The existence theorem for the solution of a nonlinear least squares problem*

Dragan Jukić[†]

Abstract. In this paper we prove a theorem which gives necessary and sufficient conditions which guarantee the existence of the global minimum for a continuous real valued function bounded from below, which is defined on a non-compact set. The use of the theorem is illustrated by an example of the least squares problem.

Key words: least squares, existence problem, exponential function

Sažetak. Teorem o egzistenciji rješenja nelinearnog problema najmanjih kvadrata. U radu je naveden teorem koji daje nužan i dovoljan uvjet za egzistenciju globalnog minimuma neprekidne i odozdo omeđene realne funkcije definirane na skupu koji nije kompaktan. Korisnost teorema ilustrirana je na primjeru problema najmanjih kvadrata.

Ključne riječi: problem najmanjih kvadrata, problem egzistencije, eksponencijalna funkcija

1. The least squares problem

We are given a model-function

$$t \mapsto f(t; \mathbf{a}),$$
 (1)

and the data (p_i, t_i, f_i) , i = 1, ..., m, where $\mathbf{a} \in \Lambda \subseteq \mathbb{R}^n$ is the vector of unknown parameters, $t_1 < t_2 < ... < t_m$ are the abscissae and $f_1, ..., f_m$ are the data's ordinates. The number $p_i > 0$ is the weight of the *i*-th datum. Usually we have

^{*}The lecture presented at the Mathematical Colloquium in Osijek organized by Croatian Mathematical Society - Division Osijek, January 19, 1996.

[†]Faculty of Agriculture, Department of Mathematics, Trg Svetog Trojstva 3, HR-31 000 Osijek, Croatia, e-mail: jukicd@oliver.unios.hr

62 D. Jukić

 $m \gg n$, i.e. usually the number of data is considerably bigger than the number of unknown parameters.

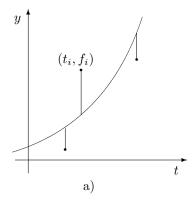
In practice, the unknown parameter vector $\mathbf{a}^* \in \Lambda$ for the function-model (??) is usually determined either in the sense of ordinary least squares (c.f. [?], [?], [?], [?], [?], [?], by finding $\mathbf{a}^* \in \Lambda$ such that

$$S(\mathbf{a}^{\star}) = \inf_{\mathbf{a} \in \Lambda} S(\mathbf{a}), \quad S(\mathbf{a}) = \frac{1}{2} \sum_{i=1}^{m} p_i [f_i - f(t_i; \mathbf{a})]^2$$
 (2)

(Figure ??.a), or in the sense of total least squares (c.f. [?], [?], [?]) by finding $(\mathbf{a}^{\star}, \boldsymbol{\delta}^{\star}) \in \Lambda \times \mathbb{R}^m$ such that

$$F(\mathbf{a}^{\star}, \boldsymbol{\delta}^{\star}) = \inf_{(\mathbf{a}, \boldsymbol{\delta}) \in \Lambda \times \mathbb{R}^{m}} F(\mathbf{a}, \boldsymbol{\delta}), \quad F(\mathbf{a}, \boldsymbol{\delta}) = \frac{1}{2} \sum_{i=1}^{m} p_{i} \left\{ [f_{i} - f(t_{i} + \delta_{i}; \mathbf{a})]^{2} + \delta_{i}^{2} \right\},$$
(3)

(Figure ??.b), where $\boldsymbol{\delta} = (\delta_1, \dots, \delta_m)^T \in \mathbb{R}^m$.



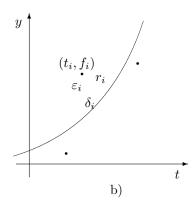


Figure 1:

Hence, in both cases one has an existence problem for a global minimum of a continuous function on some set. In the next section we prove a theorem giving necessary and sufficient conditions for the above problem to have a solution.

2. The existence theorem for the solution of the least squares problem

Let $\Lambda \subseteq \mathbb{R}^n$ and let $G: \Lambda \to \mathbb{R}$ be a continuous function which is bounded from below, and denote

$$G^* := \inf_{\lambda \in \Lambda} G(\lambda).$$

One has the following problem:

Does there exist a point $\lambda^* \in \Lambda$, such that $G(\lambda^*) = G^*$? (P1)

If the set Λ is compact, then, by continuity of G, the problem (P1) has a solution. Therefore, from now on we assume that the set Λ is not compact. This means that the set Λ is either unbounded or is not closed (or both). In the first case there exists a sequence (x_k) in Λ such that $||x_k|| \to \infty$, and in the second case there exists a sequence (x_k) in Λ converging to a point $x^* \in \operatorname{Cl} \Lambda \setminus \Lambda$.

