# The existence theorem for the solution of a nonlinear least squares problem* 

Dragan Jukić ${ }^{\dagger}$


#### Abstract

In this paper we prove a theorem which gives necessary and sufficient conditions which guarantee the existence of the global minimum for a continuous real valued function bounded from below, which is defined on a non-compact set. The use of the theorem is illustrated by an example of the least squares problem.


Key words: least squares, existence problem, exponential function

Sažetak. Teorem o egzistenciji rješenja nelinearnog problema najmanjih kvadrata. U radu je naveden teorem koji daje nuz̈an $i$ dovoljan uvjet za egzistenciju globalnog minimuma neprekidne i odozdo omedene realne funkcije definirane na skupu koji nije kompaktan. Korisnost teorema ilustrirana je na primjeru problema najmanjih kvadrata.

Ključne riječi: problem najmanjih kvadrata, problem egzistencije, eksponencijalna funkcija

## 1. The least squares problem

We are given a model-function

$$
\begin{equation*}
t \mapsto f(t ; \mathbf{a}) \tag{1}
\end{equation*}
$$

and the data $\left(p_{i}, t_{i}, f_{i}\right), i=1, \ldots, m$, where $\mathbf{a} \in \Lambda \subseteq R^{n}$ is the vector of unknown parameters, $t_{1}<t_{2}<\ldots<t_{m}$ are the abscissae and $f_{1}, \ldots, f_{m}$ are the data's ordinates. The number $p_{i}>0$ is the weight of the $i$-th datum. Usually we have

[^0]$m \gg n$, i.e. usually the number of data is considerably bigger than the number of unknown parameters.

In practice, the unknown parameter vector $\mathbf{a}^{\star} \in \Lambda$ for the function-model (??) is usually determined either in the sense of ordinary least squares (c.f. [?], $[?],[?],[?],[?],[?])$, by finding $\mathbf{a}^{\star} \in \Lambda$ such that

$$
\begin{equation*}
S\left(\mathbf{a}^{\star}\right)=\inf _{\mathbf{a} \in \Lambda} S(\mathbf{a}), \quad S(\mathbf{a})=\frac{1}{2} \sum_{i=1}^{m} p_{i}\left[f_{i}-f\left(t_{i} ; \mathbf{a}\right)\right]^{2} \tag{2}
\end{equation*}
$$

(Figure ??.a), or in the sense of total least squares (c.f. [?], [?], [?]) by finding $\left(\mathbf{a}^{\star}, \boldsymbol{\delta}^{\star}\right) \in \Lambda \times R^{m}$ such that
$F\left(\mathbf{a}^{\star}, \boldsymbol{\delta}^{\star}\right)=\inf _{(\mathbf{a}, \boldsymbol{\delta}) \in \Lambda \times \mathbb{R}^{m}} F(\mathbf{a}, \boldsymbol{\delta}), \quad F(\mathbf{a}, \boldsymbol{\delta})=\frac{1}{2} \sum_{i=1}^{m} p_{i}\left\{\left[f_{i}-f\left(t_{i}+\delta_{i} ; \mathbf{a}\right)\right]^{2}+\delta_{i}^{2}\right\}$,
(Figure ??.b), where $\boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{m}\right)^{T} \in R^{m}$.


Figure 1:

Hence, in both cases one has an existence problem for a global minimum of a continuous function on some set. In the next section we prove a theorem giving necessary and sufficient conditions for the above problem to have a solution.

## 2. The existence theorem for the solution of the least squares problem

Let $\Lambda \subseteq R^{n}$ and let $G: \Lambda \rightarrow R$ be a continuous function which is bounded from below, and denote

$$
G^{\star}:=\inf _{\lambda \in \Lambda} G(\lambda)
$$

One has the following problem:

$$
\begin{equation*}
\text { Does there exist a point } \lambda^{\star} \in \Lambda \text {, such that } G\left(\lambda^{\star}\right)=G^{\star} \text { ? } \tag{P1}
\end{equation*}
$$

If the set $\Lambda$ is compact, then, by continuity of $G$, the problem (P1) has a solution. Therefore, from now on we assume that the set $\Lambda$ is not compact. This means that the set $\Lambda$ is either unbounded or is not closed (or both). In the first case there exists a sequence $\left(x_{k}\right)$ in $\Lambda$ such that $\left\|x_{k}\right\| \rightarrow \infty$, and in the second case there exists a sequence $\left(x_{k}\right)$ in $\Lambda$ converging to a point $x^{\star} \in \mathrm{Cl} \Lambda \backslash \Lambda$.

