: e.g., IF
x is zebra, THEN x is striped; IF x is zebra, THEN x has hoofs; etc. But
frames collect and arrange a connected concept in the intuitive manner of
a graphic scheme instead an endless list of disconnected rules. Scripts are
formal representations of time-depending processes with preconditions,
objects (Props), and result. Scenes represent static situations and events. A
sequence of scenes represent a causal chain of events. An example of eve-
ryday life is Roger Schank’s restaurant script with typical scenes in an
American restaurant:
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After these examples of representations, the question arises if understand-
ing in general can be reduced to formal rules. John Searle explained the
problem by his famous thought experiment of the »Chinese room«: using
only syntactical rules of symbols, he or a computer is producing answers to
Chinese questions written on cards that are handed through a window into
the room. Even though he or the computer does not understand Chinese,
he or the computer can produce meaningful Chinese sentences by formal
rules of Chinese signs. Of course, Searle’s thought experiment is an exag-
geration, because even for using formal rules we need procedural know-
ledge. But, we all know that a foreign language is not learnt by studying
formal grammar and symbols, but mainly by talking and communicating,
i.e. through learning by doing and extending implicit (procedural) know-
ledge of a language. In short: the rule-based representation of linguistic
competence is limited.
As already Wittgenstein knew, our understanding of language depends on
situations. The situatedness of representations is a severe problem of ap-
plied robotics. A classical robot needs a complete symbolic representation
of a situation which must be updated if the robot’s position is changed. For
example: a robot surronds a table with a ball and a cup on it. A formal
representation in a computer language may be ON(TABLE, BALL),
ON(TABLE, CUP), BEHIND(CUP, BALL), etc. Depending on the ro-
bot’s position relative to the arrangement, the cup is sometimes behind the
ball or not. So, the formal representation BEHIND(CUP, BALL) must al-
ways be updated in changing positions. How can the robot prevent incom-
plete knowledge? How can it distinguish between reality and its relative
perspective? Situated agents like human beings need no representations
and updating. They look, talk, and interact bodily, e.g., by pointing to
things. Even rational acting in sudden situations does not depend on inter-
nal representations and logical inferences, but on bodily interactions with a
situation (e.g., looking, feeling, reacting). Imagine a boy on a bicycle who
turns suddenly aside in order to avoid a little snail on the road. On the
other hand, rational thoughts with internal representations do not guaran-
tee rational acting: a professor of logic may fail in many practical situa-
tions, because complex real situations deviate from more or less simplified
formal representations.
Thus, we distinguish formal and embodied acting in games with more or
less similarity to real life: chess, for example, is a formal game with com-
plete representations, precisely defined states, board positions, and formal
operations. Soccer is a nonformal game with skills depending on bodily in-
teractions, without complete representations of situations and operations
which are never exactly identical – as our life, only much more simple. Ac-
cording to Maurice Merleau-Ponty, intentional human skills do not need
any internal representation, but they are trained, learnt, and embodied in
an optimal »gestalt« which cannot be repeated. An athlete like a pole-
vaulter cannot repeat her successful jump like a machine generating the
same product. As Merleau-Ponty puts it:

»To move one’s body is to aim at things through it; it is to allow oneself to respond to their
call, which is made upon it independently of any representation.« (Merleau-Ponty 1962, 139)

Husserl’s representational intentionality is replaced by body-based inten-
tionality.
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3. Artificial Evolution and Embodied Cognition

Body-based intentionality is wonderful when a healthy organism is acting
without conscious control, but it is no mystery. Modern biology and neural
sciences give a lot of insights into its origin during the evolution of life. The
key-concept is self-organization. In a pre-biotic evolution, self-assembling
molecular systems become capable of self-replication, metabolism, and
mutation in a given set of planetary conditions. The molecular information
of these features is stored in molecular components. It is still a challenge of
biochemistry to find the molecular programs of generating life from »dead«
matter. Darwin’s evolutionary tree of species on earth can be explained by
genetic programming of DNA-codes. Mutations are random changes of
the DNA-codes, generating bifurcations of the evolutionary tree. Selec-
tions are the driving forces. The evolution of nervous systems and brains is
embedded in the evolutionary tree of species as a new kind of information
processing. A DNA-code is a fixed program which largely does not change
during life-time of an organism. Only its population can learn and change
the behavior by selection of protypes with changed DNA-codes which are
better adapted to certain ecological niches in following generations.

