A coincidence point theorem for multi-valued contractions*

Duran Türkoğlư \dagger Orhan Özer ${ }^{\ddagger}$ and Brian Fisher ${ }^{\S}$

Abstract

A coincidence point theorem for two pairs of mappings is proved.

Key words: coincidence point, multi-valued mapping, weakly commuting mappings, compatible mappings

AMS subject classifications: 54 H 25
Received February 6, 2002
Accepted May 15, 2002

1. Introduction and preliminaries

Let (X, d) be a metric space and let f and g be mappings from X into itself. In [5], S. Sessa defined f and g to be weakly commuting if

$$
d(g f x, f g x) \leq d(g x, f x)
$$

for all $x \in X$. It can be seen that two commuting mappings are weakly commuting, but the converse is false as shown in the example of [5].

Recently, Jungck [1] extended the concept of weak commutativity in the following way:

Definition 1. Let f and g be mappings from a metric space (X, d) into itself. The mappings f and g are said to be compatible if

$$
\lim _{n \rightarrow \infty}\left(f g x_{n}, g f x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=z$ for some z in X.

It is obvious that two weakly commuting mappings are compatible, but the converse is not true, see the examples in [1].

[^0]Recently, Kaneko [2] and Singh et al. [6] extended the concepts of weak commutativity and compatibility, see Kaneko et al. [3], for single-valued mappings to the setting of single-valued and multi-valued mappings, respectively.

Now let (X, d) be a metric space and let $C B(X)$ denote the family of all nonempty closed and bounded subsets of X. Let H be the Hausdorff metric on $C B(X)$ induced by the metric d, i.e.,

$$
H(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}
$$

for $A, B \in C B(X)$, where $d(x, A)=\inf _{y \in A} d(x, y)$.
It is well-known that $(C B(X), H)$ is a metric space, and if (X, d) is complete, then $(C B(X), H)$ is also complete.

The following lemma was proved in Nadler [4].
Lemma 1. Let $A, B \in C B(X)$ and $k>1$. Then for each $a \in A$, there exists a point $b \in B$ such that $d(a, b) \leq k H(A, B)$.

Definition 2. Let (X, d) be a metric space and let $f: X \rightarrow X$ and $S: X \rightarrow$ $C B(X)$ be single-valued and multi-valued mappings, respectively. The mappings f and S are said to be weakly commuting if for all $x \in X, f S x \in C B(X)$ and

$$
H(S f x, f S x) \leq d(f x, S x)
$$

where H is the Hausdorff metric defined on $C B(X)$.
Definition 3. The mappings f and S are said to be compatible if

$$
\lim _{n \rightarrow \infty} d\left(f y_{n}, S f x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} y_{n}=$ z for some $z \in X$, where $y_{n} \in S x_{n}$ for $n=1,2, \ldots$.

Remark 1.

(i) Definition 3 is slightly different from Kaneko's definition [2].
(ii) If S is a single-valued mapping on X in Definitions 2 and 3, then Definitions 2 and 3 become the definitions of weak commutativity and compatibility for single-valued mappings.
(iii) If the mappings f and S are weakly commuting, then they are compatible, but the converse is not true.

In fact, suppose that f and S are weakly commuting and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in X such that $y_{n} \in S x_{n}$ for $n=1,2, \ldots$ and $\lim _{n \rightarrow \infty} f x_{n}=$ $\lim _{n \rightarrow \infty} y_{n}=z$ for some $z \in X$. From $d\left(f x_{n}, S x_{n}\right) \leq d\left(f x_{n}, y_{n}\right)$, it follows that $\lim _{n \rightarrow \infty} d\left(f x_{n}, S x_{n}\right)=0$. Thus, since f and g are weakly commuting, we have

$$
\lim _{n \rightarrow \infty} H\left(S f x_{n}, f S x_{n}\right)=0
$$

On the other hand, since $d\left(f y_{n}, S f x_{n}\right) \leq H\left(f S x_{n}, S f x_{n}\right)$, we have

$$
\lim _{n \rightarrow \infty} d\left(f y_{n}, S f x_{n}\right)=0
$$

which means that f and S are compatible.
Example 1. Let $X=[1, \infty)$ be set with the Euclidean metric d and define $f x=2 x^{4}-1$ and $S x=\left[1, x^{2}\right]$ for all $x \geq 1$. Note that f and S are continuous and $S(X)=f(X)=X$. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in X defined by $x_{n}=y_{n}=1$ for $n=1,2, \ldots$. Then we have