Denote by $N(\Lambda)$ the set of all sequences (x_k) in Λ , such that $||x_k|| \to \infty$ or $x_k \to x^* \in \operatorname{Cl} \Lambda \setminus \Lambda$. Following Demidenko [?] (see Remark ??), define the number

$$\overline{G}_E := \inf\{\liminf G(x_k) : (x_k) \in N(\Lambda)\}$$
(4)

which we call the infimum of the function G at the end.

Since $G^* \leq G(\lambda)$ for all $\lambda \in \Lambda$, from the definition (??) one can easily prove the following inequality:

Proposition 1. $G^* \leq \overline{G}_E$. **Example 1.** Let $G(\lambda) = \lambda^2$.

- a) If $\Lambda = R$, then $G^* = 0$, $\overline{G}_E = \infty$,
- b) If $\Lambda = [0, \infty)$, then $G^* = 0$, $\overline{G}_E = \infty$,
- c) If $\Lambda = (0, \infty)$, then $G^* = 0$, $\overline{G}_E = 0$,
- d) If $\Lambda = (-\infty, -1] \cup (1, \infty)$, then $G^* = 1$, $\overline{G}_E = 1$.

Note that the problem (P1) has no solution only in the case c).

Proposition 2. If $G^* < \overline{G}_E$, then the problem (P1) has a solution.

Proof. Let (λ_k) be a sequence in Λ such that $G^* = \lim_{k \to \infty} G(\lambda_k)$. By our assumption $G^* < \overline{G}_E$, and therefore neither the sequence (λ_k) , nor any of its subsequence, belong to the set $N(\Lambda)$. This means that the sequence $||\lambda_k||$ does not tend to ∞ , and hence the sequence (λ_k) has a bounded subsequence. By the Bolzano-Weierstrass theorem, the sequence (λ_k) has a convergent subsequence (λ_{k_i}) . Let $\lambda_{k_i} \to \lambda^*$. Then $\lambda^* \in \Lambda$, since otherwise, the sequence (λ_{k_i}) would belong to the set $N(\Lambda)$. By the continuity of the function G we obtain G^* $\lim_{i \to \infty} G(\lambda_{k_i}) = G(\lim_{i \to \infty} \lambda_{k_i}) = G(\lambda^*).$ **Theorem 1.** The problem (P1) has a solution if and only if there exists a

point $\lambda^* \in \Lambda$ such that $G(\lambda^*) \leq \overline{G}_E$.

64 D. Jukić

Proof. a) Suppose the problem (P1) has a solution. Then there exists a point $\lambda^* \in \Lambda$ such that $G(\lambda^*) = G^*$. By Proposition ?? we obtain $G(\lambda^*) \leq \overline{G}_E$.

b) Suppose the problem (P1) has no solution. Then $G(\lambda) > G^*$ for all $\lambda^* \in \Lambda$. Furthermore, by *Proposition* ??, $G^* = \overline{G}_E$. Hence, if the problem (P1) has no solution, then $G(\lambda) > \overline{G}_E$ for all $\lambda \in \Lambda$.

Remark 1. In [?], the infimum of the function G at the end, is defined as the number $\overline{G}_E^{\star} := \inf\{\liminf G(x_k) : (x_k) \in N^{\star}(\Lambda)\}$, where $N^{\star}(\Lambda)$ is the set of all sequences (x_k) in Λ , such that either $||x_k|| \to \infty$ or $x_k \to x^{\star} \in \operatorname{Cl}\Lambda \setminus \operatorname{Int}\Lambda$.

Since $\operatorname{Cl} \Lambda \setminus \Lambda \subseteq \operatorname{Cl} \Lambda \setminus \operatorname{Int} \Lambda$, one has $\overline{G}_E^{\star} \subseteq \overline{G}_E$. Furthermore, it is easy to show that Theorem ?? holds also if \overline{G}_E is replaced by \overline{G}_E^{\star} .

Example 2. We illustrate the application of Theorem ?? on the following simple nonlinear ordinary least squares problem. Let the data (p_i, t_i, f_i) , i = 1, ..., m, $m \geq 3$, be such that $t_1 < t_2 < ... < t_m$, and $f_i > 0$, i = 1, ..., m. For the model-function we take the exponential function $f(t; \lambda) = e^{\lambda t}$, $\lambda \in R$. We consider the existence problem for the global minimum of the functional $S: R \to R$ given by

$$S(\lambda) = \sum_{i=1}^{m} p_i [f_i - e^{\lambda t_i}]^2.$$

Let $I = \{1, ..., m\}$, $I_0 := \{i : t_i = 0\}$. Note that the set I_0 is either empty or contains only one point. Let us show that in the set R there exists a point of the global minimum for the functional S.

