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The problem of the initial approximation for a
special nonlinear least squares problem∗

Dragan Jukić†

Abstract. In [6] the existence theorem for the best least squares
approximation of parameters for the exponential function is proved.
In this paper we consider the problem of choosing a good initial ap-
proximation of these parameters.
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Sažetak.Problem početne aproksimacije u jednom speci-
jalnom nelinearnom problemu najmanjih kvadrata. U radu
[6] dokazan je teorem o egzistenciji najbolje diskretne L2 aproksi-
macije za eksponencijalnu funkciju. U ovom radu razmatra se prob-
lem izbora kvalitetne početne aproksimacije tih parametara.

Ključne riječi: problem najmanjih kvadrata, problem egzisten-
cije, eksponencijalna funkcija

1. The least squares problem for the exponential function

A mathematical model described by an exponential function

f(t; b, c) = b ect, b, c ∈ R (1)

or a linear combination of such functions is very often used in different areas of
applied research, e.g. biology (see [7]), chemistry (see [2]), electrical engineering
(see [8], [11]), economy (see [12]), astronomy (see [4]), nuclear physics (see [13]),
etc. The unknown parameters b and c have to be determined on the basis
of experimental data (pi, ti, fi), i = 1, . . . ,m, where ti denote the values of
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independent variable, fi are the measured values of the corresponding dependent
variable and pi > 0 are the data weights.

In the sense of least squares, one obtains optimal parameters b? and c? of
the exponential function (1) by minimizing the functional:

F (b, c) =
1
2

m∑

i=1

pi(b ecti − fi)2. (2)

In [6] the existence theorem of the optimal parameters b? and c? is proved,
i.e. it was shown that there exists a point (b?, c?) at which the functional F
attains the global minimum. In this paper we consider the problem of choosing
a good initial approximation needed for the iterative process by which one can
obtain a good approximation of the optimal parameters b? and c? (e.g. the Gauss
- Newton method or the Levenberg-Marquardt method — see [3]). Finally, we
give results of some numerical experiments, where we test some possibilities for
the choice of the initial approximation.

2. The problem of the initial approximation

In [6] the existence of the best least squares approximation of parameters in the
exponential model (1) was shown, provided the data satisfy either the condition
of preponderant increase or preponderant decrease. First, let us give a definition
(see [10]).

Definition 1. The data (pi, ti, fi), i = 1, . . . , m, are said to have the pre-
ponderant increase (resp. preponderant decrease) property, if the slope of the
associated linear regression is positive (resp. negative). If this coefficient is
equal to zero, then the data are said to be preponderantly stationary.

Remark 1. Let (pi, ti, fi), i = 1, . . . , m, be the data. Denote:

Q :=
m∑

i=1

pitifi

m∑

i=1

pi −
m∑

i=1

piti

m∑

i=1

pifi. (3)

In [10] it was shown that the data have the preponderant increase (resp. pre-
ponderant decrease) property if and only if Q > 0 (resp. Q < 0).

The proof of the next theorem can be found in [6]).
Theorem 1. Let the data (pi, ti, fi), i = 1, . . . , m, be given and suppose that

fi > 0, i = 1, . . . , m. Then

(i) If the data have the preponderant increase property, then there exists a
point (b?, c?) ∈ IntU ,

U =
{

(b, c) ∈ R2 : b ≥ 0, c ≥ 0
}

,

which minimizes the functional F defined by (2) on the set U .
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(ii) If the data have the preponderant decrease property, then there exists a
point (b?, c?) ∈ IntV,

V =
{

(b, c) ∈ R2 : b ≥ 0, c ≤ 0
}

,

which minimizes the functional F defined by (2) on the set V.

