
91

Power matrix means and related inequalities∗

Josip Pečarić†

Abstract. This survey paper contains recent results for power
matrix means and related inequalities for convex functions, Hadamard
product of matrices as well as some inequalities involving exponential
function of matrices.

Key words: power matrix means, arithmetic – geometric matrix
means inequality, Kantorovich inequality, convex functions, Hadamard
product of matrices

Sažetak. Potencijalne sredine matrica i srodne nejed-
nakosti. Ovaj ekspozitorni članak daje pregled najnovijih istraživanja
za potencijalne sredine matrica, kao i srodnih nejednakosti za kon-
veksne funkcije, Hadamardov produkt matrica i nejednakosti s ek-
sponencijalnom funkcijom za matrice.

Ključne riječi: potencijalne sredine matrica, nejednakost izmed̄u
aritmetičke i geometrijske sredine matrica, konveksne funkcije, Ha-
damardov produkt matrica

1. Introduction

The difficulty of establishing a (noncommutative) matrix inequality involving
the geometric mean was discussed in 1978 by K.V. Bhagwat and R. Subramanian
[10] who pointed out that the problem of defining a geometric mean for non-
commutative operators “makes it difficult to establish the validity or otherwise
of the classical inequalities involving the geometric mean”. However, in a recent
paper, Sagae and Tanabe [43] define a geometric mean and establish an AG-GM
inequality for a finite number of positive definite matrices.

Here we make use of their definition of the geometric mean of positive definite
matrices to establish matrix versions of numerous inequalities involving means.
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These include mixed mean matrix inequalities and conditions under which the
matrix inequalities of [43] are reversed. Converses for the matrix convexity
of the inverse function as well as some bounds for the exponential functions
of matrices are also given, as well as related results for convex functions and
Hadamard product of matrices.

2. General inequalities

Let wi, Ci be positive numbers with
r∑

i=1

wi = 1. Then the power means are

defined by
M [t]

r (C;w) = (w1C
t
1 + . . . + wrC

t
r)

1/t, t 6= 0 (1)

and
M [0]

r (C;w) = Cw1
1 . . . Cwr

r . (2)

It is well-known that if s ≤ t, then

M [s]
r (C; w) ≤ M [t]

r (C;w). (3)

Moreover, if Ci, i = 1, . . . , r are n× n positive definite matrices, we can use
the definition of power means of order t 6= 0 given by (1).

The geometric mean M
[0]
r ≡ Gr cannot be given by (2) since the product

given by (2) need not be a positive definite matrix even if all Ci are positive
definite.

Instead we shall use the definition of the geometric mean of r matrices re-
cently given in [43]:

M [0]
r (C; w) ≡ (C1/2

r (C−1/2
r C

1/2
r−1 . . . (C−1/2

3 C
1/2
2 (C−1/2

2 C1C
−1/2
2 )u1 (4)

C
1/2
2 C

−1/2
3 )u2 . . . C

1/2
r−1C

−1/2
r )ur−1C1/2

r

where ui = 1−wi+1

(∑i+1
k=1 wk

)−1

for i = 1, . . . , r−1. We shall use the notation

Ar for the arithmetic mean M
[1]
r and Hr for the harmonic mean M

[−1]
r .

Sagae and Tanabe [43] proved that the inequalities between the harmonic,
geometric and arithmetic means also hold in the matrix case, i.e.,

Theorem 2.1..
Hr ≤ Gr ≤ Ar (5)

where A ≥ B means that A − B is a positive semi-definite matrix. Equalities
hold in (5) if and only if C1 = . . . = Cr.

If the weights wi are not all positive, we can give reverse results. We begin
with the following (see [2]):

Lemma 2.1.. If α ∈ (0, 1), then

G2 ≡ C
1/2
2 (C−1/2

2 C1C
−1/2
2 )αC

1/2
2 ≤ αC1 + (1− α)C2 ≡ A2 (6)
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but if either α < 0 or α > 1, the reverse inequality, i.e.

G2 ≥ A2 (7)

is valid.
Proof. The following generalization of Bernoulli’s inequality is well-known

(see e.g. [23, p.34] ), or [24, p.65].
For −1 < x 6= 0

(1 + x)α > 1 + αx if α > 1 or α < 0

and
(1 + x)α < 1 + αx if 0 < α < 1. (8)

For 1 + x = t, this is equivalent to

tα > αt + 1− α if α > 1 or α < 0 (9)

and
tα < αt + 1− α if 0 < α < 1. (10)

For t = 1, we have the equality.
If the positive definite matrix C has the representation C = ΓDλΓ∗ when Γ

is unitary and Dλ = diag(λ1, . . . , λn) where λ1, . . . , λn are characteristic roots
of C, then from (9) and (10) it follows that

Dα
λ > αDλ + (1− α)I if α > 1 or α < 0

and
Dα

λ < αDλ + (1− α)I if 0 < α < 1.

