The matrix of a linear operator in a pair of ordered bases^{*}

Dragan Jukić[†]

Abstract. In the lecture it is shown how to represent a linear operator by a matrix. This representation allows us to define an operation with matrices.

Key words: *linear operator, matrix of a linear operator, matrix operations*

Sažetak. Matrica linearnog operatora u paru uređenih baza. Na predavanju je pokazano kako se linearni operator može reprezentirati matricom. Ta reprezentacija omogućava nam da definiramo operacije s matricama.

Ključne riječi: linearan operator, matrica linearnog operatora, operacije s matricama

1. Defining a linear operator

The function from one vector space to another vector space is called the **operator**. In this lecture we shall deal only with finite dimensional vector spaces.

Definition 1. Let V and W be any two finite dimensional real vector spaces. We say that the operator $\mathcal{A}: V \to W$ is linear if

$$\mathcal{A}(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda \mathcal{A}(\mathbf{x}) + \mu \mathcal{A}(\mathbf{y})$$

for all scalars $\lambda, \mu \in \mathbb{R}$ and for all vectors $\mathbf{x}, \mathbf{y} \in V$. It is easy to check that the operator $\mathcal{A} : V \to W$ is linear if and only if \mathcal{A} is an additive and homogenous operator, where we define:

Definition 2. An operator $\mathcal{A}: V \to W$ is said to be:

- a) additive if $\mathcal{A}(\mathbf{x} + \mathbf{y}) = \mathcal{A}(\mathbf{x}) + \mathcal{A}(\mathbf{y})$ for all vectors $\mathbf{x}, \mathbf{y} \in V$;
- b) homogenous if $\mathcal{A}(\lambda \mathbf{x}) = \lambda \mathcal{A}(\mathbf{x})$ for each scalar $\lambda \in \mathbb{R}$ and for each vector $\mathbf{x} \in V$.

^{*}The lecture presented at the MATHEMATICAL COLLOQUIUM in Osijek organized by Croatian Mathematical Society - Division Osijek, October 19, 1996.

[†]Faculty of Food Technology, F. Kuhača 18, HR-31000 Osijek, e-mail: jukicd@oliver.efos.hr

D. Jukić

Properties of additivity and homogenity of a linear operator are graphically illustrated in *Figure 1*.

Example 1. Let us give some examples of a linear operator $\mathcal{A}: V \to W$:

- a) $V = W = \mathbb{R}^2$, $\mathcal{A}(x_1, x_2) = (x_1, -x_2)$ (reflection of a plane in the x_1 axis);
- b) $V = W = \mathbb{R}^2$, $\mathcal{A}(x_1, x_2) = (-x_1, -x_2)$ (symmetry of a plane about the origin);
- c) $V = W = \mathbb{R}^2$, $\mathcal{A}(x_1, x_2) = (x_1, 0)$ (orthogonal projection of a plane on x_1 axis)

Lemma 1. Two linear operators $\mathcal{A}, \mathcal{B} : V \to W$ are equal if and only if they attain the same values on the basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$ for V.

Proof. If two operators are equal, then they attain the same values on basis,

Let us prove the converse. According to the assumption, we have $\mathcal{A}(\mathbf{e}_i) = \mathcal{B}(\mathbf{e}_i)$ for every i = 1, ..., n. Let us prove that $\mathcal{A}(\mathbf{x}) = \mathcal{B}(\mathbf{x})$ for every $\mathbf{x} \in V$. For that purpose, let $\mathbf{x} = x_1 \mathbf{e}_1 + ... + x_n \mathbf{e}_n$ be a linear combination of the vectors $\mathbf{e}_1, ..., \mathbf{e}_n$ of the basis for V. Then we have

$$\mathcal{A}(\mathbf{x}) = \mathcal{A}(x_1\mathbf{e}_1 + \ldots + x_n\mathbf{e}_n) = x_1\mathcal{A}(\mathbf{e}_1) + \ldots + x_n\mathcal{A}(\mathbf{e}_n) = x_1\mathcal{B}(\mathbf{e}_1) + \ldots + x_n\mathcal{B}(\mathbf{e}_n)$$
$$= \mathcal{B}(x_1\mathbf{e}_1 + \ldots + x_n\mathbf{e}_n) = \mathcal{B}(\mathbf{x})$$

from where we conclude that $\mathcal{A} = \mathcal{B}$.

The next *Theorem* tells us that each linear operator $\mathcal{A}: V \to W$ is completely determined by its values on vectors of the basis for V.