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} y_{n}=1 \in X, \text { where } y_{n} \in S x_{n}
$$

On the other hand, we can show that $H\left(f S x_{n}, S f x_{n}\right)=2\left(x_{n}^{4}-1\right)^{2} \rightarrow 0$ if and only $x_{n} \rightarrow 1$ as $n \rightarrow \infty$ and so, since $d\left(f y_{n}, S f x_{n}\right) \leq H\left(f S x_{n}, S f x_{n}\right)$, we have

$$
\lim _{n \rightarrow \infty} d\left(f y_{n}, S f x_{n}\right)=0
$$

Therefore, f and T are compatible, but f and T are not weakly commuting at $x=2$.

2. Main results

Theorem 1. Let (X, d) be a complete metric space. Let $f, g: X \rightarrow X$ be continuous mappings and $S, T: X \rightarrow C B(X)$ be H-continuous mappings such that $T(X) \subseteq$ $f(X)$ and $S(X) \subseteq g(X)$, the pair S and g are compatible mappings and

$$
\begin{array}{r}
H^{p}(S x, T y) \leq \max \left\{a d(f x, g y) d^{p-1}(f x, S x), a d(f x, g y) d^{p-1}(g y, T y)\right. \\
\left.a d(f x, S x) d^{p-1}(g y, T y), c d^{p-1}(f x, T y) d(g y, S x)\right\} \tag{1}
\end{array}
$$

for all $x, y \in X$, where $p \geq 2$ is an integer, $0<a<1$ and $c \geq 0$. Then there exists a point $z \in X$ such that $f z \in S z$ and $g z \in T z$, i.e., z is a coincidence point of f, S and of g, T. Further, z is unique when $0<c<1$.

Proof. Let x_{0} be an arbirary point in X. Since $S x_{0} \subseteq g(X)$, there exists a point $x_{1} \in X$ such that $g x_{1} \in S x_{o}$ and so there exists a point $y \in T x_{1}$

$$
d\left(g x_{1}, y\right) \leq k H\left(S x_{0}, T x_{1}\right)
$$

where $k=a^{-1 / 2}>1$, which is possible by Lemma 1. Since $T x_{1} \subseteq f(X)$, there exists a point $x_{2} \in X$ such that $y=f x_{2}$ and so we have

$$
d\left(g x_{1}, f x_{2}\right) \leq k H\left(S x_{0}, T x_{1}\right)
$$

Similarly, there exists a point $x_{3} \in X$ such that $g x_{3} \in S x_{2}$ and

$$
d\left(g x_{3}, f x_{2}\right) \leq k H\left(S x_{2}, T x_{1}\right)
$$

Inductively, we can obtain a sequence $\left\{x_{n}\right\}$ in X such that

$$
\begin{gathered}
f x_{2 n} \in T x_{2 n}, \quad n \in N, \\
g x_{2 n+1} \in S x_{2 n}, \quad n \in N_{0}=N \cup\{0\}, \\
d\left(g x_{2 n+1}, f x_{2 n}\right) \leq k H\left(S x_{2 n}, T x_{2 n-1}\right), \quad n \in N, \\
d\left(g x_{2 n+1}, f x_{2 n}\right) \leq k H\left(S x_{2 n}, T x_{2 n+1}\right), \quad n \in N_{0},
\end{gathered}
$$

