The matrix of a linear operator in a pair of ordered bases*

Dragan Jukić ${ }^{\dagger}$

Abstract

In the lecture it is shown how to represent a linear operator by a matrix. This representation allows us to define an operation with matrices.

Key words: linear operator, matrix of a linear operator, matrix operations

Sažetak. Matrica linearnog operatora u paru uređenih baza. Na predavanju je pokazano kako se linearni operator može reprezentirati matricom. Ta reprezentacija omogućava nam da definiramo operacije s matricama.

Ključne riječi: linearan operator, matrica linearnog operatora, operacije s matricama

1. Defining a linear operator

The function from one vector space to another vector space is called the operator. In this lecture we shall deal only with finite dimensional vector spaces.

Definition 1. Let V and W be any two finite dimensional real vector spaces. We say that the operator $\mathcal{A}: V \rightarrow W$ is linear if

$$
\mathcal{A}(\lambda \mathbf{x}+\mu \mathbf{y})=\lambda \mathcal{A}(\mathbf{x})+\mu \mathcal{A}(\mathbf{y})
$$

for all scalars $\lambda, \mu \in \mathbb{R}$ and for all vectors $\mathbf{x}, \mathbf{y} \in V$. It is easy to check that the operator $\mathcal{A}: V \rightarrow W$ is linear if and only if \mathcal{A} is an additive and homogenous operator, where we define:

Definition 2. An operator $\mathcal{A}: V \rightarrow W$ is said to be:
a) additive if $\mathcal{A}(\mathbf{x}+\mathbf{y})=\mathcal{A}(\mathbf{x})+\mathcal{A}(\mathbf{y})$ for all vectors $\mathbf{x}, \mathbf{y} \in V$;
b) homogenous if $\mathcal{A}(\lambda \mathbf{x})=\lambda \mathcal{A}(\mathbf{x})$ for each scalar $\lambda \in \mathbb{R}$ and for each vector $\mathrm{x} \in V$.

[^0]Properties of additivity and homogenity of a linear operator are graphically illustrated in Figure 1.

Figure 1.
Example 1. Let us give some examples of a linear operator $\mathcal{A}: V \rightarrow W$:
a) $V=W=\mathbb{R}^{2}, \mathcal{A}\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right)$ (reflection of a plane in the $x_{1}-$ axis);
b) $V=W=\mathbb{R}^{2}, \mathcal{A}\left(x_{1}, x_{2}\right)=\left(-x_{1},-x_{2}\right)$ (symmetry of a plane about the origin);
c) $V=W=\mathbb{R}^{2}, \mathcal{A}\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$ (orthogonal projection of a plane on x_{1} axis)

Lemma 1. Two linear operators $\mathcal{A}, \mathcal{B}: V \rightarrow W$ are equal if and only if they attain the same values on the basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ for V.
Proof. If two operators are equal, then they attain the same values on basis,
Let us prove the converse. According to the assumption, we have $\mathcal{A}\left(\mathbf{e}_{i}\right)=\mathcal{B}\left(\mathbf{e}_{i}\right)$ for every $i=1, \ldots, n$. Let us prove that $\mathcal{A}(\mathbf{x})=\mathcal{B}(\mathbf{x})$ for every $\mathbf{x} \in V$. For that purpose, let $\mathbf{x}=x_{1} \mathbf{e}_{1}+\ldots+x_{n} \mathbf{e}_{n}$ be a linear combination of the vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ of the basis for V. Then we have

$$
\begin{aligned}
\mathcal{A}(\mathbf{x}) & =\mathcal{A}\left(x_{1} \mathbf{e}_{1}+\ldots+x_{n} \mathbf{e}_{n}\right)=x_{1} \mathcal{A}\left(\mathbf{e}_{1}\right)+\ldots x_{n} \mathcal{A}\left(\mathbf{e}_{n}\right)=x_{1} \mathcal{B}\left(\mathbf{e}_{1}\right)+\ldots x_{n} \mathcal{B}\left(\mathbf{e}_{n}\right) \\
& =\mathcal{B}\left(x_{1} \mathbf{e}_{1}+\ldots+x_{n} \mathbf{e}_{n}\right)=\mathcal{B}(\mathbf{x})
\end{aligned}
$$

from where we conclude that $\mathcal{A}=\mathcal{B}$.
The next Theorem tells us that each linear operator $\mathcal{A}: V \rightarrow W$ is completely determined by its values on vectors of the basis for V.