The numerical methods (see [1], [3], [14]) for the minimization of the func-
tional (2) require an initial approximation which should be as good as possible.
We will show how to determine a sufficiently small range for the initial approx-
imation, which guarantees that the iterative process converges to the solution
quickly. We are going to prove the next theorem, using the results of Theorem 1

Theorem 2. Suppose the given data (pi, ti, fi), i = 1, . . . ,m, satisfy (0 <
t1 < . . . < tm) & (fi > 0, i = 1, . . . , m), and let the functional F be defined by
(2). Denote:

fp :=
∑m

i=1 pifi∑m
i=1 pi

, fp :=
∑m

i=1 pitifi∑m
i=1 piti

. (4)

(i) If the data have the preponderant increase property, then the point (b?, c?) ∈
IntU of the global minimum of the functional F on the set U belongs to
the set

R =
{

(b, c) ∈ U : fpe
−c(2tm−t1) ≤ b ≤ fpe

−c(2t1−tm)
}

.

(ii) If the data have the preponderant decrease property, then the point (b?, c?) ∈
IntV of the global minimum of the functional F on the set V belongs to
the set

S =
{

(b, c) ∈ V : fpe
−c(2t1−tm) ≤ b ≤ fpe

−c(2tm−t1)
}

.

Proof. Let us first show (i). By Theorem 1 there is a point (b?, c?) ∈ IntU
which minimizes the functional F defined by (2) on the set U . Since the gradient
of the functional F vanishes at the point (b?, c?), we have

m∑

i=1

pi(b?ec?ti − fi)ec?ti = 0, (5)

m∑

i=1

piti(b?ec?ti − fi)ec?ti = 0. (6)

In order to show (i), let us first prove the inequalities

fpe
−c?(2tm−t1) ≤ b? ≤ fpe

−c?(2t1−tm). (7)
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Since c? > 0, from (5) we have

b? =
∑m

i=1 pifie
c?ti

∑m
i=1 pie2c?ti

≤ ec?tm
∑m

i=1 pifi

e2c?t1
∑m

i=1 pi
= fpe

−c?(2t1−tm).

b? =
∑m

i=1 pifie
c?ti

∑m
i=1 pie2c?ti

≥ ec?t1
∑m

i=1 pifi

e2c?tm
∑m

i=1 pi
= fpe

−c?(2tm−t1).

Similarly, using (6) one can show

fpe
−c?(2tm−t1) ≤ b? ≤ fpe

−c?(2t1−tm). (8)

Since 0 < t1 < . . . < tm, and Q > 0, we have fp < fp. From this and the
inequalities (7) and (8) we conclude that the point (b?, c?) belongs to the set

R =
{

(b, c) ∈ U : fpe
−c(2tm−t1) ≤ b ≤ fpe

−c(2t1−tm)
}

(see Figure 1.a). This proves (i).

a) Preponderant increase case

-
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b) Preponderant decrease case
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Figure 1.: The range for the choice of an initial approximation of optimal
parameters

In order to show (ii), suppose the data have the preponderant decrease
property. By Theorem 1 there is a point (b?, c?) ∈ IntV which minimizes the
functional F defined by (2) on the set V. In the same way as proving (i), one
can prove the following inequalities

fpe
−c?(2t1−tm) ≤ b? ≤ fpe

−c?(2tm−t1) (9)

fpe
−c?(2t1−tm) ≤ b? ≤ fpe

−c?(2tm−t1). (10)
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Because 0 < t1 < . . . < tm and Q < 0, we get fp > fp. Using this and the
inequalities (9) and (10), we conclude that the point (b?, c?) belongs to the set

S =
{

(b, c) ∈ V : fpe
−c(2t1−tm) ≤ b ≤ fpe

−c(2tm−t1)
}

(see Figure 1.b). 2

According to Theorem 2, the initial approximation should be chosen either
inside the set R, or inside the set S (see Figure 1).