Brains are neural systems which allow quick adaption to changing situa-
tions during the life-time of an organism. In short: they can learn. The hu-
man brain is a complex system of neurons self-organizing in macroscopic
patterns by neurochemical interactions. Perceptions, emotions, thoughts,
and consciousness correspond to these neural patterns. The self-organi-
zation of cognition is illustrated by the binding problem of visual percep-
tion. How is it possible for our visual system to recognize a bound gestalt
(shape) and not only a set of coloured pixels? In a self-organizing learning
process, the brain responds for different stimuli with different clusters of
synchronously firing neurons. These cell assemblies code the binding of
single features in a perceptual object by synchronous neural activities. Their
learning rules were discovered by Donald O. Hebb, and recently confirmed
by Wolf Singer et alt. In an elder theory Barlow assumed that each feature
of an object must be represented by specialized neurons. In order to con-
nect them in a bound shape, he introduced so-called mother-cells. For
more complex representations he needs an exploding number of neurons
(»grandmother cells«) representing hierarchies of bound features, bound
sets of features, bound sets of sets of features, etc. which are empirically re-
futed by the observation of brain activities.

In the central nervous system, billions of neural cells organize the complex
signal and communication process of the human body. Firing and non-
firing neurons produce a dense flow of binary signals which are decoded by
the brain. After DNA-codes and learning brains, the next step of cellular
information processing is done by learning populations. In sociobiology,
populations of simple insects like ants organize complex transport, signal,
and communication systems by swarm intelligence. There is no central su-
pervisor. The order of the system is self-organizing according to chemical
signals between thousands of animals. Populations with swarm intelligence
are sometimes called superorganisms or even superbrains. Actually, popu-
lations, species, and societies are not only collections of isolated brains, or-
ganisms, or people, but they are new kinds of self-organizing systems.

All these steps of natural evolution have more or less become blue-prints
for computing and information systems in an artificial co-evolution of tech-
nology. I remind the reader of quantum physics with elementary particles
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and atoms which today deliver the standards for quantum computing, nano-
technology for molecular computing, genetechnology for DNA-computing,
biology of evolution for evolutionary algorithms in biocomputing, brain re-
search for neurocomputing of neural nets, cognitive science for soft com-
puting with fuzzy logic, learning algorithms, and affective computing, and,
last but not least, sociobiology and sociology for socionics with distributed
Artificial Intelligence and multi-agents systems. Let us have a look on
some of these steps of artificial evolution.
From a philosophical point of view, Gottfried Wilhelm Leibniz already
proclaimed in the end of the 17th century that life can be considered as
complex automata: »Every organic body of a living being«, he said in his
Monadology (§ 6), »is a kind of divine machine or natural automaton sur-
passing all artificial automata infinitely«. Today, his view is discussed as
principle of computational equivalence demanding that for every natural
system there is a corresponding computational system. Leibniz’ metaphysi-
cal idea of automata was made precise by John von Neumann’s cellular
automata in the end of the 50ies of the last century. Cellular automata are
complex systems of finite automata which can be illustrated by cells on a
grid with states indicated by numbers or colours. In the binary case, there
are only two states 0 and 1, or white and black. The cells change their
states in dependence of neighboring cells according to simple local rules.
Again, there is no central processor, but self-organization. Special cellular
automata can reproduce themselves in sequential generations like living
organisms. Every computer can be simulated by an appropriate cellular
automaton (CA) and vice versa. There are universal CAs which can simu-
late any special CA like a universal Turing machine.
The main message of CAs is the following: with simple rules understand-
able by any pupil, cellular automata can generate all kinds of complex
structures in nature. For example, we consider 1-dimensional automata
with two states, developing line by line from an initial state at the top of a
grid. Each application of a rule depends on the states of three preceding
cells. Thus, each automaton is characterized by 23=8 rules. Their eight bi-
nary outputs can be decoded by the corresponding decimal number as
»DNA-code« of an artificial organism. They can generate completely regu-
lar and symmetric patterns like crystals, but also completely irregular and
random patterns without any structure (left below) like snow-flakes in a
storm or locally correlated complex patterns (right below) like organic
structures in nature:
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Different increasing complex and random patterns can be generated by the
same simple rules of cellular automata with different initial conditions. In
many cases, there is no finite program, in order to forecast the develop-
ment of random patterns. In this case, the process of development is in-
compressible because of computational irreducibility. If we want to know
the future, we must wait and observe the actual development. These in-
sights of cellular automata have enormous consequences in science and
philosophy. In the past, scientists believed that the knowledge of laws en-
able us to compute a dynamical system. Cellular automata show us: even if
we know all interacting rules of elementary particles and atoms in physics,
of molecules in chemistry, of cells in biology, and of neurons in brain re-
search, we are not necessarily able to compute the dynamics of their com-
plex systems. According to the principle of computational correspondence,
complex atomic, molecular, or cellular systems are computational, but they
are not necessarily computable.
In the next step of artificial evolution, we consider neural nets working like
brains with appropriate topologies and learning algorithms. Neural net-
works are complex systems of technical neurons, active (»firing«) and non-
active (»non-firing«) in dependence of certain thresholds like biological
neurons. The neurochemical interactions between biological neurons are
simulated my numerical weights indicating the degree of connections.
Again, there is no central processor, no »mother cell«, no thinking or feel-
ing cell, but self-organizing information flow in cell-assemblies according
to rules of synaptic interactions (e.g., Hebb’s rules or backpropagation).
Neural networks try to simulate the synaptic plasticity of living brains with
their tolerance to failures and self-adaption to changing situations. Learn-
ing algorithms might be supervised like learning with a teacher. In this
case, they improve their results by comparing them to certain prototypes
(e.g., recognition of stored patterns). They can also be non-supervised,
finding new patterns, clusters or concepts by trial-and-error and evolutio-
nary procedures of selection.
Embodiment of neural networks is the aim of embodied robotics: a simple
robot with a motor equipment (e.g., wheels) and diverse sensors indicating
proximity of objects, sources of light, and collision with obstacles can gene-
rate complex behavior by self-organizing neural networks. For example, an
embodied neural network has layers of neurons for motor actions (e.g.,
turning aside, moving forward), and for sensors of proximity and collision.
In the case of a collision, the connections between the active neurons of
the proximity layer and the collision layer are reinforced by Hebbean
learning: a behavioral pattern emerges, in order to avoid collisions in fu-
ture. That is an example of pre-rational intelligence.

