A coincidence point theorem for multi-valued contractions^{*}

DURAN TÜRKOĞLU[†], ORHAN ÖZER[‡] AND BRIAN FISHER[§]

Abstract. A coincidence point theorem for two pairs of mappings is proved.

Key words: coincidence point, multi-valued mapping, weakly commuting mappings, compatible mappings

AMS subject classifications: 54H25

Received February 6, 2002 Accepted May 15, 2002

1. Introduction and preliminaries

Let (X, d) be a metric space and let f and g be mappings from X into itself. In [5], S. Sessa defined f and g to be *weakly commuting* if

$$d(gfx, fgx) \le d(gx, fx)$$

for all $x \in X$. It can be seen that two commuting mappings are weakly commuting, but the converse is false as shown in the example of [5].

Recently, Jungck [1] extended the concept of weak commutativity in the following way:

Definition 1. Let f and g be mappings from a metric space (X, d) into itself. The mappings f and g are said to be compatible if

$$\lim_{n \to \infty} (fgx_n, gfx_n) = 0$$

whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = z$ for some z in X.

It is obvious that two weakly commuting mappings are compatible, but the converse is not true, see the examples in [1].

^{*}This research was supported by TUBITAK project No.TBAG-1742 (1999).

[†]Department of Mathematics, Kırıkkale University, Kırıkkale, Turkey, e-mail: turkoglu@sinanoglu.kku.edu.tr

[‡]Department of Mathematics, Anadolu University, Eskisehir, Turkey, e-mail: oozer@vm.baum.anadolu.edu.tr

[§]Department of Mathematics and Computer Science, Leicester University, Leicester, LE1 7RH, England, e-mail: fbr@le.ac.uk

Recently, Kaneko [2] and Singh et al. [6] extended the concepts of weak commutativity and compatibility, see Kaneko et al. [3], for single-valued mappings to the setting of single-valued and multi-valued mappings, respectively.

Now let (X, d) be a metric space and let CB(X) denote the family of all nonempty closed and bounded subsets of X. Let H be the Hausdorff metric on CB(X)induced by the metric d, i.e.,

$$H(A,B) = \max\left\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\right\}$$

for $A, B \in CB(X)$, where $d(x, A) = \inf_{y \in A} d(x, y)$.

It is well-known that (CB(X), H) is a metric space, and if (X, d) is complete, then (CB(X), H) is also complete.

The following lemma was proved in Nadler [4].

Lemma 1. Let $A, B \in CB(X)$ and k > 1. Then for each $a \in A$, there exists a point $b \in B$ such that $d(a, b) \leq kH(A, B)$.

Definition 2. Let (X,d) be a metric space and let $f: X \to X$ and $S: X \to CB(X)$ be single-valued and multi-valued mappings, respectively. The mappings f and S are said to be weakly commuting if for all $x \in X$, $fSx \in CB(X)$ and

$$H(Sfx, fSx) \le d(fx, Sx),$$

where H is the Hausdorff metric defined on CB(X).

Definition 3. The mappings f and S are said to be compatible if

$$\lim_{n \to \infty} d(fy_n, Sfx_n) = 0$$

whenever $\{x_n\}$ and $\{y_n\}$ are sequences in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} y_n = z$ for some $z \in X$, where $y_n \in Sx_n$ for n = 1, 2, ...

Remark 1.

- (i) Definition 3 is slightly different from Kaneko's definition [2].
- (ii) If S is a single-valued mapping on X in Definitions 2 and 3, then Definitions 2 and 3 become the definitions of weak commutativity and compatibility for single-valued mappings.
- (iii) If the mappings f and S are weakly commuting, then they are compatible, but the converse is not true.

In fact, suppose that f and S are weakly commuting and let $\{x_n\}$ and $\{y_n\}$ be two sequences in X such that $y_n \in Sx_n$ for n = 1, 2, ... and $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} y_n = z$ for some $z \in X$. From $d(fx_n, Sx_n) \leq d(fx_n, y_n)$, it follows that $\lim_{n \to \infty} d(fx_n, Sx_n) = 0$. Thus, since f and g are weakly commuting, we have

$$\lim_{n \to \infty} H(Sfx_n, fSx_n) = 0.$$

On the other hand, since $d(fy_n, Sfx_n) \leq H(fSx_n, Sfx_n)$, we have

$$\lim_{n \to \infty} d(fy_n, Sfx_n) = 0,$$

which means that f and S are compatible.