Theorem 1. Let $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be any basis for V and let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be any n vector in W. Then there is one and only one linear operator $\mathcal{A}: V \to W$ such that

$$\mathcal{A}(\mathbf{e}_i) = \mathbf{v}_i, \quad i = 1, \dots, n$$

Proof. Each vector $\mathbf{x} \in V$ is uniquely expressible as a linear combination of vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n$: $\mathbf{x} = x_1 \mathbf{e}_1 + \ldots + x_n \mathbf{e}_n$. It is easy to check that the operator $\mathcal{A} : V \to W$ defined by the formula $\mathcal{A}(\mathbf{x}) = x_1 \mathbf{v}_1 + \ldots + x_n \mathbf{v}_n$ is a linear operator and that $\mathcal{A}(\mathbf{e}_i) = \mathbf{v}_i, i = 1, \ldots, n$.

If $\mathcal{B}: V \to W$ is a linear operator such that $\mathcal{B}(\mathbf{e}_i) = \mathbf{v}_i, i = 1, \dots, n$, then from Lemma 1 we obtain $\mathcal{A} = \mathcal{B}$

Because linear operators are functions, they can be added, multiplied by scalars and composed with one another.

• The sum C = A + B of linear operators $A, B : V \to W$ is again a linear operator. Namely, for every scalar $\lambda, \mu \in \mathbb{R}$ and for every vector $\mathbf{x}, \mathbf{y} \in V$ there holds:

$$\begin{aligned} \mathcal{C}(\lambda \mathbf{x} + \mu \mathbf{y}) &= \mathcal{A}(\lambda \mathbf{x} + \mu \mathbf{y}) + \mathcal{B}(\lambda \mathbf{x} + \mu \mathbf{y}) = (\lambda \mathcal{A}(\mathbf{x}) + \mu \mathcal{A}(\mathbf{y})) + (\lambda \mathcal{B}(\mathbf{x}) + \mu \mathcal{B}(\mathbf{y})) \\ &= \lambda \left(\mathcal{A}(\mathbf{x}) + \mathcal{B}(\mathbf{x}) \right) + \mu \left(\mathcal{A}(\mathbf{x}) + \mathcal{B}(\mathbf{x}) \right) = \lambda \mathcal{C}(\mathbf{x}) + \mu \mathcal{C}(\mathbf{y}) \end{aligned}$$

• The scalar multiple $\mathcal{C} = \alpha \mathcal{A}$ of the linear operator $\mathcal{A} : V \to W$ by the scalar $\alpha \in \mathbb{R}$ is again a linear operator:

$$\begin{aligned} \mathcal{C}(\lambda \mathbf{x} + \mu \mathbf{y}) &= \alpha \mathcal{A}(\lambda \mathbf{x} + \mu \mathbf{y}) = \alpha \left(\lambda \mathcal{A}(\mathbf{x}) + \mu \mathcal{A}(\mathbf{y})\right) = \lambda \left(\alpha \mathcal{A}(\mathbf{x})\right) + \mu \left(\alpha \mathcal{A}(\mathbf{y})\right) \\ &= \lambda \mathcal{C}(\mathbf{x}) + \mu \mathcal{C}(\mathbf{y}). \end{aligned}$$

• The composition $\mathcal{C} = \mathcal{A} \circ \mathcal{B}$ of linear operators $\mathcal{B} : V \to W$ and $\mathcal{A} : W \to Z$ is the linear operator from V to Z:

$$\begin{aligned} \mathcal{C}(\lambda \mathbf{x} + \mu \mathbf{y}) &= \mathcal{A}\left(\mathcal{B}(\lambda \mathbf{x} + \mu \mathbf{y})\right) = \mathcal{A}\left(\lambda \mathcal{B}(\mathbf{x}) + \mu \mathcal{B}(\mathbf{y})\right) = \lambda \mathcal{A}\left(\mathcal{B}(\mathbf{x})\right) + \mu \mathcal{A}\left(\mathcal{B}(\mathbf{y})\right) \\ &= \lambda \mathcal{C}(\mathbf{x}) + \mu \mathcal{C}(\mathbf{y}). \end{aligned}$$

2. The matrix of a linear operator

In this section we will show how to associate a matrix with each linear operator $\mathcal{A}: V \to W$, where V and W are any two finite dimensional vector spaces.

Suppose $(\mathbf{e}) = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ is an ordered basis for the finite dimensional vector space V, and $(\mathbf{f}) = (\mathbf{f}_1, \dots, \mathbf{f}_m)$ is an ordered basis for the finite dimensional vector space W. According to *Theorem* 1, the operator \mathcal{A} is completely determined by its values $\mathcal{A}(\mathbf{e}_j), j = 1, \dots, n$, on vectors of the basis. Since $\mathcal{A}(\mathbf{e}_j)$ are vectors in W and $(\mathbf{f}) = (\mathbf{f}_1, \dots, \mathbf{f}_m)$ is the basis for W, there are unique scalars a_{ij} $(i = 1, \dots, m, j = 1, \dots, n)$ such that:

$$\mathcal{A}(\mathbf{e}_{1}) = a_{11}\mathbf{f}_{1} + a_{21}\mathbf{f}_{2} + \ldots + a_{m1}\mathbf{f}_{m}$$

$$\mathcal{A}(\mathbf{e}_{2}) = a_{12}\mathbf{f}_{1} + a_{22}\mathbf{f}_{2} + \ldots + a_{m2}\mathbf{f}_{m}$$

$$\vdots$$

$$\mathcal{A}(\mathbf{e}_{n}) = a_{1n}\mathbf{f}_{1} + a_{2n}\mathbf{f}_{2} + \ldots + a_{mn}\mathbf{f}_{m}$$
(1)