Theorem 1. Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ be any basis for V and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be any n vector in W. Then there is one and only one linear operator $\mathcal{A}: V \rightarrow W$ such that

$$
\mathcal{A}\left(\mathbf{e}_{i}\right)=\mathbf{v}_{i}, \quad i=1, \ldots, n
$$

Proof. Each vector $\mathbf{x} \in V$ is uniquely expressible as a linear combination of vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}: \mathbf{x}=x_{1} \mathbf{e}_{1}+\ldots+x_{n} \mathbf{e}_{n}$. It is easy to check that the operator $\mathcal{A}: V \rightarrow W$ defined by the formula $\mathcal{A}(\mathbf{x})=x_{1} \mathbf{v}_{1}+\ldots+x_{n} \mathbf{v}_{n}$ is a linear operator and that $\mathcal{A}\left(\mathbf{e}_{i}\right)=\mathbf{v}_{i}, i=1, \ldots, n$.

If $\mathcal{B}: V \rightarrow W$ is a linear operator such that $\mathcal{B}\left(\mathbf{e}_{i}\right)=\mathbf{v}_{i}, i=1, \ldots, n$, then from Lemma 1 we obtain $\mathcal{A}=\mathcal{B}$

Because linear operators are functions, they can be added, multiplied by scalars and composed with one another.

- The $\operatorname{sum} \mathcal{C}=\mathcal{A}+\mathcal{B}$ of linear operators $\mathcal{A}, \mathcal{B}: V \rightarrow W$ is again a linear operator. Namely, for every scalar $\lambda, \mu \in \mathbb{R}$ and for every vector $\mathbf{x}, \mathbf{y} \in V$ there holds:

$$
\begin{aligned}
\mathcal{C}(\lambda \mathbf{x}+\mu \mathbf{y}) & =\mathcal{A}(\lambda \mathbf{x}+\mu \mathbf{y})+\mathcal{B}(\lambda \mathbf{x}+\mu \mathbf{y})=(\lambda \mathcal{A}(\mathbf{x})+\mu \mathcal{A}(\mathbf{y}))+(\lambda \mathcal{B}(\mathbf{x})+\mu \mathcal{B}(\mathbf{y})) \\
& =\lambda(\mathcal{A}(\mathbf{x})+\mathcal{B}(\mathbf{x}))+\mu(\mathcal{A}(\mathbf{x})+\mathcal{B}(\mathbf{x}))=\lambda \mathcal{C}(\mathbf{x})+\mu \mathcal{C}(\mathbf{y})
\end{aligned}
$$

- The scalar multiple $\mathcal{C}=\alpha \mathcal{A}$ of the linear operator $\mathcal{A}: V \rightarrow W$ by the scalar $\alpha \in \mathbb{R}$ is again a linear operator:

$$
\begin{aligned}
\mathcal{C}(\lambda \mathbf{x}+\mu \mathbf{y}) & =\alpha \mathcal{A}(\lambda \mathbf{x}+\mu \mathbf{y})=\alpha(\lambda \mathcal{A}(\mathbf{x})+\mu \mathcal{A}(\mathbf{y}))=\lambda(\alpha \mathcal{A}(\mathbf{x}))+\mu(\alpha \mathcal{A}(\mathbf{y})) \\
& =\lambda \mathcal{C}(\mathbf{x})+\mu \mathcal{C}(\mathbf{y}) .
\end{aligned}
$$

- The composition $\mathcal{C}=\mathcal{A} \circ \mathcal{B}$ of linear operators $\mathcal{B}: V \rightarrow W$ and $\mathcal{A}: W \rightarrow Z$ is the linear operator from V to Z :

$$
\begin{aligned}
\mathcal{C}(\lambda \mathbf{x}+\mu \mathbf{y}) & =\mathcal{A}(\mathcal{B}(\lambda \mathbf{x}+\mu \mathbf{y}))=\mathcal{A}(\lambda \mathcal{B}(\mathbf{x})+\mu \mathcal{B}(\mathbf{y}))=\lambda \mathcal{A}(\mathcal{B}(\mathbf{x}))+\mu \mathcal{A}(\mathcal{B}(\mathbf{y})) \\
& =\lambda \mathcal{C}(\mathbf{x})+\mu \mathcal{C}(\mathbf{y}) .
\end{aligned}
$$

2. The matrix of a linear operator

In this section we will show how to associate a matrix with each linear operator $\mathcal{A}: V \rightarrow W$, where V and W are any two finite dimensional vector spaces.