Example 1. Let $X = [1, \infty)$ be set with the Euclidean metric d and define $fx = 2x^4 - 1$ and $Sx = [1, x^2]$ for all $x \ge 1$. Note that f and S are continuous and S(X) = f(X) = X. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X defined by $x_n = y_n = 1$ for $n = 1, 2, \ldots$ Then we have

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} y_n = 1 \in X, \text{ where } y_n \in Sx_n.$$

On the other hand, we can show that $H(fSx_n, Sfx_n) = 2(x_n^4 - 1)^2 \to 0$ if and only $x_n \to 1$ as $n \to \infty$ and so, since $d(fy_n, Sfx_n) \leq H(fSx_n, Sfx_n)$, we have

$$\lim_{n \to \infty} d(fy_n, Sfx_n) = 0.$$

Therefore, f and T are compatible, but f and T are not weakly commuting at x = 2.

2. Main results

Theorem 1. Let (X, d) be a complete metric space. Let $f, g : X \to X$ be continuous mappings and $S, T : X \to CB(X)$ be H-continuous mappings such that $T(X) \subseteq f(X)$ and $S(X) \subseteq g(X)$, the pair S and g are compatible mappings and

$$H^{p}(Sx,Ty) \leq \max\{ad(fx,gy)d^{p-1}(fx,Sx), ad(fx,gy)d^{p-1}(gy,Ty), \\ ad(fx,Sx)d^{p-1}(gy,Ty), cd^{p-1}(fx,Ty)d(gy,Sx)\}$$
(1)

for all $x, y \in X$, where $p \ge 2$ is an integer, 0 < a < 1 and $c \ge 0$. Then there exists a point $z \in X$ such that $fz \in Sz$ and $gz \in Tz$, i.e., z is a coincidence point of f, Sand of g, T. Further, z is unique when 0 < c < 1.

Proof. Let x_0 be an arbitrary point in X. Since $Sx_0 \subseteq g(X)$, there exists a point $x_1 \in X$ such that $gx_1 \in Sx_o$ and so there exists a point $y \in Tx_1$

$$d(gx_1, y) \le kH(Sx_0, Tx_1),$$

where $k = a^{-1/2} > 1$, which is possible by Lemma 1. Since $Tx_1 \subseteq f(X)$, there exists a point $x_2 \in X$ such that $y = fx_2$ and so we have

$$d(gx_1, fx_2) \le kH(Sx_0, Tx_1).$$

Similarly, there exists a point $x_3 \in X$ such that $gx_3 \in Sx_2$ and

$$d(gx_3, fx_2) \le kH(Sx_2, Tx_1).$$

Inductively, we can obtain a sequence $\{x_n\}$ in X such that

$$f_{x_{2n}} \in T_{x_{2n}}, \quad n \in N,$$

$$g_{x_{2n+1}} \in S_{x_{2n}}, \quad n \in N_0 = N \cup \{0\},$$

$$d(g_{x_{2n+1}}, f_{x_{2n}}) \le kH(S_{x_{2n}}, T_{x_{2n-1}}), \quad n \in N,$$

$$d(g_{x_{2n+1}}, f_{x_{2n}}) \le kH(S_{x_{2n}}, T_{x_{2n+1}}), \quad n \in N_0,$$

where N denotes the set of positive integers. Then, by (1), we have

$$\begin{aligned} d^{p}(gx_{2n+1}, fx_{2n+2}) &\leq k^{p} H^{p}(Sx_{2n}, Tx_{2n+1}) \\ &\leq a^{-p/2} \max\{ad(fx_{2n}, gx_{2n+1})d^{p-1}(fx_{2n}, Sx_{2n}), \\ &ad(fx_{2n}, gx_{2n+1})d^{p-1}(gx_{2n+1}, Tx_{2n+1}), \\ &ad(fx_{2n}, Sx_{2n})d^{p-1}(gx_{2n+1}, Tx_{2n+1}), \\ &cd^{p-1}(fx_{2n}, Tx_{2n+1})d^{p-1}(gx_{2n+1}, fx_{2n+2})\} \\ &\leq a^{-p/2} \max\{ad(fx_{2n}, gx_{2n+1})d^{p-1}(fx_{2n}, gx_{2n+1}), \\ &ad(fx_{2n}, gx_{2n+1})d^{p-1}(gx_{2n+1}, fx_{2n+2}), \\ &ad(fx_{2n}, Sx_{2n})d^{p-1}(gx_{2n+1}, fx_{2n+2}), \\ &cd^{p-1}(fx_{2n}, fx_{2n+2})d^{p-1}(gx_{2n+1}, gx_{2n+1})\}. \end{aligned}$$