In nature, complex patterns of movements are also not computed and con-
trolled by a central processor, but by self-organizing learning algorithms of
neural networks. An example is a grasshopper with six legs which was re-
cently simulated by a little robot of the Technical University at Munich.
For each leg there are three modules of moving like lifting, swinging, and
coordinating the lifting and swinging parts. Motor knowledge is learnt in
an unknown environment and stored implicitly by the distribution of syn-
aptic weights in the nets. During evolution, decentralized modules had a
great advantage, because they could be used as building blocks for diffe-
rent organisms in future developments. In the human organism, walking is
a complex bodily self-organization, largely without central control of brain
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and consciousness: motor intelligence emerges without internal represen-
tations. A simple robot of the University at Illinois walks down a shallow
slope very natural and human-like, only driven by system-environment in-
teraction of gravity, inertia, and collision, rather than by an internal central
controller. It is a complex dynamical system, driven into the equilibrium of
a limit cycle with steady periodic motion.
Not only »low level« motor intelligence, but also »high level« cognition
(e.g., categorization) emerge from complex bodily interaction with an envi-
ronment by sensory-motor coordination without internal representation.
We call it »embodied cognition«: an infant learns to categorize objects and
to build up concepts by touching, grasping, manipulating, feeling, tasting,
hearing, and looking at things, and not by explicit representations. The
categories are fuzzy and may be improved and changed during life (in the
sense of Hume). But infants have an innate disposition to construct and
apply conceptual schemes and tools (in the sense of Kant). The emergence
of embodied cognition was already emphasized by John Dewey:

»We begin not with a sensory stimulus, but with a sensorimotor coordination… In a certain
sense it is the movement which is primary, and the sensation which is secondary, the move-
ment of the body, head, and eye muscles determining of what is experienced.« (Dewey
1896/1981, 127)