Pre- and post-multiplication by Γ and Γ∗ respectively, yields

Cα > αC + (1− α)I if α > 1 or α < 0 (11)

and
Cα < αC + (1− α)I if 0 < α < 1 (12)

with equalities if and only if C = I.
If we now set C = C

−1/2
2 C1C

−1/2
2 , we obtain

(C−1/2
2 C1C

−1/2
2 )α > αC

−1/2
2 C1C

−1/2
2 + (1− α)I

if α > 1 or α < 0, and

(C−1/2
2 C1C

−1/2
2 )α < αC

−1/2
2 C1C

−1/2
2 + (1− α)I

for 0 < α < 1.
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Pre- and post-multiplication by C
1/2
2 now yields (7) and (6), respectively.

Equality holds if and only if C
−1/2
2 C1C

−1/2
2 = I, or equivalently C1 = C2. 2

Sagae and Tanabe [43] used (6) and mathematical induction to prove the
inequality Gr ≤ Ar for positive weights. Similarly, we shall use (7).

Theorem 2.2.. Let wi, i = 1, . . . , r be real numbers such that w1 > 0,
wi < 0, i = 2, . . . , r; w1 + . . . + wr = 1. Then

Ar ≤ Gr. (13)

If we also have w1C
−1
1 + . . . + wrC

−1
r > 0, then

Gr ≤ Hr. (14)

Equality holds in (13) and (14) if and only if C1 = . . . = Cr.
Proof. For r = 2, (2.11) is proved in Lemma 2.1, i.e., it is inequality (7).

So, suppose (13) holds for r − 1.
Let Ar−1 and Gr−1 be weighted arithmetic and geometric means of matrices

C1, . . . , Cr−1 with weights w̃i = wi

(∑r−1
i=1 wi

)−1

for i = 1, . . . , r − 1.
Note that w̃1 > 0, w̃i < 0, i = 2, . . . , r − 1; w̃1 + . . . + w̃r−1 = 1, and ũi =

1 − w̃i+1

∑i+1
j=1 w̃j = 1 − wi+1

∑i+1
j=1 wj = ui for i = 1, . . . , r − 2 and ur−1 =

1− wr(> 0). So, we have

Ar =
r−1∑

i=1

wiCi + wrCr = (1− wr)Ar−1 + wrCr

≤ (1− wr)Gr−1 + wrCr (by the inductive hypothesis)
≤ C1/2

r (C−1/2
r Gr−1C

−1/2
r )1−wrC1/r

r = Gr. (by (7))

The equality Ar = Gr holds only when all the equalities are valid simulta-
neously. Equality in the first inequality holds if Ar−1 = Gr−1, i.e. C1 = C2 =
. . . = Cr−1 by induction for r − 1 and equality in the second inequality holds
if Gr−1 = Cr by the conditions for equality for r = 2. Therefore, the equality
Ar = Gr holds if and only if Ar = Gr−1 = Cr, i.e. C1 = C2 = . . . = Cr. Now
by the substitutions C−1

i → Ci, i = 1, . . . , r, we get (14) from (13). 2

Remark.. It is interesting that (13), i.e., the reverse arithmetic-geometric
inequality is stronger than the same arithmetic-geometric means inequality in
the sense that we can obtain the second inequality in (5) from (13) (see [2]).

Power means inequality (3) for t, s 6= 0, in the case when wi = 1/r (in this
case we shall write M

[t]
r (C) for M

[t]
r (C;w)) was considered by Bhagwat and

Subramanian [10]. They proved

1. If s ≤ t, s /∈ (−1, 1), t /∈ (−1, 1), then M
[t]
r (C) ≥ M

[s]
r (C).

2. For t ≥ 1/2, M
[2t]
r (C) ≥ M

[t]
r (C).
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Moreover, it can be shown that the following results hold (see [25], [26]):
Theorem 2.3.. Inequality (3) holds if one of the following is valid:
(a) t ≥ s, t /∈ (−1, 1), s /∈ (−1, 1); or
(b) t ≥ 1 ≥ s ≥ 1/2; or
(c) s ≤ −1 ≤ t ≤ −1/2.
Proof. First, we shall prove (3) if either (a); (d) t ≥ 1 ≥ s ≥ t/2; or (e)

s ≤ −1 ≤ t ≤ s/2, holds. For this we need only Jensen’s inequality for matrix
convex functions

f

(
r∑

k=1

wkAk

)
≤

r∑

k=1

wkf(Ak), wk ≥ 0, w1 + . . . + wr = 1. (15)

Further, it is known that the function f(x) = xp is matrix concave for 0 < p ≤ 1
and matrix convex for 1 ≤ p ≤ 2 or −1 ≤ p < 0; while the functions g(x) = x1/t,
for t ≥ 1, and h(x) = −x1/t, for t ≤ −1 are matrix monotone. Using these facts
and the substitutions f(x) = xs/t, Ai = Ct

i (or f(x) = xt/s, Ai = Cs
i ) in (15),

we get (3) with condition (a), (d) or (e). We shall only prove the case for
t ≥ s ≥ 1.

The function f(x) = xs/t is matrix concave since 0 < s/t ≤ 1. With the
substitution Ai = Ct

i , (15) becomes

(
r∑

k=1

wkCt
k

)s/t

≥
r∑

k=1

wkCs
k. (16)

Since the function g(x) = x1/s is matrix monotone, (3) follows from (16).
Further, (d) for t = 1 gives (for 1 ≥ s ≥ 1/2)

M [1]
r (C; w) ≥ M [s]

r (C;w).