Suppose $(\mathbf{e})=\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right)$ is an ordered basis for the finite dimensional vector space V, and $(\mathbf{f})=\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}\right)$ is an ordered basis for the finite dimensional vector space W. According to Theorem 1 , the operator \mathcal{A} is completly determined by its values $\mathcal{A}\left(\mathbf{e}_{j}\right), j=1, \ldots, n$, on vectors of the basis. Since $\mathcal{A}\left(\mathbf{e}_{j}\right)$ are vectors in W and $(\mathbf{f})=\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}\right)$ is the basis for W, there are unique scalars $a_{i j}(i=1, \ldots, m, j=$ $1, \ldots, n)$ such that:

$$
\begin{align*}
& \mathcal{A}\left(\mathbf{e}_{1}\right)=a_{11} \mathbf{f}_{1}+a_{21} \mathbf{f}_{2}+\ldots+a_{m 1} \mathbf{f}_{m} \\
& \mathcal{A}\left(\mathbf{e}_{2}\right)=a_{12} \mathbf{f}_{1}+a_{22} \mathbf{f}_{2}+\ldots+a_{m 2} \mathbf{f}_{m} \\
& \vdots \tag{1}\\
& \mathcal{A}\left(\mathbf{e}_{n}\right)=a_{1 n} \mathbf{f}_{1}+a_{2 n} \mathbf{f}_{2}+\ldots+a_{m n} \mathbf{f}_{m}
\end{align*}
$$

In an ordered pair of the bases $(\mathbf{e}),(\mathbf{f})$ to the operator \mathcal{A} there belong $m \cdot n$ scalars $a_{i j}(i=1, \ldots, m, j=1, \ldots, n)$ which can be displayed in a rectangular array

$$
\mathbf{A}(\mathbf{f}, \mathbf{e})=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{2}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

called the matrix of a linear operator \mathcal{A} in an ordered pair of bases (e), (f). The matrix (2) has m rows and n columns. Because of this, we say that it has the order $m \times n$. The matrix (2) may be written in an abbreviated form as $\mathbf{A}=\left(a_{i j}\right)$.

Example 1.. Let $\mathcal{D}: \mathcal{P}^{3} \rightarrow \mathcal{P}^{2}$ be a linear operator that assigns to each polynomial its derivative, $(\mathbf{e})=\left(x^{3}, x^{2}, x, 1\right)$ the basis for \mathcal{P}^{3} and $(\mathbf{f})=\left(x^{2}, x, 1\right)$ the basis for \mathcal{P}^{2}. Then

$$
\mathbf{D}(\mathbf{f}, \mathbf{e})=\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

3. The algebra of matrices

Let $M_{m \times n}$ be the set of all $m \times n$ real matrices and $\mathcal{L}(V, W)$ be the set of all linear operators from V to W. By using Theorem 1 it is easy to see that the mapping $\mathcal{A} \mapsto \mathbf{A}(\mathbf{e}, \mathbf{f})$ is a bijection from $\mathcal{L}(V, W)$ onto $M_{m \times n}$. This bijection allows us to represent operations by operators and vectors by operations with matrices.

Equality of matrices

Let (2) be a matrix of a linear operator $\mathbf{A}: V \rightarrow W$. Furthermore, let $\mathcal{B}: V \rightarrow W$ be a linear operator,

$$
\begin{align*}
\mathcal{B}\left(\mathbf{e}_{1}\right) & =b_{11} \mathbf{f}_{1}+b_{21} \mathbf{f}_{2}+\ldots+b_{m 1} \mathbf{f}_{m} \\
\mathcal{B}\left(\mathbf{e}_{2}\right) & =b_{12} \mathbf{f}_{1}+b_{22} \mathbf{f}_{2}+\ldots+b_{m 2} \mathbf{f}_{m} \\
& \vdots \tag{3}\\
\mathcal{B}\left(\mathbf{e}_{n}\right) & =b_{1 n} \mathbf{f}_{1}+b_{2 n} \mathbf{f}_{2}+\ldots+b_{m n} \mathbf{f}_{m}
\end{align*}
$$