Embodied cognition is also the aim of embodied robotics. Consider the fol-
lowing example (Pfeifer/Scheier 2001, 428): A robot with visual, haptic,
and motor systems (e.g., camera, gripper, wheels) has the task to collect
certain objects and to bring them to a home base. Therefore, it must cate-
gorize conductive and non-conductive objects with strongly or slightly tex-
tured surfaces. Sensory networks receive inputs from the sensors. These
sensory networks are connected to attention and feature maps of corres-
ponding networks which together with the effectors form an attentional
sensory-motor loop, modulated by a value map, according to the robot’s
task. Values represent the intentions and motivations of the robot.
Neural networks can even simulate high level cognitive abilities like talk-
ing. A network like NETtalk learns talking like a child by reading more and
more unknown texts and improving their pronounciation by comparing it
with the trained example of a well-known text (supervised learning with
backpropagation). The pronounciation is not represented by rules, but dis-
tributed in the synaptic weights of firing cell assemblies with similarity to
corresponding brain activities. Networks are successful in pattern recogni-
tion. Their synaptic plasticity allows to recognize examples of trained
prototypes even if they are fuzzy and noisy in a certain interval of tolerance
like human brains. Pattern recognition is applied in emotional computing.
A Japanese robot with the name Mark II recognizes emotional expressions
of a human face (e.g., happiness, anger, aggression, surprise) with pattern
recognition of a neural network and reacts by generating an appropriate
facial expression in proper time. This is an example of non-verbal commu-
nication.
In chip technology, analog and digital networks are integrated in cellular
neural networks like in human nervous systems. Cellular neural networks
(CNNs) combine the architecture of cellular automata (CA) with the lear-
ning abilities of neural networks. Thus, they can generate all kinds of com-
plex patterns like CAs (pattern formation), but they can also recognize pat-
terns like neural networks (pattern recognition). CNNs are applied as
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high-speed chips in visual computing and robotics. In pattern recognition,
the binding problem arises for living brains as well as for artificial net-
works: CNNs recognize globally connected patterns and distinguishes dis-
connected parts. In the so-called »gestalt-psychology« of the last century,
people doubted whether it would ever be possible to simulate the recogni-
tion of an »holistic« gestalt (shape) by »mechanical« procedures. CNNs
made it. Another problem of »gestalt-psychology« is the well-known visual
illusion of two symmetric faces or a vase. The »gestalt-psychologists« argued
that the sudden switching between the two holistic shapes, either two sym-
metric faces or a vase, can never be realized by mechanical procedures. In
human recognition, a preference for one of the two possibilities depends
on an initial attention at a random detail, either in the foreground or the
background of the picture. In the same manner, a CNN-chip simulates pat-
tern recognition of the face-vase illusion, depending on the evaluation of
some pixels in the foreground or background. As CNNs work with massive
parallel computing power and universal computation like universal cellular
automata, they can also be applied in neurobionics and high tech medicine:
brain electrical activity (e.g., EEG-signals) is recorded from electrodes in
order to detect the patterns of an impending disease (e.g., epilepsy) and to
enforce suitable medical preventions (e.g., drug infusion).
In our philosophical context, neural computers make a thought experiment
more realistic which was introduced by Hilary Putnam two centuries ago as
a horror picture show (Putnam 1981, 21): suppose to be an isolated Carte-
sian brain removed from its body and living in a nutrient fluid of a vat. The
afferent nerve endings are connected with a super neural computer (e.g., a
CNN-chip) producing all sensory inputs of the brain. Can the brain alone
decide the statement »I am a brain in a vat«? The disembodied brain can-
not: concepts like »brain«, »vat«, etc. do not refer to real things, but to in-
ternal representations of a virtual reality produced by a neural computer.
Even self-experience of the own brain in the sense of Descartes’ »Cogito«
needs a body and bodily interactions: »Sum, ergo cogito.«
In a recent movie, Steven Spielberg illustrates the possibility that all our
thoughts are determined and computable. In his Minority Report, a special
agency of police is able to forecast future thoughts of people in order to
prevent future crimes. The lost of free will would have enormous conse-
quences for our laws and societies. Actually, people could not be responsi-
ble for their decisions and actions. Their behavior would be determined by
genetic and neural dispositions. Crime would be a problem of medicine
and software engineering. Lawyers and teachers should be replaced by
physicians, genetic and neural engineers. Obviously, thoughts and emo-
tions correspond to complex patterns of neural cell-assemblies generated
by simple synaptic rules of neural interactions (e.g., Hebbean learning rules).
Thus, brain reserchers assume that brain processes are determined and
computable, because their laws of neural interactivity are well-known. They
argue on the background of school-physics: the future trajectory of a planet
is computable, because we know Kepler’s deterministic law. But, even in
the case of a planetary system, we must take into account the many-bo-
dies-problem of several interacting planets with the sun, generating insta-
bility and even chaos which prevents forecasts in the long run, although the
physical laws are deterministic and well-known. Pattern formation of cellar
automata demonstrates that the global behavior of all cellular interactions
may be too complex in order to be forecast in all details by a finite pro-
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gram, although the local rules of interacting cells are very simple and well-
known.
The human brain has a many-bodies-problem of 1011 neurons with 1014 syn-
aptic interactions. Thus, according to the principle of computational corre-
spondance, the brain is a computational system, but not computable. Actu-
ally, the steady local interactions of neurons produce global random noise
with islands of structured patterns (attractors) representing our thoughts,
perceptions, feelings, consciousness, and motor activities. Therefore, the
brain has stochastic dynamics, and therefore, at best, we can only detect
some structured patterns and compute some future trends in a short run
like clouds and their future development in wheather forecasting. Stochastic
dynamics make free will at least possible.