D. Jukić

In an ordered pair of the bases (e), (f) to the operator \mathcal{A} there belong $m \cdot n$ scalars a_{ij} $(i = 1, \ldots, m, j = 1, \ldots, n)$ which can be displayed in a rectangular array

$$\mathbf{A}(\mathbf{f}, \mathbf{e}) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
(2)

called the *matrix of a linear operator* \mathcal{A} in an ordered pair of bases (e), (f). The matrix (2) has *m* rows and *n* columns. Because of this, we say that it has the *order* $m \times n$. The matrix (2) may be written in an abbreviated form as $\mathbf{A} = (a_{ij})$.

Example 1.. Let $\mathcal{D} : \mathcal{P}^3 \to \mathcal{P}^2$ be a linear operator that assigns to each polynomial its derivative, $(\mathbf{e}) = (x^3, x^2, x, 1)$ the basis for \mathcal{P}^3 and $(\mathbf{f}) = (x^2, x, 1)$ the basis for \mathcal{P}^2 . Then

$$\mathbf{D}(\mathbf{f}, \mathbf{e}) = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

3. The algebra of matrices

Let $M_{m \times n}$ be the set of all $m \times n$ real matrices and $\mathcal{L}(V, W)$ be the set of all linear operators from V to W. By using *Theorem* 1 it is easy to see that the mapping $\mathcal{A} \mapsto \mathbf{A}(\mathbf{e}, \mathbf{f})$ is a bijection from $\mathcal{L}(V, W)$ onto $M_{m \times n}$. This bijection allows us to represent operations by operators and vectors by operations with matrices.

Equality of matrices

Let (2) be a matrix of a linear operator $\mathbf{A}: V \to W$. Furthermore, let $\mathcal{B}: V \to W$ be a linear operator,

$$\begin{aligned}
\mathcal{B}(\mathbf{e}_1) &= b_{11}\mathbf{f}_1 + b_{21}\mathbf{f}_2 + \ldots + b_{m1}\mathbf{f}_m \\
\mathcal{B}(\mathbf{e}_2) &= b_{12}\mathbf{f}_1 + b_{22}\mathbf{f}_2 + \ldots + b_{m2}\mathbf{f}_m \\
\vdots \\
\mathcal{B}(\mathbf{e}_n) &= b_{1n}\mathbf{f}_1 + b_{2n}\mathbf{f}_2 + \ldots + b_{mn}\mathbf{f}_m
\end{aligned} \tag{3}$$

its values on vectors of the basis $\mathbf{f}_1, \ldots, \mathbf{f}_m$ and

$$\mathbf{B}(\mathbf{f}, \mathbf{e}) = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & & & \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$
(4)

its matrix in an ordered pair of bases (e), (f). According to Lemma 1, $\mathcal{A} = \mathcal{B}$ if and only if $\mathcal{A}(\mathbf{e}_i) = \mathcal{B}(\mathbf{e}_i)$ for all $i = 1, \ldots, m$, i.e. if $a_{ij} = b_{ij}$ for all $i = 1, \ldots, m$ and for all $j = 1, \ldots, n$. This gives us a criterion of equality of matrices:

Matrices $\mathbf{A} = (a_{ij})$ and $\mathbf{B} = (b_{ij})$ are equal if and only if they have the same order and $a_{ij} = b_{ij}$ for all i = 1, ..., m, and j = 1, ..., n.

Scalar multiple of matrices

Multiplying (1) with scalar $\alpha \in \mathbb{R}$ we conclude that in an ordered pair of bases (e), (f) the operator $\alpha \mathcal{A} : V \to W$ has a matrix

Motivated by this, we define:

The scalar multiple $\alpha \mathbf{A}$ of the matrix \mathbf{A} by the scalar α is the matrix whose entries are obtained by multiplying all of the entries in \mathbf{A} by α .