A possible good choice for the initial approximation is the point (bp, cp),
the intersection point of the graphs of functions c 7→ b(c) = fpe

−c(2tm−t1) and
c 7→ b(c) = fpe

−c(2t1−tm), i.e. the point

bp = fp

(
fp

fp

)(2t1−tm)/(3tm−3t1)

, cp =
1

3(tm − t1)
ln

(
fp

fp

)
. (11)

Another choice for a good initial approximation of the parameters for the
model (1), is obtained by the known linearization method by taking logarithms
(see e.g. [12], [13]). Namely, instead of minimizing the functional (2), we consider
the minimization problem for the functional

F̃ (b, c) =
1
2

m∑

i=1

ωi [g(f(ti; b, c))− g(fi)]
2
, (12)

where g(x) = ln(x), and ωi are the new data weights. Note that because of the
assumptions on the data in Theorem 1, the functional F̃ is well defined, and
because of the properties of the logarithmic function, the minimization problem
for the functional F̃ is a linear least squares problem, which always has a solution
and is easily solved.

We shall define the new data weights ωi so that the functional F̃ attains its
minimum in a neighborhood of the point (b?, c?).

Using the Lagrange’s mean value theorem, we have

F̃ (b, c) ≈ 1
2

m∑

i=1

ωi [g′(f(ti; b, c))(f(ti; b, c)− fi)]
2
, (13)

Then F ≈ F̃ , provided

ωi

f2(ti; b, c)
= pi, i = 1, . . . , m. (14)

Replacing f(ti; b, c) by the approximative value fi in (14), we can expect that
the functional F̃ with the new data weights ωi defined by

ωi = pi f−2
i , i = 1, . . . , m, (15)
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will attain its minimum in a neighborhood of the point (b?, c?). It can easily be
checked that the functional F̃ attains its minimum at the point (bl, cl), with

cl =
∑m

i=1 ωi(ti − t̃p)(ϕ̃i − ϕ̃p)∑m
i=1 ωi(ti − t̃p)2

, ln bl = ϕ̃p − clt̃p, (16)

where t̃p = 1
ω

∑m
i=1 ωiti, ϕ̃p = 1

ω

∑m
i=1 ωiϕ̃i, ϕ̃i = ln fi, ω =

∑m
i=1 ωi.

Example 1. Finally, we give an example illustrating the importance of
the choice of a good initial approximation. We choose the data (pi, ti, fi), i =
1, . . . , m, so that

m = 50, pi = 1, ti = i + 10, i = 1, . . . ,m,

fi = f(ti) + εi, εi ∼ N(0, 1),

f(t) = 1 · e0.05t

In Fig. 2 we show the graph of the function f and the data (ti, fi), i =
1, . . . , m contaminated with errors εi.

Figure 2. The function f and
the data (ti, fi)

Figure 3. Choice of the initial
approximation

We search for the point of the global minimum (b?, c?) of the functional F
defined by (2) using the Gauss-Newton method with regulated step (see [3]).
The initial approximation in the process is chosen either by (11), or by (16), or
outside the set R (see Fig. 3).
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With precision EPS = 1
2 · 10−4 we obtain

b? = 1.03757, c? = 0.0492524, F (b?, c?) = 25.4221.

In Table 1. we show the number of iterations and the computer time on a PC 486
needed for various choices of the initial approximation.

Initial b0 :=bp =8.0748 b0 :=bl =1.3094 b0 :=fmax =21.04 b0 =0.0001
approx. (b0, c0) c0 :=cp =0.0016 c0 :=cl =0.0447 c0 :=cp =0.20 c0 =0.0001

F (b0, c0) 655.19 29.29 1.8 1013 2 126.26

number of iterations 21 5 491 5004
time in seconds 7.36 1.76 166 1692

Table 1.
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[6] D. Jukić, R. Scitovski, The existence problem for the best least squares
approximation of the parameters for the exponential model function, sub-
mitted

[7] J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989.

[8] H. Mühlig, Lösung praktischer Approximationsaufgaben durch Parame-
teridentifikation, ZAMM, 73(1993), T837–T839.



32 D. Jukić
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