On the other hand, (a) for s = 1 gives

M [t]
r (C; w) ≥ M [1]

r (C; w).

These inequalities give (3) if (b) holds. Similarly, using (e) and (a), we can
prove that (3) holds if (c) is valid. 2

3. Mixed means matrix inequalities

Recently, K. Kedlaya [19] has proved the following conjecture of F. Holland [13]:
Let x1, x2, . . . , xn be positive real numbers. Then




n∏

j=1

x1 + x2 + . . . xj

j




1/n

≥ 1
n

n∑

i=1

i
√

x1, x2, . . . , xi (17)
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with equality if and only if x1 = x2 = . . . = xn.
We shall consider related results for positive definite Hermitian matrices.

The open problem is to give a generalization for positive definite matrices for
arbitrary number of matrices. The cases of two matrices were considered in
[27] and [33]. Let the arithmetic, geometric and harmonic means be defined
respectively by

A∇λB = λA + (1− λ)B,

A#λB = A1/2(A−1/2BA−1/2)1−λA1/2,

A!λB = (λA−1 + (1− λ)B−1)−1

where λ ∈ (0, 1).
The following are special cases of more general results obtained in [27]:
Let α, λ ∈ (0, 1). Then

A#α(A∇λB) ≥ A∇λ(A#αB),
A#α(A!λB) ≤ A!λ(A#αB), (18)
A!α(A∇λB) ≥ A∇λ(A!αB).

Moreover, using the idea of the method of proof from [19] (but instead of
Hölder’s inequality, the Minkowski type matrix inequality from [7] is used), the
following mixed arithmetic-harmonic mean inequality was proved in [33]:

Theorem 3.1.. Let A1, . . . , An be positive definite m ×m Hermitian ma-
trices. Then


 1

n

n∑

j=1

(
A1 + A2 + . . . + Aj

j

)−1


−1

≥ 1
n

n∑

i=1

(
1
i

i∑

k=1

A−1
k

)−1

(19)

4. Reverse forms of a convex matrix inequality

Let A and B be two complex n × n Hermitian positive definite matrices, and
let 0 ≤ λ ≤ 1. Then

[λA + (1− λ)B]−1 ≤ λA−1 + (1− λ)B−1. (20)

This result, i.e., matrix convexity of the inverse function is an old result that
appears explicitly in the papers of J. Bendat and S. Sherman [9], C. Davis [11],
M.H. Moore [37], I. Olkin and J. Pratt [38] and P. Whittle [44].

B. Mond and J. Pečarić [28] have proved the following reverse results:
Theorem 4.1.. Let A and B be two complex Hermitian positive definite

matrices, and let 0 ≤ λ ≤ 1. Then

[λA + (1− λ)B]−1 ≥ K(λA−1 + (1− λ)B−1) (21)
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where
K = 4 min

µi

(1 + µi)2
, (22)

and the µi are the solutions of the equation

det(B − µA) = 0. (23)

The constant K is best possible.
Theorem 4.2.. Let A and B be positive definite Hermitian matrices. Then

[λA + (1− λ)B]−1 − (λA−1 + (1− λ)B−1) ≥ K̃A−1 (24)

where

K̃ = min
(
√

µ
i
− 1)2

−µi
(25)

and the µi are the solutions of the equation (23). The constant K̃ is best possi-
ble.

Note that the matrix convexity of the Moore-Penrose (generalized) inverse
was considered in the papers of D.G. Kaffes [16], A. Giovagnoli and H.P. Wynn
[12] and D.G. Kaffe, T. Mathew, M.B. Rao and K. Subramanyam [17].

Let A and B be two complex Hermitian positive semi-definite matrices of
the same order. The inequality

[λA + (1− λ)B]+ ≤ λA+ + (1− λ)B+ (26)

for every 0 ≤ λ ≤ 1 holds if and only if R(A) = R(B) where R(A) is the range
of A.

Similar results to those in Theorems 4.1 and 4.2 can also be given (see [29]).
A related result was also obtained by M. Alić, J. Pečarić and V. Volenec [5].

Theorem 4.3.. Let A and B be two positive definite Hermitian matrices
and let α ∈ (0, 1). Then

A∇αB ≤ K(A#αB) (27)

where A#αB = B1/2(B−1/2AB−1/2)αB1/2 and

K =
(β − 1)β1/(β−1)

e log β
(28)

and β = max{λ1,
1

λn
}, λ1 ≥ . . . λn are the eigenvalues of A−1/2BA−1/2.

Remark .. In the papers [28] and [29], we have direct proofs of Theorems
4.1 and 4.2. It was shown in [39] that such results can also be proved using the
following general result [15]:

Suppose X and Y are Hermitian matrices of the same size, with X positive
definite and Y positive semi-definite. Then X − Y is positive semi-definite if
and only if ρ(Y X−1) ≤ 1, where ρ is a spectral radius. For example, application
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of this result with X = [λA + (1− λ)B]−1 − (λA−1 + (1− λ)B−1), Y = K̂A−1

gives that the optimal value of K̂ is over the entire range of admissible λ’s of

1
λ + (1− λ)µi

− λ− (1− λ)
1
µi

.