Denote by $N(\Lambda)$ the set of all sequences $\left(x_{k}\right)$ in $\Lambda$, such that $\left\|x_{k}\right\| \rightarrow \infty$ or $x_{k} \rightarrow x^{\star} \in \mathrm{Cl} \Lambda \backslash \Lambda$. Following Demidenko [?] (see Remark ??), define the number

$$
\begin{equation*}
\bar{G}_{E}:=\inf \left\{\liminf G\left(x_{k}\right):\left(x_{k}\right) \in N(\Lambda)\right\} \tag{4}
\end{equation*}
$$

which we call the infimum of the function $G$ at the end.
Since $G^{\star} \leq G(\lambda)$ for all $\lambda \in \Lambda$, from the definition (??) one can easily prove the following inequality:

Proposition 1. $G^{\star} \leq \bar{G}_{E}$.
Example 1. Let $G(\lambda)=\lambda^{2}$.
a) If $\Lambda=R$, then $G^{\star}=0, \bar{G}_{E}=\infty$,
b) If $\Lambda=[0, \infty)$, then $G^{\star}=0, \bar{G}_{E}=\infty$,
c) If $\Lambda=(0, \infty)$, then $G^{\star}=0, \bar{G}_{E}=0$,
d) If $\Lambda=(-\infty,-1] \cup(1, \infty)$, then $G^{\star}=1, \bar{G}_{E}=1$.

Note that the problem (P1) has no solution only in the case c).
Proposition 2. If $G^{\star}<\bar{G}_{E}$, then the problem (P1) has a solution.
Proof. Let $\left(\lambda_{k}\right)$ be a sequence in $\Lambda$ such that $G^{\star}=\lim _{k \rightarrow \infty} G\left(\lambda_{k}\right)$. By our assumption $G^{\star}<\bar{G}_{E}$, and therefore neither the sequence $\left(\lambda_{k}\right)$, nor any of its subsequence, belong to the set $N(\Lambda)$. This means that the sequence $\left\|\lambda_{k}\right\|$ does not tend to $\infty$, and hence the sequence $\left(\lambda_{k}\right)$ has a bounded subsequence. By the Bolzano-Weierstrass theorem, the sequence $\left(\lambda_{k}\right)$ has a convergent subsequence $\left(\lambda_{k_{i}}\right)$. Let $\lambda_{k_{i}} \rightarrow \lambda^{\star}$. Then $\lambda^{\star} \in \Lambda$, since otherwise, the sequence ( $\lambda_{k_{i}}$ ) would belong to the set $N(\Lambda)$. By the continuity of the function $G$ we obtain $G^{\star}=$ $\lim _{i \rightarrow \infty} G\left(\lambda_{k_{i}}\right)=G\left(\lim _{i \rightarrow \infty} \lambda_{k_{i}}\right)=G\left(\lambda^{\star}\right)$.

Theorem 1. The problem (P1) has a solution if and only if there exists a point $\lambda^{\star} \in \Lambda$ such that $G\left(\lambda^{\star}\right) \leq \bar{G}_{E}$.

Proof. a) Suppose the problem (P1) has a solution. Then there exists a point $\lambda^{\star} \in \Lambda$ such that $G\left(\lambda^{\star}\right)=G^{\star}$. By Proposition ?? we obtain $G\left(\lambda^{\star}\right) \leq \bar{G}_{E}$.
b) Suppose the problem (P1) has no solution. Then $G(\lambda)>G^{\star}$ for all $\lambda^{\star} \in \Lambda$. Furthermore, by Proposition $? ?, G^{\star}=\bar{G}_{E}$. Hence, if the problem (P1) has no solution, then $G(\lambda)>\bar{G}_{E}$ for all $\lambda \in \Lambda$.

Remark 1. In [?], the infimum of the function $G$ at the end, is defined as the number $\bar{G}_{E}^{\star}:=\inf \left\{\lim \inf G\left(x_{k}\right):\left(x_{k}\right) \in N^{\star}(\Lambda)\right\}$, where $N^{\star}(\Lambda)$ is the set of all sequences $\left(x_{k}\right)$ in $\Lambda$, such that either $\left\|x_{k}\right\| \rightarrow \infty$ or $x_{k} \rightarrow x^{\star} \in \mathrm{Cl} \Lambda \backslash \operatorname{Int} \Lambda$.

Since $\mathrm{Cl} \Lambda \backslash \Lambda \subseteq \mathrm{Cl} \Lambda \backslash \operatorname{Int} \Lambda$, one has $\bar{G}_{E}^{\star} \leq \bar{G}_{E}$. Furthermore, it is easy to show that Theorem ?? holds also if $\bar{G}_{E}$ is replaced by $\bar{G}_{E}^{\star}$.