4. Global Networking and Embodied Cognition

A species, population, or society is not only the sum of its individual brains
and bodies, but a new kind of superorganism or superbrain generated by
the interactions of its communicating and interacting individuals. After the
transport, information, and communication systems of natural evolution
(which were discussed in the second chapter), global communication net-
works (e.g., the World Wide Web) are emerging in a technical co-evolution
with surprising similarity to self-organizing neural networks of the human
brain. Like neural impulses in a nervous system, data traffic is the informa-
tion flow in the internet, constructed by data packets with source and desti-
nation addresses. The routers are nodes of the net determining the local
path of each packet by using local routing tables with cost metrics for
neighboring routers. A router forward each packet to a neighboring router
with lowest costs of destination. The buffering, sending, and resending acti-
vities of routers can cause congestion and chaos. We can observe complex
patterns of high, medium, and low density of data traffic with similarity to
patterns of neural activities in a brain.
Computational and information networks have become technical super-
organisms evolving in a quasi-evolutionary process. Computer networks are
computational ecologies. As the Internet is a highly complex information
network, we have to manage information flow with loss of information in
chaotic situations. »Lost in the net« is a popular slogan of these problems
with increasing complexity. The information flood in a more or less chaotic
Internet is a challenge for intelligent information retrieval. According to
the synaptic plasticity of a brain, information retrieval should be optimized
by soft computing: Information Retrieval (IR) in the Internet requires de-
ciding procedures in order to evaluate and select the most relevant docu-
ments according to certain constraints. In binary (Boolean) logic, a docu-
ment is either relevant (1) or not (0) for an information query. Actually, a
document is more or less appropriate to our interests. Soft constraints are
typical for human decisions and information processing. In fuzzy logic, it
has a degree of relevance in the internal [0,1], depending on a user’s pro-
file and changing preferences.
Further applications of soft computing are genetic algorithms, in order to
improve information retrieval. In natural evolution, genetic algorithms op-
timize populations of chromosomes in sequential generations by reproduc-
tion, mutation, and selection. In information retrieval, they are applied for
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optimizing queries of documents. A chromosome is a sequence of docu-
ments which are characterized by weighted key terms in binary codes. Po-
pulations are sets of chromosomes. Mutation means random change of bi-
nary digits. Sequential binary codes can be recombined. Fitness degrees
measure the relevance of documents. Selection is the evaluation of popula-
tions of documents.
It is not only a metaphor to consider the Internet as a kind of superbrain
with self-organizing features of learning and adapting. We could use the
analogies with a brain as heuristic devices to manage the information
flood in the Internet. Information retrieval is already realized by neural
networks adapting to the information preferences of human users with
synaptic plasticity. Many-layered neuronal nets can be applied for opti-
mizing queries of documents. Synaptic connections (»weights«) between
neurons change according to learning algorithms. The relevance of terms
in a document corresponds to weights between the neurons of terms and
documents. Neurons fire, if the sum of weighted inputs surpasses a criti-
cal threshold. A learning algorithm delivers a first query result by propa-
gation. Deviations of user’s preferences are weighted and propagated
back to the term and input layer (»backpropagation«) and are improved
during several iterations.