The minimum of this is − (
√

µi−1)2

µi
and, the best overall value of K̃ is min (

√
µi−1)2

−µi
,

i.e., the constant obtained in Theorem 4.2.

5. A matrix version of the Kantorovich inequality and
related results

Let wi, ai be positive numbers such that 0 < m ≤ ai ≤ M, i = 1, . . . , n and
n∑

i=1

wi = 1. Then the well-known Kantorovich inequality holds

An(a,w) ≤ (m + M)2

4mM
Hn(a,w). (29)

There exist many matrix extensions of this inequality. Here we present some
results of B. Mond and J. Pečarić [32].

Let Aj (j = 1, . . . , k) be positive definite Hermitian matrices of order n,
with eigenvalues contained in the interval [m,M ] where 0 < m < M and let
Uj , j = 1, . . . , k be t× n matrices such that

k∑

j=1

UjU
∗
j = I.

We now consider the means

M
[r]
k (A;U) =




k∑

j=1

UjA
r
jU

∗
j




1/r

. (r 6= 0)

The following results are valid:

M
[−1]
k (A; U)−1 ≤ (m + M)2

4mM
M

[1]
k (A; U)−1, (30)

M
[1]
k (A; U)−M

[−1]
k (A; U) ≤ (

√
M −√m)2I (31)

M
[2]
k (A;U)2 ≤ (M + m)2

4mM
M

[1]
k (A; U)2 (32)

M
[2]
k (A;U)−M

[1]
k (A;U) ≤ (M −m)

4(M + m)
I. (33)
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For k = 1, (30) was proved by A.W. Marshall and I. Olkin [22]. (31)-(33)
were proved by B. Mond and J. Pečarić [31]. Similarly, we can prove (see [39])

M
[2]
k (A;U)2 −M

[1]
k (A; U)2 ≤ (M −m)2

4
I. (34)

As in [31], we can start with mMI ≤ (m + M)Aj −A2
j from which we get

mM

k∑

j=1

UjU
∗
j ≤ (m + M)

k∑

j=1

UjAjU
∗
j −

k∑

j=1

UjA
2
jU

∗
j ,

i.e.

mMI ≤ (m + M)
k∑

j=1

UjAjU
∗
j −

k∑

j=1

UjA
2
jU

∗
j ,

i.e.

M
[2]
k (A;U)2 −M

[1]
k (A; U)2 ≤ (m + M)M [1]

k (A; U)−mMI −M
[1]
k (A;U)2

= (M−m)2

4 I − {M [1]
k (A; U)− M+m

2 I}2 ≤ (M−m)2

4 I.

Some further extensions are also obtained by B. Mond and J. Pečarić [32].
Namely, the following two theorems are proved:

Theorem 5.1.. Let r, s be non-zero numbers with s > r and either s /∈
(−1, 1) or r /∈ (−1, 1). Then

M
[s]
k (A; U)−M

[r]
k (A; U) ≤ 4I (35)

where 4 = [θMs + (1 − θ)ms]1/s − [θMr + (1 − θ)mr]1/r and where θ is more
precisely defined.

Theorem 5.2.. Let the conditions of Theorem 5.1 be satisfied. Then

M
[s]
k (A;U) ≤ 4̃M

[r]
k (A;U) (36)

where 4̃ =
{

r(γs−γr)
(s−r)(γr−1)

}1/s {
s(γr−γs)

(r−s)(γs−1)

}−1/r

and γ = M/m.
Remark .. S. Liu and H. Neudecker and, independently, C-K Li and R.

Mathias (see [32]) have noted that such matrix inequalities for several matrices
are equivalent to the corresponding case of one matrix.

Extensions of (30)-(34) to the case of an n × n positive semi-definite sym-
metric matrix were obtained in the papers of J.K. Baksalary and S. Puntanen
[8] and J. Pečarić, S. Puntanen and G.P.H. Styan [42].

A+ will denote the Moore- Penrose generalized inverse of the matrix A. PA

will denote the orthogonal projection on the range of A, i.e.,

PA = A(A∗A)+A∗. (37)
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Theorem 5.3.. (see [8], [42]). Let A be an n × n positive semi-definite
Hermitian matrix with r ≤ n non-zero eigenvalues ordered by λ1 ≥ λ2 ≥ . . . ≥
λr > 0. Let U be an n× p matrix. Then

U∗A+U ≤ [(λ1 + λr)/(λ1λr)]U∗PAU − [1/(λ1λr)]U∗AU. (38)

If A and U are such that U∗PAU is idempotent, then

U∗A+U ≤ [(λ1 + λr)2/(4λ1λr)](U∗AU)+, (39)

U∗AU − (U∗A+U)+ ≤ (
√

λ1 −
√

λr)2U∗PAU, (40)

U∗A2U ≤ [(λ1 + λr)2/(4λ1λr)](U∗AU)2, (41)

(U∗A2U)1/2 − U∗AU ≤ [(λ1 − λr)2/4(λ1 + λr)]U∗PAU, (42)

U∗A2U − (U∗AU)2 ≤ 1
4
(λ1 − λr)2U∗PAU. (43)

We note that the requirement that U∗PAU is idempotent is satisfied if
U∗U = I.