its values on vectors of the basis $\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}$ and

$$
\mathbf{B}(\mathbf{f}, \mathbf{e})=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \tag{4}\\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & & & \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right]
$$

its matrix in an ordered pair of bases (e), (f). According to Lemma $1, \mathcal{A}=\mathcal{B}$ if and only if $\mathcal{A}\left(\mathbf{e}_{i}\right)=\mathcal{B}\left(\mathbf{e}_{i}\right)$ for all $i=1, \ldots, m$, i.e. if $a_{i j}=b_{i j}$ for all $i=1, \ldots, m$ and for all $j=1, \ldots, n$. This gives us a criterion of equality of matrices:

Matrices $\mathbf{A}=\left(a_{i j}\right)$ and $\mathbf{B}=\left(b_{i j}\right)$ are equal if and only if they have the same order and $a_{i j}=b_{i j}$ for all $i=1, \ldots, m$, and $j=1, \ldots, n$.

Scalar multiple of matrices

Multiplying (1) with scalar $\alpha \in \mathbb{R}$ we conclude that in an ordered pair of bases $(\mathbf{e}),(\mathbf{f})$ the operator $\alpha \mathcal{A}: V \rightarrow W$ has a matrix

$$
\left[\begin{array}{cccc}
\alpha \cdot a_{11} & \alpha \cdot a_{12} & \cdots & \alpha \cdot a_{1 n} \\
\alpha \cdot a_{21} & \alpha \cdot a_{22} & \cdots & \alpha \cdot a_{2 n} \\
\vdots & & & \\
\alpha \cdot a_{m 1} & \alpha \cdot a_{m 2} & \cdots & \alpha \cdot a_{m n}
\end{array}\right]
$$

Motivated by this, we define:
The scalar multiple $\alpha \mathbf{A}$ of the matrix \mathbf{A} by the scalar α is the matrix whose entries are obtained by multiplying all of the entries in \mathbf{A} by α.

Addition of matrices

Adding (1) and (3) we see that to the operator $\mathcal{C}=\mathcal{A}+\mathcal{B}$ in an ordered pair of bases $(\mathbf{e}),(\mathbf{f})$, there belongs a matrix
$\mathbf{C}(\mathbf{f}, \mathbf{e})=\left[\begin{array}{cccc}c_{11} & c_{12} & \cdots & c_{1 n} \\ c_{21} & c_{22} & \cdots & c_{2 n} \\ \vdots & & & \\ c_{m 1} & c_{m 2} & \cdots & c_{m n}\end{array}\right]=\left[\begin{array}{cccc}a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\ \vdots & & & \\ a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}\end{array}\right]$.
The sum $\mathbf{A}+\mathbf{B}$ of the matrices $\mathbf{A}=\left(a_{i j}\right)$ and $\mathbf{B}=\left(b_{i j}\right)$ of the order $m \times n$ is a matrix $\mathbf{C}=\left(c_{i j}\right)$ of the same order, where

$$
c_{i j}=a_{i j}+b_{i j} \quad(i=1, \ldots, m ; j=1, \ldots n)
$$

Multiplication of matrices

Suppose $\mathcal{B}: V \rightarrow W$ and $\mathcal{A}: W \rightarrow Z$ are linear operators. Furthermore, suppose $(\mathbf{e})=\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right),(\mathbf{f})=\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{p}\right)$ and $(\mathbf{g})=\left(\mathbf{g}_{1}, \ldots, \mathbf{g}_{m}\right)$ are ordered bases for vector spaces V, W and Z, respectively. Let us show how by using matrices $\mathbf{A}=\left(a_{i j}\right):=\mathbf{A}(\mathbf{g}, \mathbf{f})$ and $\mathbf{B}=\left(b_{i j}\right):=\mathbf{B}(\mathbf{f}, \mathbf{e})$ one can determine the matrix $\mathbf{C}:=\mathbf{C}(\mathbf{g}, \mathbf{e})$ of the linear operator $\mathcal{C}=\mathcal{A} \circ \mathcal{B}$. Let $\mathbf{C}=\left(c_{i j}\right)$. Then