- a) If some of the numbers t_1, \ldots, t_m are strictly positive and some are strictly negative, then obviously $\overline{S}_E = \infty$. By Theorem ?? there exists a point of the global minimum for the functional S on R.
- b) If $0 \le t_1$, then $\overline{S}_E = \sum_{i \in I \setminus I_0} p_i f_i^2 + \sum_{i \in I_0} p_i (f_i 1)^2$. Let (see Figure ??.a)

$$\lambda^* = \min_{i \in I \setminus I_0} \frac{\ln f_i}{t_i} = \frac{\ln f_k}{t_k}.$$

Geometrically, (see Figure ??.a), λ^* is the slope of the line through the origin and the point $(t_k, \ln f_k)$, and none of the other points $(t_i, \ln f_i)$, $i \in I \setminus I_0$, lies below this line. Since $f_k = e^{\lambda^* t_k}$ and $f_i \geq e^{\lambda^* t_k}$, $i \neq k$, we have

$$S(\lambda^*) = \frac{1}{2} \sum_{i=1}^m p_i [f_i - e^{\lambda^* t_i}]^2 = \frac{1}{2} \sum_{\substack{i=1\\i \neq k}}^m p_i [f_i - e^{\lambda^* t_i}]^2$$

$$\leq \frac{1}{2} \sum_{\substack{i \in I \setminus I_0 \\ i \neq k}} p_i f_i^2 + \frac{1}{2} \sum_{i \in I_0} p_i (f_i - 1)^2 < \overline{S}_E.$$

By Theorem $\ref{eq:condition}$ in this case there as o exists a point of the global minimum for the functional S on R.

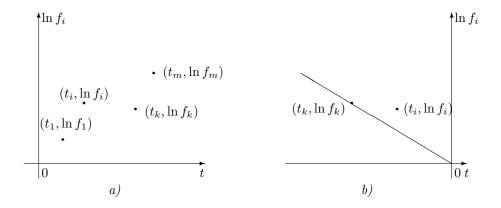


Figure 2:

c) If
$$t_m \leq 0$$
, then $\overline{S}_E = \frac{1}{2} \sum_{i \in I \setminus I_0} p_i f_i^2 + \frac{1}{2} \sum_{i \in I_0} p_i (f_i - 1)^2$. Let (see Figure ??.b)
$$\lambda^* = \max_{i \in I \setminus I_0} \frac{\ln f_i}{t_i} = \frac{\ln f_k}{t_k}.$$

Proceeding similarly as in b), one can show that there exists a point $\lambda^* \in R$ such that $S(\lambda^*) < \overline{S}_E$.

Therefore, our least square problem always has a solution.

References

- A. BJÖRCK, Least Squares Methods, in Handbook of Numerical Analysis, Vol. I, P. G. Ciarlet and J. L. Lions, eds., Elsevier Science Publishers B.V., North - Holland, Amsterdam, 1990, 467–653.
- [2] P. T. Boggs, R. H Byrd, R. B. Schnabel, A stable and efficient algorithm for nonlinear orthogonal distance regression, SIAM J. Sci. Statist. Comput. 8(1987), 1052–1078.
- [3] E. Z. Demidenko, Optimizacia i regresija, Nauka, Moskva, 1989.
- [4] P. E. GILL, W. MURRAY, M. H. WRIGHT, *Practical Optimization*, Academic Press, London, 1981.
- [5] D. Jukić, R. Scitovski, The existence of optimal parameters of the generalized logistic function, Appl. Math. Comput., to appear.

66 D. Jukić

- [6] H. Schwetlick, V. Tiller, Numerical methods for estimating parameters in nonlinear models with errors in the variables, Technometrics 27(1985), 17–24.
- [7] R. Scitovski, A special nonlinear least squares problem, J. Comput. Appl. Math. **53**(1994), 323–331.
- [8] R. Scitovski, D. Jukić, A method for solving the parameter identification problem for ordinary differential equations of the second order, Appl. Math. Comput. **74**(1996), 273–291.
- [9] R. Scitovski, D. Jukić, Total least squares problem for exponential function, Inverse Problems, to appear.