Addition of matrices

Adding (1) and (3) we see that to the operator C = A + B in an ordered pair of bases (e), (f), there belongs a matrix

$$\mathbf{C}(\mathbf{f}, \mathbf{e}) = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & & & \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & & & \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

The sum $\mathbf{A} + \mathbf{B}$ of the matrices $\mathbf{A} = (a_{ij})$ and $\mathbf{B} = (b_{ij})$ of the order $m \times n$ is a matrix $\mathbf{C} = (c_{ij})$ of the same order, where

$$c_{ij} = a_{ij} + b_{ij}$$
 $(i = 1, \dots, m; j = 1, \dots, n).$

Multiplication of matrices

Suppose $\mathcal{B}: V \to W$ and $\mathcal{A}: W \to Z$ are linear operators. Furthermore, suppose $(\mathbf{e}) = (\mathbf{e}_1, \dots, \mathbf{e}_n)$, $(\mathbf{f}) = (\mathbf{f}_1, \dots, \mathbf{f}_p)$ and $(\mathbf{g}) = (\mathbf{g}_1, \dots, \mathbf{g}_m)$ are ordered bases for vector spaces V, W and Z, respectively. Let us show how by using matrices $\mathbf{A} = (a_{ij}) := \mathbf{A}(\mathbf{g}, \mathbf{f})$ and $\mathbf{B} = (b_{ij}) := \mathbf{B}(\mathbf{f}, \mathbf{e})$ one can determine the matrix $\mathbf{C} := \mathbf{C}(\mathbf{g}, \mathbf{e})$ of the linear operator $\mathcal{C} = \mathcal{A} \circ \mathcal{B}$. Let $\mathbf{C} = (c_{ij})$. Then

$$\mathcal{C}(\mathbf{e}_j) = \sum_{i=1}^m c_{ij} \mathbf{g}_i, \quad j = 1, \dots, n.$$
(5)

On the other hand, we have

$$\mathcal{C}(\mathbf{e}_{j}) = \mathcal{A}\left(\mathcal{B}(\mathbf{e}_{j})\right) = \mathcal{A}\left(\sum_{k=1}^{p} b_{kj}\mathbf{f}_{k}\right) = \sum_{k=1}^{p} b_{kj}\mathcal{A}(\mathbf{f}_{k}) = \sum_{k=1}^{p} b_{kj}\sum_{i=1}^{m} a_{ik}\mathbf{g}_{i}$$

$$= \sum_{i=1}^{m} \left(\sum_{k=1}^{p} a_{ik}b_{kj}\right)\mathbf{g}_{i}.$$
(6)

According to (5) and (6), we find that $\sum_{i=1}^{m} c_{ij} \mathbf{g}_i = \sum_{i=1}^{m} \left(\sum_{k=1}^{p} a_{ik} b_{kj} \right) \mathbf{g}_i$, from where, because of the linear independence of vectors \mathbf{g}_i , we obtain:

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}, \quad i = 1, \dots, m, \ j = 1, \dots, n.$$
(7)

The product **AB** of the matrices **A** and **B** is defined only if matrices **A** and **B** are conformable for multiplication, i.e. if the number of columns in **A** is the same as the number of rows in **B**. If **A** has the order $m \times p$ and **B** has the order $p \times n$, then the product **AB** is an $m \times n$ matrix $\mathbf{C} = (c_{ij})$ with entries defined by (7).

We conclude this section by listing the fundamental algebraic properties of matrix addition, scalar multiplication, and matrix multiplication.

PROPERTIES OF MATRIX ADDITION

 $\begin{array}{l} \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A} \\ (\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C}) \\ \mathbf{O} + \mathbf{A} = \mathbf{A} + \mathbf{O} = \mathbf{A}, \text{ where } \mathbf{O} \text{ is the matrix with all entries equal to zero} \\ \mathbf{A} + (-\mathbf{A}) = (-\mathbf{A}) + \mathbf{A} = \mathbf{O}, \text{ where } -\mathbf{A} = (-1)\mathbf{A} \end{array}$

PROPERTIES OF SCALAR MULTIPLICATION

 $\alpha(\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B}$ $(\alpha + \beta)\mathbf{A} = \alpha \mathbf{A} + \beta \mathbf{A}$ $\alpha(\beta \mathbf{A}) = (\alpha\beta)\mathbf{A}$ $1 \mathbf{A} = \mathbf{A}$

PROPERTIES OF MATRIX MULTIPLICATION

$$A(B+C)=AB+AC$$
$$(A+B)C=AC+BC$$
$$A(BC)=(AB)C$$
$$(\alpha A)B=\alpha (AB)$$

These properties hold whenever **A**, **B** and **C** are matrices of appropriate sizes so that indicated operations make sense, and α and β are any scalars.

References

 S. KUREPA, Konačno dimenzionalni prostori i primjene, Tehnička knjiga, Zagreb, 1967.

- [2] S. KUREPA, Uvod u linearnu algebru, Školska knjiga, Zagreb, 1978.
- [3] J. A. THORPE, P. G. KUMPEL, *Elementary Linear Algebra*, CBS College Publishing, Philadelphia, 1984.