$$
\begin{equation*}
\mathcal{C}\left(\mathbf{e}_{j}\right)=\sum_{i=1}^{m} c_{i j} \mathbf{g}_{i}, \quad j=1, \ldots, n \tag{5}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
\mathcal{C}\left(\mathbf{e}_{j}\right) & =\mathcal{A}\left(\mathcal{B}\left(\mathbf{e}_{j}\right)\right)=\mathcal{A}\left(\sum_{k=1}^{p} b_{k j} \mathbf{f}_{k}\right)=\sum_{k=1}^{p} b_{k j} \mathcal{A}\left(\mathbf{f}_{k}\right)=\sum_{k=1}^{p} b_{k j} \sum_{i=1}^{m} a_{i k} \mathbf{g}_{i} \tag{6}\\
& =\sum_{i=1}^{m}\left(\sum_{k=1}^{p} a_{i k} b_{k j}\right) \mathbf{g}_{i} .
\end{align*}
$$

According to (5) and (6), we find that $\sum_{i=1}^{m} c_{i j} \mathbf{g}_{i}=\sum_{i=1}^{m}\left(\sum_{k=1}^{p} a_{i k} b_{k j}\right) \mathbf{g}_{i}$, from where, because of the linear independence of vectors \mathbf{g}_{i}, we obtain:

$$
\begin{equation*}
c_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j}, \quad i=1, \ldots, m, j=1, \ldots, n \tag{7}
\end{equation*}
$$

The product $\mathbf{A B}$ of the matrices \mathbf{A} and \mathbf{B} is defined only if matrices \mathbf{A} and \mathbf{B} are conformable for multiplication, i.e. if the number of columns in \mathbf{A} is the same as the number of rows in \mathbf{B}. If \mathbf{A} has the order $m \times p$ and \mathbf{B} has the order $p \times n$, then the product $\mathbf{A B}$ is an $m \times n$ matrix $\mathbf{C}=\left(c_{i j}\right)$ with entries defined by (7).
We conclude this section by listing the fundamental algebraic properties of matrix addition, scalar multiplication, and matrix multiplication.

Properties of matrix addition

$\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
$(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})$
$\mathbf{O}+\mathbf{A}=\mathbf{A}+\mathbf{O}=\mathbf{A}$, where \mathbf{O} is the matrix with all entries equal to zero
$\mathbf{A}+(-\mathbf{A})=(-\mathbf{A})+\mathbf{A}=\mathbf{O}$, where $-\mathbf{A}=(-1) \mathbf{A}$
Properties of scalar multiplication

$$
\begin{aligned}
& \alpha(\mathbf{A}+\mathbf{B})=\alpha \mathbf{A}+\alpha \mathbf{B} \\
& (\alpha+\beta) \mathbf{A}=\alpha \mathbf{A}+\beta \mathbf{A} \\
& \alpha(\beta \mathbf{A})=(\alpha \beta) \mathbf{A} \\
& 1 \mathbf{A}=\mathbf{A}
\end{aligned}
$$

Properties of matrix multiplication

```
\(\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}\)
\((A+B) C=A C+B C\)
\(\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}\)
\((\alpha \mathbf{A}) \mathbf{B}=\alpha(\mathbf{A B})\)
```

These properties hold whenever \mathbf{A}, \mathbf{B} and \mathbf{C} are matrices of appropriate sizes so that indicated operations make sense, and α and β are any scalars.

References

[1] S. Kurepa, Konačno dimenzionalni prostori i primjene, Tehnička knjiga, Zagreb, 1967.
[2] S. Kurepa, Uvod u linearnu algebru, Školska knjiga, Zagreb, 1978.
[3] J. A. Thorpe, P. G. Kumpel, Elementary Linear Algebra, CBS College Publishing, Philadelphia, 1984.

[^0]: *The lecture presented at the Mathematical Colloquium in Osijek organized by Croatian Mathematical Society - Division Osijek, October 19, 1996.
 ${ }^{\dagger}$ Faculty of Food Technology, F. Kuhača 18, HR-31 000 Osijek, e-mail: jukicd@oliver.efos.hr