In sociobiology, we can learn from populations of ants and termites how to
organize traffic and information processing by swarm intelligence. From a
technical point of view, we need intelligent programs distributed in the
nets. There are already more or less intelligent virtual organisms (agents),
learning, self-organizing and adapting to our individual preferences of in-
formation, to select our e-mails, to prepare economic transactions or to de-
fend the attacks of hostile computer viruses, like the immune system of our
body. Virtual agents are designed with different degrees of autonomy, mo-
bility, reactivity or learning capabilities for communicating. They commu-
nicate and cooperate with their virtual environment as local sphere of
influence.

There are stationary agents doing their duties localized in special servers
or mobile agents which can be sent as byte codes into the World Wide
Web, doing their services without online connection of client and server.
E-commerce is a challenge for complexity research which only can be man-
aged by the help of virtual agents, supporting economic transactions. In fu-
ture, genetic algorithms will enable us to breed populations of agents in a
complex evolution of virtual life. Populations of agents can reproduce
themselves by genetic algorithms in order to optimize their information re-
trieval according to the queries of a user. Agents start with a user’s profile.
They weight the relevance of a document, e.g., by determining the distance
(number of links) between key words of the document and the key words
of the query. The »energy of life« of an agent increases or decreases accord-
ing to the success or failure of its query. Successful agents are selected, mu-
tate their genotype and reproduce themselves.

Agents communicate with speech-act types of the computer language
KQML (Knowledge Query and Manipulation Language). Speech-acts are
designed as intentions, according to John L. Austin’s and John Searle’s
philosophy of language:
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Like human beings, artificial agents can express their intentions by langu-
age and initiate a reaction of its communication partner. This is another
prominent application of a philosophical concept in computer science.
In affective computing, agents are equipped with a software simulating fea-
tures of emotional intelligence. Connectionistic models combine complex
emotions from basic types like, e.g., fear, anger, or joy. Their intensity at a
certain time depends on excitatory and inhibitory influences of other emo-
tion types and elicitors of neural, sensorimotor, motivational, and cognitive
kind. The question arises why agents should be equipped with at least frag-
ments of emotions. The reason is that in fuzzy situations of incomplete in-
formation people quickly trust more in their emotions and intuitive experi-
ences than in time-spending analytical reasoning. Obviously, connectionistic
models are only behavioral. But, in principle, they could be embodied into
neurochemical brains and bodies in order to produce feelings.