6. Some improvements of the AG inequality

The following result was proved in [5]:
Theorem 6.1.. Let A and B be two positive definite Hermitian matrices

and let a be a real number. If A > B, k ∈ N , then
(

a

k + 1

)
{A#αB −A∇αB}≥

(
a

k + 1

) k∑
p=2

(
a

p

)
B1/2[B−1/2(A−B)B−1/2]pB1/2

(44)
but, if A < B, then

(−1)k+1

(
a

k + 1

)
{A#αB −A∇αB} ≥

≥ (−1)k+1

(
a

k + 1

) k∑
p=2

(
a

p

)
B1/2[B−1/2(A−B)B−1/2]pB1/2. (45)

A special case, k = 2 is the following:
Corollary 6.1.. Let A and B be two positive definite Hermitian matrices

and let a be a real number and let A ≥ B. If a ∈ (0, 1) ∪ (2,∞), then

A∇αB −A#αB ≤ a(1− a)
2

B1/2[B−1/2(A−B)B−1/2]2B1/2 (46)

If a ∈ (−∞, 0) ∪ (1, 2), the reverse inequality in (46) is valid. If A ≤ B, we
have reverse results.

Further generalizations are obtained in [1].
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7. Some bounds involving exponential functions

Let A,G and H denote, respectively, the arithmetic, geometric and harmonic
means of n× n positive definite matrices Ci. The following results were proved
in [43]:

G exp(G−1A− I) = exp(AG−1 − I)G ≥ (AG−1A + G)/2 (47)
≥ A ≥ G ≥ H ≥ 2(H−1GH−1 + G−1)−1 (48)
≥ G exp(I −H−1G) = exp(I −GH−1)G

and

H exp(H−1A− I) = exp(AH−1 − I)H ≥ (AH−1A + H)/2 (49)
≥ A ≥ G ≥ H

≥ 2(H−1AH−1 + A−1)−1 ≥ A exp(I −H−1A) (50)
= exp(I −AH−1)A,

where all the inequalities are strict unless C1 = · · · = Cr, in which case all
the equalities hold.

In [2], it was noted that these results are a consequence of some general
inequalities for exponential functions and of (5). Namely, the following result
was proved in [3]:

Theorem 7.1.. Let C and D be two positive definite Hermitian matrices
such that C ≥ D. Then for r, k ∈ N , we have

D exp(D−1C − I) = exp(CD−1− I)D

≥ D

r∑

i=0

(D−1C − I)i/i! ≥ · · · ≥ 1
2
(CD−1C + D) ≥ C ≥ D (51)

≥ 2(D−1CD−1 + C−1)−1 ≥ · · · ≥ (
r∑

i=0

(CD−1 − I)i/i!)−1C

≥ C exp(I −D−1C) = exp(I − CD−1)C;

C

2k−1∑

i=0

(C−1D − I)i

i!
≤ C exp(C−1D − I) = exp(DC−1 − I)C (52)

≤ C

2k∑

i=0

(C−1D − I)i

i!
,

which, for k = 1, gives

D ≤ C exp(C−1D − I) ≤ 1
2
(C + DC−1D); (53)
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and

(
2k∑

i=0

(DC−1 − I)i/i!)−1D ≤ D exp(I − C−1D) = exp(I − C−1D)D

≤ (
2k−1∑

i=0

(DC−1 − I)i/i!)−1D. (54)

which, for k = 1, gives 2(C−1DC−1 + D−1)−1 ≤ D exp(I − C−1D) ≤ C.
Now set instead of the couple (C, D), the couples (Ar, Gr), (Gr,Hr), (Ar,Hr),

(M [t]
r ,M

[s]
r ) (from Theorem 2.3) or (Gr, Ar, ), (Hr, Ar), (Hr, Gr) from Theorem

2.2 and we can obtain various extensions of (51) and (52) as well as many related
results.

A corresponding result was also obtained in [4]. Namely, the result obtained
for real numbers in [6] also holds in the matrix case. In fact, we have the
following result for exponential matrix functions.

Theorem 7.2.. Let C and D be two positive definite Hermitian matrices
such that C ≥ D. Then

C −D ≤ C exp(C−1D)−D exp(−D−1C) ≤ 3
e
(C −D). (55)

The constant is best possible and equality holds if and only if C = D.
In fact, a matrix analogue of a result from [6] is a simple consequence of

Theorem 7.2 for the arithmetic mean Ar and the geometric mean Gr instead
of C and D, respectively. Of course by using other results we can again obtain
many similar theorems for matrix means.

8. Matrix inequalities for convex functions

If A is an n × n Hermitian matrix, then there exists a unitary matrix U such
that

A = U∗[λ1, . . . , λn]U

where [λ1, . . . , λn] is a diagonal matrix and the λi are the eigenvalues of A. f(A)
is then defined by

f(A) = U∗[f(λ1), . . . , f(λn)]U.