where N denotes the set of positive integers. Then, by (1), we have

$$
\begin{aligned}
d^{p}\left(g x_{2 n+1}, f x_{2 n+2}\right) \leq & k^{p} H^{p}\left(S x_{2 n}, T x_{2 n+1}\right) \\
\leq & a^{-p / 2} \max \left\{a d\left(f x_{2 n}, g x_{2 n+1}\right) d^{p-1}\left(f x_{2 n}, S x_{2 n}\right),\right. \\
& a d\left(f x_{2 n}, g x_{2 n+1}\right) d^{p-1}\left(g x_{2 n+1}, T x_{2 n+1}\right), \\
& a d\left(f x_{2 n}, S x_{2 n}\right) d^{p-1}\left(g x_{2 n+1}, T x_{2 n+1}\right) \\
& \left.c d^{p-1}\left(f x_{2 n}, T x_{2 n+1}\right) d^{p-1}\left(g x_{2 n+1}, f x_{2 n+2}\right)\right\} \\
\leq & a^{-p / 2} \max \left\{a d\left(f x_{2 n}, g x_{2 n+1}\right) d^{p-1}\left(f x_{2 n}, g x_{2 n+1}\right),\right. \\
& a d\left(f x_{2 n}, g x_{2 n+1}\right) d^{p-1}\left(g x_{2 n+1}, f x_{2 n+2}\right), \\
& a d\left(f x_{2 n}, S x_{2 n}\right) d^{p-1}\left(g x_{2 n+1}, f x_{2 n+2}\right), \\
& \left.c d^{p-1}\left(f x_{2 n}, f x_{2 n+2}\right) d^{p-1}\left(g x_{2 n+1}, g x_{2 n+1}\right)\right\} .
\end{aligned}
$$

Putting $a^{-p / 2}=\beta$, we have

$$
\begin{aligned}
& d^{p}\left(g x_{2 n+1}, f x_{2 n+2}\right) \leq \beta \max \left\{a d\left(f x_{2 n}, g x_{2 n+1}\right) d^{p-1}\left(f x_{2 n}, g x_{2 n+1}\right),\right. \\
& a d\left(f x_{2 n}, g x_{2 n+1}\right) d^{p-1}\left(g x_{2 n+1}, f x_{2 n+2}\right), \\
& a d\left(f x_{2 n}, S x_{2 n}\right) d^{p-1}\left(g x_{2 n+1}, f x_{2 n+2}\right) \\
&\left.c d^{p-1}\left(f x_{2 n}, f x_{2 n+2}\right) d^{p-1}\left(g x_{2 n+1}, g x_{2 n+1}\right)\right\}, \\
& \leq \beta a d\left(f x_{2 n}, g x_{2 n+1}\right) d^{p-1}\left(f x_{2 n}, g x_{2 n+1}\right) \\
& d^{p}\left(g x_{2 n+1}, f x_{2 n+2}\right) \leq \beta^{n} a^{n} d\left(x_{0}, g x_{1}\right)
\end{aligned}
$$

Since $0<\beta<1$, it follows that

$$
\left\{g x_{1}, f x_{2}, g x_{3}, f x_{4}, \ldots, g x_{2 n-1}, f x_{2 n}, g x_{2 n+1}, \ldots\right\}
$$

is a Cauchy sequence in X. Since (X, d) is a complete metric space, let

$$
\lim _{n \rightarrow \infty} g x_{2 n+1}=\lim _{n \rightarrow \infty} f x_{2 n}=z
$$

Now, we will prove that z is a coincidence point of f and S. For every $n \in N$, we have

$$
\begin{equation*}
d\left(f g x_{2 n+1}, S z\right) \leq d\left(f g x_{2 n+1}, S f x_{2 n}\right)+H\left(S f x_{2 n}, S z\right) \tag{2}
\end{equation*}
$$