Human beings are no virtual agents. We are embodied beings embedded in
physical environments, ecological and social niches. We like to move and
interact bodily. Our brain is largely influenced by our body. The disembod-
ied brain is a Cartesian illusion. Thus, computer power should not be con-
centrated in some few supercomputers in order to generate a virtual reality
as counter world to our physical world. We like to act in our natural world
with familiar things of everyday-life, but supported by the advantages of
computational functions. In short: computational power should be distrib-
uted in the things of daily use. Therefore, things should not be virtualized
in virtual reality, but virtuality should be embodied in things of human life.
That is the philosophy of ubiquitous computing.
In our beginning century, global networking does not only mean increasing
numbers of PC’s, workstations, servers, and supercomputers interacting via
data traffic in the Internet. Below the complexity of a PC, cheap and smart
devices of low-power are distributed in intelligent environments of our eve-
ryday world. Examples are tabs, pads, and boards: inch-scale machines that
approximate active Post-It notes, foot-scale ones that behave something
like a sheet of paper, a book or a magazine, and yard-scale displays that are
the equivalent of a blackboard or bulletin board. Tabs, pads, and boards
are just the beginning of ubiquitous computing. Smart devices are intelli-
gent microprocessors embedded in an alarm clock, the microwave oven,
the TV remote controls, the stereo and TV systems, the kids’ toys, etc.
Ubiquitous computing makes »things that think«, not only highly intelli-
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gent supercomputers, but an intelligent superorganism with swarm intelli-
gence. The third generation (3G) services of wireless communication in-
clude packet networks and interconnectivity of computerized appliances,
such as phones, faxes, printers, software radio, etc. The enabling technolo-
gies demand for faster data converters, more powerful processors, Java
and other forms of downloadable software. The technical development of
3G-communicators is an interdisciplinary task of system engineering.
Like GPS (Global Position System) in car traffic, things of everyday life
could interact telematically by more or less intelligent sensors. A car driver
using GPS is telematically guided by a network of neighbor GPS stations.
In future, the processors, chips, and displays of these smart devices do not
need a user’s interface like a mouse, windows, or keyboards, only just a
pleasant and effective place to get things done. Wireless computing devices
of all scales become more and more invisible to the user. Ubiquitous com-
puting enables people to live, work, use, and enjoy things without being
aware of their computing devices.
From a technical point of view, ubiquitous computing is a challenge of
global networking by wireless media access, wide-bandwidth range, real-
time capabilities for multimedia over standard networks, and data packet
routing. Not only millions of PC’c, but billions of smart devices are inter-
acting via the Internet. They are real physical things of different scale, but
with virtual data shadows in the Internet requiring a powerful complexity
management of data traffic. The overwhelming flow of data and informa-
tion enforces us to operate at the edge of chaos.
In the 21st century, information, communication, and biotechnology are
growing together. Therefore, information processing requires learning from
nature. Information can be generated, transmitted, stored, processed, and
represented in nature by sense organs, the nervous system, brain, cognitive
processes like learning and thinking, language, motorics, perception, and
communication, which are simulated in technology by physical, chemical,
and biological sensors, light-wave conductors, electronic, optical stores, mi-
croprocessors, neural nets, robotics, virtual reality, ubiquitous computing,
artificial life and intelligence, altogether aiming at learning, adapting, and
self-organizing evolutionary complex systems.
We have considered the dynamics of natural systems (e.g., atomic, molecu-
lar, genetic, neuronal systems), computational systems (e.g., quantum, mo-
lecular, DNA-, bio-, neurocomputing systems), global networking (e.g.,
internet, routing, information retrieval, multiagent systems), and ubiqui-
tous computing (e.g., mobile phones, GPS, PDA, smart devices, intelligent
environments). Global networking is no longer only a challenge of techni-
cal development. Ubiquitous computing could improve the human inter-
face with information systems, but it must not perplex people by a diversity
of technical equipments. Global networking must be developed as calm
and invisible technology. Calm and invisible computing tries to integrate
global networking and information processing in human environments and
daily life without enslaving people by technical scenarios. Global network-
ing must be developed as a technical service of mankind, no more nor less.
Thus, information processing in global networks cannot only be pushed by
technical sciences. It must be an interdisciplinary task of microelectronics,
computer science, information science, but it is also a challenge of cogni-
tive science, sociology, and humanities.
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From an anthropological point of view, ubiquitous computing means dis-
tribution of computational functions in the infrastructure of our daily life.
The interface of a user with a single computer simulating all kinds of ob-
jects, events, and actions in virtual reality is replaced by the familiar infra-
structure of real things for daily use which are equipped with hidden com-
putational functions. Interactions are largely wireless. From a philosophi-
cal point of view, the classical interface of user and computer corresponds
to the dualism of subject and object in Kantian epistemology, or Descartes’
and Hussserl’s distinction of consciousness and external world. According
to Martin Heidegger, the traditional opposition of subject and object must
be overcome for common-sense understanding. Our familiarity in situa-
tions of daily life does not consist in formal representations of rules and
facts, but rather consists of dispositions to respond situations in appropria-
te ways. Heidegger called the infrastructure »being-in-the-world« which
should replace the traditional relation of subject and object, consciousness
and external world. Thus, computer technology must be embedded in hu-
man »Dasein« in order to support our being-in-the-world. Our mind is em-
bodied in the infrastructure of our daily life and not caught in the isolated
cave of our brain.