If F (t) = F (f(t), g(t)), we will write F (f(A), g(A)) for the operator F (A);
while the function F (A, B) denotes the matrix function of two variables when
it is well-defined.

The following results were obtained in [40].
Theorem 8.1.. Let Aj(j = 1, . . . , k) be Hermitian matrices of order n with

eigenvalues in the interval [m,M ], and let Uj , j = 1, . . . , k be r × n matrices
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such that
k∑

j=1

UjU
∗
j = I. If f is a continuous convex function on [m,M ], then

k∑

j=1

Ujf(Aj)U∗
j ≤

MI −
k∑

j=1

UjAjU
∗
j

M −m
f(m) +

k∑

j=1

UjAjU
∗
j −mI

M −m
f(M). (56)

Proof. For a real valued convex function, we have [41, pp 1-2]

f(z) ≤ M − z

M −m
f(m) +

z −m

M −m
f(M) (z ∈ [m,M ]). (57)

Using this inequality, we can obtain the matrix inequality

f(Aj) ≤ MI −Aj

M −m
f(m) +

Aj −mI

M −m
f(M) (58)

where mI ≤ Aj ≤ MI(j = 1, . . . , k). This inequality gives

Ujf(Aj)U∗
j ≤

MUjU
∗
j − UjAjU

∗
j

M −m
f(m) +

UjAjU
∗
j −mUjU

∗
j

M −m
f(M) (59)

for j = 1, . . . , k. Summing over j gives (56). 2

Theorem 8.2.. Assume that the conditions of Theorem 8.1 are satisfied.
Let J be an interval such that J ⊃ f [m,M ]. If F (u, v) is a real valued continuous
function defined on J × J and the matrix increasing in its first variable, then

F




k∑

j=1

Ujf(Aj)U∗
j , f




k∑

j=1

UjAjU
∗
j







≤
{

max
x∈[m,M ]

F

[
M − x

M −m
f(m) +

x−m

M −m
f(M), f(x)

]}
I (60)

=
{

max
θ∈[0,1]

F [θf(m) + (1− θ)f(M), f(θm + (1− θ)M)]
}

I

Proof. By (56) and the matrix monotone character of F (·, y), we have

F




k∑

j=1

Ujf(Aj)U∗
j , f




k∑

j=1

UjAjU
∗
j





 ≤ F

[
MI − Ã

M −m
f(m) +

Ã−mI

M −m
f(M), f(Ã)

]

(61)
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where Ã =
k∑

j=1

UjAjU
∗
j . Now, we again consider the inequality

F

[
M − x

M −m
f(m) +

x−m

M −m
f(M), f(x)

]
≤ K

where

K = max
m≤x≤M

F

[
M − x

M −m
f(m) +

x−m

M −m
f(M), f(x)

]

and, as in [32], we can get the matrix inequality

F

[
MI − Ã

M −m
f(m) +

Ã−mI

M −m
f(M), f(Ã)

]
≤ KI (62)

for matrices Ã such that mI ≤ Ã ≤ MI. Now (61) and (62) give (61). Moreover,
the second form of the right side of (61) follows from the change of variables
θ = (M − x)/(M −m), so that x = θm + (1− θ)M with 0 ≤ θ ≤ 1. 2

In the same way (or, more simply, by replacing F by −F in the last theorem),
we can prove the following:

Theorem 8.2’.. Under the same hypotheses as in Theorem 8.2, except that
F is a matrix decreasing in its first variable, we have

F




k∑

j=1

Ujf(Aj)U∗
j , f




k∑

j=1

UjAjU
∗
j







≥
{

min
x∈[m,M ]

F

[
M − x

M −m
f(m) +

x−m

M −m
f(M), f(x)

]}
I (63)

=
{

min
θ∈[0,1]

F [θf(m) + (1− θ)f(m), f(θm + (1− θ)M)]
}

I.

By using the functions F (u, v) = u − v and F (u, v) = v−
1
2 uv−

1
2 which are

matrices increasing in their first variables, we can obtain, as in [32], the following
consequences of Theorems 8.2 and 8.2′.

Theorem 8.3.. Let f(x) be a strictly convex twice differentiable function
on J = [m,M ] (−∞ < m < M < ∞), and let the conditions of Theorem 8.1 be
satisfied. Suppose that either (i) f(x) > 0 for all x ∈ J , or (ii) f(x) < 0 for all
x ∈ J . Then

k∑

j=1

Ujf(Aj)U∗
j ≤ λf




k∑

j=1

UjAjU
∗
j


 (64)

holds for some λ > 1 in case (i); or, λ ∈ (0, 1) in case (ii). More precisely, a
value of λ (depending only on m,M, f) for (64) may be determined as follows:
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Let µ = (f(M)− f(m))/(M −m). If µ = 0, let x = x̄ be the unique solution of
the equation f ′(x) = 0, (m < x̄ < M); then, λ = f(m)/f(x̄) suffices for (64). If
µ 6= 0, let x = x̄ be the unique solution in (m,M) of the equation

µf(x)− f ′(x)(f(m) + µ(x−m)) = 0; (65)

then λ = µ/f ′(x̄) suffices for (64).
Theorem 8.4.. Let the conditions of Theorem 8.1 be satisfied and let f be

differentiable and f ′ strictly increasing on J . Then

k∑

j=1

Ujf(Aj)U∗
j ≤ λI + f




k∑

j=1

UjAjU
∗
j


 (66)

holds for some λ satisfying 0 < λ < (M −m)(µ− f ′(m)) where µ is defined as
in Theorem 8.3.