Putting $a^{-p/2} = \beta$, we have

$$d^{p}(gx_{2n+1}, fx_{2n+2}) \leq \beta \max\{ad(fx_{2n}, gx_{2n+1})d^{p-1}(fx_{2n}, gx_{2n+1}), \\ ad(fx_{2n}, gx_{2n+1})d^{p-1}(gx_{2n+1}, fx_{2n+2}), \\ ad(fx_{2n}, Sx_{2n})d^{p-1}(gx_{2n+1}, fx_{2n+2}), \\ cd^{p-1}(fx_{2n}, fx_{2n+2})d^{p-1}(gx_{2n+1}, gx_{2n+1})\}, \\ \leq \beta ad(fx_{2n}, gx_{2n+1})d^{p-1}(fx_{2n}, gx_{2n+1}),$$

$$d^{p}(gx_{2n+1}, fx_{2n+2}) \leq \beta^{n} a^{n} d(x_{0}, gx_{1}).$$

Since $0 < \beta < 1$, it follows that

$$\{gx_1, fx_2, gx_3, fx_4, \dots, gx_{2n-1}, fx_{2n}, gx_{2n+1}, \dots\}$$

is a Cauchy sequence in X. Since (X, d) is a complete metric space, let

$$\lim_{n \to \infty} gx_{2n+1} = \lim_{n \to \infty} fx_{2n} = z.$$

Now, we will prove that z is a coincidence point of f and S. For every $n \in N$, we have

$$d(fgx_{2n+1}, Sz) \le d(fgx_{2n+1}, Sfx_{2n}) + H(Sfx_{2n}, Sz).$$
(2)

It follows from the H-continuity of S that

$$\lim_{n \to \infty} H(Sfx_{2n}, Sz) = 0, \tag{3}$$

since $fx_{2n} \to z$ as $n \to \infty$. Since f and S are compatible mappings and

$$\lim_{n \to \infty} f x_{2n} = \lim_{n \to \infty} y_n = z,$$

where $y_n = gx_{2n+1} \in Sx_{2n}$ and $z_n = x_{2n}$, we have

$$\lim_{n \to \infty} d(fy_n, Sfz_n) = \lim_{n \to \infty} d(fgx_{2n+1}, Sfx_{2n}) = 0.$$

$$\tag{4}$$

Thus, from equations (2), (3) and (4), we have

$$\lim_{n \to \infty} d(fgx_{2n+1}, Sz) = 0$$

and so

$$d(fz, Sz) \le d(fz, fgx_{2n+1}) + d(fgx_{2n+1}, Sz).$$

Letting *n* tend to infinity, it follows that d(fz, Sz) = 0. This implies that $fz \in Sz$, since Sz is a closed subset of *X*. Thus *z* is a coincidence point of *f* and *S*. Similarly, we can prove that *z* is a coincidence point of *g* and *T*. This completes the proof of the theorem. \Box

Letting f = g be the identity mapping on X, in *Theorem 1*, we have the following corollary:

Corollary 1. Let (X, d) be a complete metric space and let $S, T : X \mapsto CB(X)$ be *H*-continuous multi-valued mappings such that

$$\begin{aligned} H^p(Sx,Ty) &\leq \max\{ad(x,y)d^{p-1}(y,Ty), ad(x,y)d^{p-1}(y,Ty), \\ &\quad ad(x,Sx)d^{p-1}(y,Ty), cd^{p-1}(x,Ty)d(y,Sx)\} \end{aligned}$$

for all $x, y \in X$, where $p \ge 2$, 0 < a < 1, c > 0. Then S and T have a common fixed point z in X.

Putting f = g and S = T in *Theorem 1*, we have the following corollary:

Corollary 2. Let (X,d) be a complete metric space, let $f : X \to X$ be a continuous mapping and let $S : X \to CB(X)$ be an H-continuous mapping such that $S(X) \subset g(X)$, and

$$H^{p}(Sx, Sy) \leq \max\{ad(fx, fy)d^{p-1}(fx, Sx), ad(fx, fy)d^{p-1}(gy, Sy), \\ cd^{p-1}(fx, Sy)d(fy, Sx)\}$$

for all $x, y \in X$, where $p \ge 2$ is an integer, 0 < a < 1 and $c \ge 0$. Then there exists a coincidence point z of f and S.

References

- G. JUNGCK, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9(1986), 771-773.
- [2] H. KANEKO, A common fixed point of weakly commuting multi-valued mappings, Math. Japon. 33(1988), 741-744.
- [3] H. KANEKO, S. SESSA, Fixed point theorems for compatible multi-valued and single-valued mappings, Internat. J. Math. Math. Sci. 12(1989), 257-262.
- [4] S. B. NADLER, Multivalued contraction mappings, Pacific J. Math. 30(1969), 475-488.

- S. SESSA, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) 32(1982), 146-153.
- [6] S. L. SINGH, K. S. HA, Y. J. CHO, Coincidence and fixed points of nonliear hybrid contractions, Internat. J. Math. Math. Sci. 12(1979), 247-256.