5. Philosophy beyond Cognitivism

What are the philosophical perspectives beyond classical cognitivism of
subject and object, consciousness and external world, user and computer?
Beyond classical cognitivism means no restriction to mental representa-
tions and special kinds of natural intelligence in the sense of some IQ-test,
but analyzing all kinds and complex degrees of self-organizing, pre-rational
and rational, sensory-motor and emotional cognition which have been de-
veloped in evolution. In short: beyond classical cognitivism means embo-
died cognition. In the same manner, beyond classical Artificial Intelligence
means no restriction to formal representations and special kinds of Artifi-
cial Intelligence in the sense of a Turing test, but building all kinds and
complex degrees of self-organizing computational systems as service sys-
tems of human life: thus, beyond classical AI means the new AI of embodied
cognition.
Using the laws of complex self-organizing systems does not only mean
simulation of existing organisms in nature, but finding new innovations for
human purposes. In the history of technology, mankind learnt to fly not by
simulating the flight of a bird, but by the innovation of airplanes. They are
new solutions of the laws of aerodynamics which were not found by natural
evolution. Another example are the laws of neural networks. Brains and
nervous systems are only some few solutions which were found by natural
evolution. Chip-technology delivers new successful innovations with some-
times differing procedures. We should look for technical solutions of self-
organizing systems as service systems of mankind. Thus, we need an inter-
disciplinary approach of human-centered technology with cooperation of
robotics, computer science, AI, cognitive sciences, life sciences, and social
sciences.
Obviously, many problems of old and new cognitive science, old and new
AI, robotics, brain research, etc. have deep philosophical roots in classical
and analytical philosophy. Further on, the conception of embodied mind is
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rather popular – not only in philosophy: bodiness, health, and wellness are
topics of public interest. Health is a top issue of public budgets. Life sci-
ence has become the leading science in 21st century (after physics in the
20th century). Economists proclaim that the 5th Kondratieff cycle of infor-
mation society is followed by the 6th Kondratieff cycle of health and life in-
dustry. Actually, life, information, and computer science are growing to-
gether in evolution theory. From a philosophical point of view, my concep-
tions of technics and bodiness have an old tradition. In the original (Greek)
meaning, technics are purposeful means as human service. Our body is no
Cartesian machine or Platonic cave of the soul. In Aristotelian tradition,
embodiment means the whole organism with its incorporated entelechy
and intentionality. It is our individual source of life, creativity, and well-
ness. We should take care of it.
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Klaus Mainzer

Der verkörperte Geist

Über komputationale, evolutionäre und philosophische

Interprätationen der Kognition

Die moderne Kognitionswissenschaft kann nicht verstanden werden ohne Einbeziehung der neue-
sten Errungenschaften aus der Computerwissenschaft, künstlichen Intelligenz (KI), Robotik, Neu-
rowissenschaft, Biologie, Linguistik und Psychologie. Die klassische analytische Philosophie, wie
auch die traditionelle KI, setzten voraus, dass alle Arten des Wissens explizit durch formale oder
Programmsprachen dargestellt werden müssen. Diese Annahme steht im Widerspruch zu den
rezenten Einsichten in die Evolutionsbiologie und Entwicklungspsychologie des menschlichen Or-
ganismus. Der grösste Teil unseres Wissens ist implizit und unbewusst. Es ist kein formal repräsen-
tiertes, sondern ein verkörpertes Wissen, das durch Handeln gelernt und durch körperliche
Interaktion mit ökologischen Nischen und gesellschaftlichen Umgebungen verstanden wird. Dies
gilt nicht nur für niedere Fertigkeiten, sondern auch für höher gestellte Domänen: Kategorisierung,
Sprache und abstraktes Denken. Die verkörperte Erkenntniswissenschaft, KI und Robotik ver-
suchen, den verkörperten Geist in einer artifiziellen Evolution zu bilden. Vom philosophischen
Standpunkt gesehen ist es erstaunlich, wie tief die neuen Ideen des verkörperten Geistes und der
Robotik in der Philosophie des 20. Jahrhunderts verankert sind.

Klaus Mainzer

L’intellect incarné

Sur les interprétations computationnelles, évolutives et philosophiques

de la connaissance

La science cognitive moderne ne peut être comprise sans les progrès récents en informatique, intel-
ligence artificielle, robotique, neuroscience, biologie, linguistique et psychologie. La philosophie
analytique classique et l’intelligence artificielle traditionnelle présumaient que toutes les sortes de
savoir devaient être représentées explicitement par des langages formels ou programmatiques.
Cette thèse est en contradiction avec les découvertes récentes en biologie de l’évolution et en psy-
chologie évolutive de l’organisme humain. La majeure partie de notre savoir est implicite et incon-
sciente. Elle n’est pas représentée formellement, mais constitue un savoir incarné, qui s’acquiert
par l’action et se comprend en interaction corporelle avec nos niches écologiques et nos environne-
ments sociaux. Cela n’est pas seulement vrai pour nos aptitudes élémentaires, mais aussi pour nos
facultés supérieures de catégorisation, de langage et de pensée abstraite. Science cognitive in-
carnée, l’intelligence artificielle, ainsi que la robotique, tentent de construire un intellect incarné en
évolution artificielle. Du point de vue philosophique, il est admirable de voir à quel point les nou-
velles idées d’intellect incarné et de robotique sont ancrées dans la philosophie du XXe siècle.
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