More precisely, λ may be determined for (66) as follows: let x = x̄ be the
unique solution of the equation f ′(x) = µ (m < x̄ < M), then

λ = f(m)− f(x̄) + µ(x̄−m) (67)

suffices in (66).
We now consider the special case when f̃(t) = tp, t > 0. It is well-known

that f̃ is convex if either p < 0 or p > 1, while it is concave if 0 < p < 1 (i.e.,
−f̃ is convex if 0 < p < 1). Thus, (64) gives for p < 0 or p > 1,

k∑

j=1

UjA
p
jU

∗
j ≤ λ̃




k∑

j=1

UjAjU
∗
j




p

(68)

where

λ̃ =
γp − γ

(p− 1)(γ − 1)

{
p(γ − γp)

(1− p)(γp − 1)

}−p

, γ = M/m

while for 0 < p < 1, we have the reverse inequality in (68).
Similar consequences of Theorems 8.4 are, in the case p < 0 or p ≥ 1,

k∑

j=1

UjA
p
jU

∗
j ≤ λ̃I +




k∑

j=1

UjAjU
∗
j




p

where

λ̃ = mp −
(

1
p

Mp −mp

M −m

) p
p−1

+
Mp −mp

M −m

[(
1
p

Mp −mp

M −m

) 1
p−1

−m

]

where for 0 < p < 1, we have the reverse inequality in (8.).
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9. Inequalities for the Hadamard product of matrices

If A,B are positive semi-definite n×n Hermitian matrices, then A2◦B2−(A◦B)2

is positive semidefinite, i.e., in inequality form, we have (see [14])

(A ◦B)2 ≤ A2 ◦B2 (69)

where A ◦B is the Hadamard product of matrices A and B.
From this inequality, we can also get (see [14]):

A ◦B ≤ (A2 ◦B2)1/2 (70)

and
A1/2 ◦B1/2 ≤ (A ◦B)1/2. (71)

Some converse results have been obtained recently in [21]. We have

A2 ◦B2 − (A ◦B)2 ≤ 1
4
(M −m)2I, (72)

and
(A2 ◦B2)1/2 ≤ M + m

2
√

Mm
A ◦B, (73)

where A and B are positive definite Hermitian matrices, M and m are the
largest and the smallest eigenvalues of A⊗B (the Kronecker product of A and
B), respectively.

Some generalizations and related results will be given in this paper.
Theorem 9.1.. Let A and B be positive definite n× n Hermitian matrices

and let r and s be two nonzero integers such that s > r. Then

(As ◦Bs)1/s ≥ (Ar ◦Br)1/r (74)

Proof. The following result holds (see [36]):
Let A be an n× n positive definite Hermitian matrix and let V be an n× t

matrix such that V ∗V = I. Then

(V ∗AsV )1/s ≥ (V ∗ArV )1/r (75)

for all real r and s such that s /∈ (−1, 1) and r /∈ (−1, 1), s > r.
In our case, nonzero integers r and s satisfy these conditions. Further,

instead of V , we use J , the selection matrix of order n2 × n with the property
that (see [20], [21])

A ◦B = J t(A⊗B)J (76)

as well as the fact that for any integer p we have

(A⊗B)p = Ap ⊗Bp. (77)

Thus (75) gives (J t(A⊗B)sJ)1/s ≥ (J t(A⊗B)r)1/r, and, from (77), (J t(As⊗
Bs)J)1/s ≥ (J t(Ar ⊗Br)J)1/r, which is, by (76), the inequality (74). 2
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Special cases. Some special cases of (74) are the following:

(A−1 ◦B−1)−1 ≤ A ◦B (78)

or, equivalently,
(A ◦B)−1 ≤ A−1 ◦B−1. (79)

For the positive integer r,

A ◦B ≤ (Ar ◦Br)1/r (80)

from which we can get

A1/r ◦B1/r ≤ (A ◦B)1/r. (81)

These last two results are extensions of (70) and (71).
Remark .. Inequalities (69) and (79) can be obtained by using Jensen’s

inequality for the matrix convex functions, i.e., for matrix convex function f
(see [18])

f(V ∗AV ) ≤ V ∗f(A)V. (82)

Namely, using this result for the matrix convex function f(t) = t2, we can get

(A ◦B)2 = (J t(A⊗B)J)2 ≤ J t(A⊗B)2J
= J t(A2 ⊗B2)J = A2 ◦B2

which is (69). Similarly, we can use (82) for the matrix convex function f(t) =
t−1 to get (79).