It follows from the H-continuity of S that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} H\left(S f x_{2 n}, S z\right)=0 \tag{3}
\end{equation*}
$$

since $f x_{2 n} \rightarrow z$ as $n \rightarrow \infty$. Since f and S are compatible mappings and

$$
\lim _{n \rightarrow \infty} f x_{2 n}=\lim _{n \rightarrow \infty} y_{n}=z
$$

where $y_{n}=g x_{2 n+1} \in S x_{2 n}$ and $z_{n}=x_{2 n}$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(f y_{n}, S f z_{n}\right)=\lim _{n \rightarrow \infty} d\left(f g x_{2 n+1}, S f x_{2 n}\right)=0 \tag{4}
\end{equation*}
$$

Thus, from equations (2), (3) and (4), we have

$$
\lim _{n \rightarrow \infty} d\left(f g x_{2 n+1}, S z\right)=0
$$

and so

$$
d(f z, S z) \leq d\left(f z, f g x_{2 n+1}\right)+d\left(f g x_{2 n+1}, S z\right)
$$

Letting n tend to infinity, it follows that $d(f z, S z)=0$. This implies that $f z \in S z$, since $S z$ is a closed subset of X. Thus z is a coincidence point of f and S. Similarly, we can prove that z is a coincidence point of g and T. This completes the proof of the theorem.

Letting $f=g$ be the identity mapping on X, in Theorem 1 , we have the following corollary:

Corollary 1. Let (X, d) be a complete metric space and let $S, T: X \mapsto C B(X)$ be H-continuous multi-valued mappings such that

$$
\begin{aligned}
H^{p}(S x, T y) \leq & \max \left\{a d(x, y) d^{p-1}(y, T y), a d(x, y) d^{p-1}(y, T y)\right. \\
& \left.a d(x, S x) d^{p-1}(y, T y), c d^{p-1}(x, T y) d(y, S x)\right\}
\end{aligned}
$$

for all $x, y \in X$, where $p \geq 2,0<a<1, c>0$. Then S and T have a common fixed point z in X.

Putting $f=g$ and $S=T$ in Theorem 1, we have the following corollary:
Corollary 2. Let (X, d) be a complete metric space, let $f: X \rightarrow X$ be a continuous mapping and let $S: X \rightarrow C B(X)$ be an H-continuous mapping such that $S(X) \subset g(X)$, and

$$
\begin{array}{r}
H^{p}(S x, S y) \leq \max \left\{a d(f x, f y) d^{p-1}(f x, S x), a d(f x, f y) d^{p-1}(g y, S y)\right. \\
\left.c d^{p-1}(f x, S y) d(f y, S x)\right\}
\end{array}
$$

for all $x, y \in X$, where $p \geq 2$ is an integer, $0<a<1$ and $c \geq 0$. Then there exists a coincidence point z of f and S.

References

[1] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9(1986), 771-773.
[2] H. Kaneko, A common fixed point of weakly commuting multi-valued mappings, Math. Japon. 33(1988), 741-744.
[3] H. Kaneko, S. Sessa, Fixed point theorems for compatible multi-valued and single-valued mappings, Internat. J. Math. Math. Sci. 12(1989), 257-262.
[4] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30(1969), 475-488.
[5] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) 32(1982), 146-153.
[6] S. L. Singh, K. S. Ha, Y. J. Cho, Coincidence and fixed points of nonliear hybrid contractions, Internat. J. Math. Math. Sci. 12(1979), 247-256.

[^0]: *This research was supported by TUBITAK project No.TBAG-1 742 (1999).
 ${ }^{\dagger}$ Department of Mathematics, Kırıkkale University, Kırıkkale, Turkey, e-mail: turkoglu@sinanoglu.kku.edu.tr
 \ddagger Department of Mathematics, Anadolu University, Eskisehir, Turkey, e-mail: oozer@vm.baum.anadolu.edu.tr
 ${ }^{\S}$ Department of Mathematics and Computer Science, Leicester University, Leicester, LE1 7RH, England, e-mail: fbr@le.ac.uk