Example 2. We illustrate the application of Theorem ?? on the following simple nonlinear ordinary least squares problem. Let the data $\left(p_{i}, t_{i}, f_{i}\right), i=$ $1, \ldots, m, m \geq 3$, be such that $t_{1}<t_{2}<\ldots<t_{m}$, and $f_{i}>0, i=1, \ldots, m$. For the model-function we take the exponential function $f(t ; \lambda)=e^{\lambda t}, \lambda \in R$. We consider the existence problem for the global minimum of the functional $S: R \rightarrow R$ given by

$$
S(\lambda)=\sum_{i=1}^{m} p_{i}\left[f_{i}-e^{\lambda t_{i}}\right]^{2}
$$

Let $I=\{1, \ldots, m\}, I_{0}:=\left\{i: t_{i}=0\right\}$. Note that the set $I_{0}$ is either empty or contains only one point. Let us show that in the set $R$ there exists a point of the global minimum for the functional $S$.
a) If some of the numbers $t_{1}, \ldots, t_{m}$ are strictly positive and some are strictly negative, then obviously $\bar{S}_{E}=\infty$. By Theorem ?? there exists a point of the global minimum for the functional $S$ on $R$.
b) If $0 \leq t_{1}$, then $\bar{S}_{E}=\sum_{i \in I \backslash I_{0}} p_{i} f_{i}^{2}+\sum_{i \in I_{0}} p_{i}\left(f_{i}-1\right)^{2}$. Let (see Figure ??.a)

$$
\lambda^{\star}=\min _{i \in I \backslash I_{0}} \frac{\ln f_{i}}{t_{i}}=\frac{\ln f_{k}}{t_{k}}
$$

Geometrically, (see Figure ??.a), $\lambda^{\star}$ is the slope of the line through the origin and the point $\left(t_{k}, \ln f_{k}\right)$, and none of the other points $\left(t_{i}, \ln f_{i}\right)$, $i \in I \backslash I_{0}$, lies below this line. Since $f_{k}=e^{\lambda^{\star} t_{k}}$ and $f_{i} \geq e^{\lambda^{\star} t_{k}}, i \neq k$, we have

$$
\begin{aligned}
S\left(\lambda^{\star}\right) & =\frac{1}{2} \sum_{i=1}^{m} p_{i}\left[f_{i}-e^{\lambda^{\star} t_{i}}\right]^{2}=\frac{1}{2} \sum_{\substack{i=1 \\
i \neq k}}^{m} p_{i}\left[f_{i}-e^{\lambda^{\star} t_{i}}\right]^{2} \\
& \leq \frac{1}{2} \sum_{\substack{i \in I \backslash I_{0} \\
i \neq k}} p_{i} f_{i}^{2}+\frac{1}{2} \sum_{i \in I_{0}} p_{i}\left(f_{i}-1\right)^{2}<\bar{S}_{E} .
\end{aligned}
$$

By Theorem ?? in this case there aslo exists a point of the global minimum for the functional $S$ on $R$.


Figure 2:
c) If $t_{m} \leq 0$, then $\bar{S}_{E}=\frac{1}{2} \sum_{i \in I \backslash I_{0}} p_{i} f_{i}^{2}+\frac{1}{2} \sum_{i \in I_{0}} p_{i}\left(f_{i}-1\right)^{2}$. Let (see Figure ??.b)

$$
\lambda^{\star}=\max _{i \in I \backslash I_{0}} \frac{\ln f_{i}}{t_{i}}=\frac{\ln f_{k}}{t_{k}} .
$$

Proceeding similarly as in b), one can show that there exists a point $\lambda^{\star} \in R$ such that $S\left(\lambda^{\star}\right)<\bar{S}_{E}$.

Therefore, our least square problem always has a solution.

## References

[1] A. Björck, Least Squares Methods, in Handbook of Numerical Analysis, Vol. I, P. G. Ciarlet and J.L.Lions, eds., Elsevier Science Publishers B.V., North - Holland, Amsterdam, 1990, 467-653.
[2] P. T. Boggs, R. H Byrd, R. B. Schnabel, A stable and efficient algorithm for nonlinear orthogonal distance regression, SIAM J. Sci. Statist. Comput. 8(1987), 1052-1078.
[3] E. Z. Demidenko, Optimizacia i regresija, Nauka, Moskva, 1989.
[4] P. E. Gill, W. Murray, M. H. Wright, Practical Optimization, Academic Press, London, 1981.
[5] D. Jukić, R. Scitovski, The existence of optimal parameters of the generalized logistic function, Appl. Math. Comput., to appear.
[6] H. Schwetlick, V. Tiller, Numerical methods for estimating parameters in nonlinear models with errors in the variables, Technometrics 27(1985), 17-24.
[7] R. Scitovski, A special nonlinear least squares problem, J. Comput. Appl. Math. 53(1994), 323-331.
[8] R. Scitovski, D. Jukić, A method for solving the parameter identification problem for ordinary differential equations of the second order, Appl. Math. Comput. 74(1996), 273-291.
[9] R. Scitovski, D. Jukić, Total least squares problem for exponential function, Inverse Problems, to appear.


[^0]:    *The lecture presented at the Mathematical Colloquium in Osijek organized by Croatian Mathematical Society - Division Osijek, January 19, 1996.
    ${ }^{\dagger}$ Faculty of Agriculture, Department of Mathematics, Trg Svetog Trojstva 3, HR-31 000 Osijek, Croatia, e-mail: jukicd@oliver.unios.hr