Theorem 9.2.. Let A and B be two positive definite n × n Hermitian
matrices and let r and s be nonzero integers such that r < s. Then

r(Ar ◦Br − aAs ◦Bs − bI) ≥ 0 (83)

where a = (Mr −mr)/(Ms −ms), b = (Msmr −Mrms)/(Ms −ms) and M
and m are the largest and smallest eigenvalues of A⊗B.

Proof. We have the matrix inequality (see [13]) r(Ar − aAs − bI) ≥ 0 i.e.,

r[(A⊗B)r − a(A⊗B)s − bI] ≥ 0.

Therefore, from (77),

r[Ar ⊗Br − a(As ⊗Bs)− bI] ≥ 0.

Now pre- and post-multiplication by J t and J , respectively, gives (83). 2

Remark.. We can also prove Theorem 9.2 by using Theorem 1 from [32].
Theorem 9.3.. Let the conditions of Theorem 9.2 be satisfied. Then

(As ◦Bs)1/s ≤ ∆̃(Ar ◦Br)1/r (84)
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where

∆̃ =
{

r(γs − γr)
(s− r)(γr − 1)

}1/s {
s(γr − γs)

(r − s)(γs − 1)

}−1/r

(85)

and γ = M/m.
Proof. Let A be an n×n positive definite Hermitian matrix with eigenvalues

contained in the interval [m,M ] where 0 < m < M and let V be an n× t matrix
such that V ∗V = I. If r, s are nonzero real numbers such that s > r and either
s /∈ (−1, 1) or r /∈ (−1, 1), then (see [32])

(V ∗AsV )1/s ≤ ∆̃(V ∗ArV )1/r (86)

where ∆̃ is given by (85). Therefore, in our case, we have

(As ◦Bs)1/s = (J t(As ⊗Bs)J)1/s = (J t(A⊗B)sJ)1/s

≤ ∆̃(J t(A⊗B)rJ)1/r = ∆̃(J t(Ar ⊗Br)J)1/r = ∆̃(Ar ◦Br)1/r. 2

Special cases.
1. For s = 2 and r = 1, we get (73).
2. For s = 1, r = −1, we get

A ◦B ≤ (m + M)2

4Mm
(A−1 ◦B−1)−1 (87)

or, equivalently,

A−1 ◦B−1 ≤ (M + m)2

4Mm
(A ◦B)−1 (88)

Theorem 9.4.. Let the conditions of Theorem 9.2 be satisfied. Then

(As ◦Bs)1/s − (Ar ◦Br)1/r ≤ ∆I (89)

where

∆ = max
θ∈[0,1]

{
[θMs + (1− θ)ms]1/s − [θMr + (1− θ)mr]1/r

}
. (90)

Proof. Let A be an n×n positive definite Hermitian matrix with eigenvalues
contained in the interval [m, M ], where 0 < m < M, and let V be an n×t matrix
such that V ∗V = I. If r, s are nonzero real numbers such that s > r and either
s /∈ (−1, 1) or r /∈ (−1, 1), then (see [32])

(V ∗AsV )1/s − (V ∗ArV )1/r ≤ ∆I (91)

where ∆ is given by (90). Thus, in our case, we have

(As ◦Bs)1/s − (Ar ◦Br)1/r = [J t(As ⊗Bs)]1/s −−[J t(Ar ⊗Br)J ]1/r

= [J t(A⊗B)sJ ]1/s − [J t(A⊗B)rJ ]1/r ≤ ∆I. 2
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Special cases.
1. For s = 2, r = 1, we get

(A2 ◦B2)1/2 −A ◦B ≤ (M −m)2

4(M + m)
I (92)

2. For s = 1, r = −1, we get

A ◦B − (A−1 ◦B−1)−1 ≤ (
√

M −√m)2I (93)

We note that the eigenvalues of A⊗B are the n2 products of the eigenvalues
of A by the eigenvalues of B [15, p.245]. Thus, if the eigenvalues of A and B,
respectively, are ordered by

α1 ≥ α2 ≥ . . . ≥ αn > 0; β1 ≥ β2 ≥ . . . ≥ βn,

then in all previous results M = α1β1 and m = αnβn.
Thus (72), (73), (87), (86), (92) and (93) become

A2 ◦B2 − (A ◦B)2 ≤ 1
4 (α1β1 − αnβn)2I,

(A2 ◦B2)1/2 ≤ (α1β1+αnβn)

2
√

α1β1αnβn

A ◦B,

A ◦B ≤ (α1β1+αnβn)2

4α1β1αnβn
(A−1 ◦B−1)−1,

A−1 ◦B−1 ≤ (α1β1+αnβn)2

4α1β1αnβn
(A ◦B)−1,

(A2 ◦B2)1/2 −A ◦B ≤ (α1β1−αnβn)2

4(α1β1+αnβn)I,

respectively and

A ◦B − (A−1 ◦B−1)−1 ≤ (
√

α1β1 −
√

αnβn)2I.

Remark .. Previous results are obtained in [34]. For some related results
see [40], while some results for generalized inverses are given in [35].
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[41] J. E. Pečarić, J. E. Proschan, Y. L. Tong, Convex functions, partial
orderings and statistical applications, Academic Press, Inc. Boston, San
Diego, New York, London, Sydney, Tokyo and Toronto, 1992.
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