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Representations of vertex algebras∗

Dražen Adamović†

Abstract. In this paper we present some results on the represen-
tation theory of vertex operator (super) algebras associated to affine Lie
algebras and Neveu-Schwarz algebra.
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Sažetak. Reprezentacije verteks algebri. U članku su prikazani
neki rezultati o teoriji reprezentacija xerteks operator (super) algebri
pridruženih afinim Liejevim algebrama i Neveu-Schwarz algebri.
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1. Introduction

The theory of vertex algebras has developed rapidly in the last few years. These
rich algebraic structures provide the proper formulation for the moonshine module
construction for the Monster group ([5], [8] ) and also give a lot of new insight into
the representation theory of the infinite-dimensional Lie algebras and superalgebras
(see [4], [12], [9], [14]). The modern notion of chiral algebra in conformal field theory
[6] in physics essentially corresponds to the mathematical notion of vertex operator
algebra. The axiomatic approach to vertex operator algebra theory was made in [8]
and [7].

Much work on vertex operator algebras has been concentrated on the con-
crete examples of vertex operator algebras and the representation theory. It is of
great importance to investigate vertex algebras which are constructed from infinite-
dimensional Lie algebras. In this paper we shall present some results on vertex
operator (super)algebras associated to the representations of affine Lie algebras
and Neveu-Schwarz algebra.
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2. General definitions

For a rational function f(z, w), with possible poles only at z = w, z = 0 and
w = 0, we denote by ιz,wf(z, w) the power series expansion of f(z, w) in the domain
| z |>| w |. Set Z+ = {0, 1, 2, · · ·}, N = {1, 2, 3, · · ·}.

A superalgebra is an algebra V with a Z2-gradation V = V0 ⊕ V1. Elements in
V0 (resp. V1) are called even (resp. odd). Let ã be 0 if a ∈ V0, and 1 if a ∈ V1.

Definition 1. A vertex operator superalgebra (SVOA) is a 1
2Z+-graded vector space

V =
⊕

n∈ 1
2Z+

V (n) with a sequence of linear operators {a(n)|n ∈ Z} ⊂ End V

associated to every a ∈ V , whose generating series Y (a, z) =
∑

n∈Z a(n)z−n−1 ∈
(End V )[[z, z−1]], called the vertex operators associated to a, satisfy the following
axioms:

(A1) Y (a, z) = 0 iff a = 0.

(A2) There is a vacuum vector, which we denote by 1 , such that

Y (1, z) = IV (IV is the identity of EndV ).

(A3) There is a special element ω ∈ V (called the Virasoro element), whose vertex
operator we write in the form

Y (ω, z) =
∑

n∈Z
ω(n)z−n−1 =

∑

n∈Z

Lnz−n−2,

such that
L0 |V (n)= nI |V (n),

Y (L−1a, z) =
d

dz
Y (a, z) for every a ∈ V, (1)

[Lm, Ln] = (m− n)Lm+n + δm+n,0
m3 −m

12
c, (2)

where c is some constant in C, which is called the rank of V .

(A4) The Jacobi identity holds for any m,n ∈ Z, i.e.

Resz−w

(
Y (Y (a, z − w)b, w)ιw,z−w((z − w)mzn))

= Resz

(
Y (a, z)Y (b, w)ιz,w(z − w)mzn)

−(−1)ãb̃Resz

(
Y (b, w)Y (a, z)ιw,z(z − w)mzn)

An element a ∈ V is called homogeneous of degree n if a is in V (n). In this case
we write deg a = n.

Define a natural Z2-gradation of V by letting

V0 =
⊕

n∈Z+

V (n), V1 =
⊕

n∈ 1
2+Z+

V (n).

V = V0 + V1. V0 (resp. V1) is called the even (resp. odd) part of V . Elements in V0

(resp. V1) are called even (resp. odd).
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Remark 1. If in the definition of vertex operator superalgebra the odd subspace
V1 = 0 we get the usual definition of vertex operator algebra (VOA).

Definition 2. Given an SV OA V , a representation of V (or V-module) is a 1
2Z+-

graded vector space M =
⊕

n∈ 1
2Z+

M(n) and a linear map

V −→ (End M)[[z, z−1]], a 7−→ YM (a, z) =
∑

n∈Z
a(n)z−n−1,

satisfying

(R1) a(n)M(m) ⊂ M(m + deg a− n− 1) for every homogeneous element a.

(R2) YM (1, z) = IM , and setting YM (ω, z) =
∑

n∈Z Lnz−n−2, we have

[Lm, Ln] = (m− n)Lm+n + δm+n,0
m3−m

12 c,

YM (L−1a, z) = d
dz YM (a, z) for every a ∈ V.

(R3) The Jacobi identity holds for any m,n ∈ Z, i.e.

Resz−w

(
YM (Y (a, z − w)b, w)ιw,z−w((z − w)mzn))

= Resz

(
YM (a, z)YM (b, w)ιz,w(z − w)mzn)

−(−1)ãb̃Resz

(
YM (b, w)YM (a, z)ιw,z(z − w)mzn)

The notions of submodules, quotient modules, submodules generated by a sub-
set, direct sums, irreducible modules, completely reducible modules, etc., can be
introduced in the usual way. As a module over itself, V is called the adjoint mod-
ule. A submodule of the adjoint module is called an ideal of V . Given an ideal I in
V such that 1 6∈ I, ω 6∈ I, the quotient V/I admits a natural SVOA structure.

Definition 3. An SV OA is called rational if it has finitely many irreducible mod-
ules and every module is a direct sum of irreducibles.

3. VOAs associated to affine Lie algebras

We shall start with recalling some basic facts about affine Lie algebras and their
representations.

Let g be a finite-dimensional simple Lie algebra over C, h its Cartan subalgebra,
and ∆ root system of (g,h). We fix a set of positive root ∆+ in ∆. Let θ denote the
maximal root in ∆ and (·, ·) be nondegenerate symmetric bilinear form on g such
that (θ, θ) = 2. Let h∨ denote the dual Coxeter number. The affine Lie algebra ĝ
associated with g is defined as

g ⊗C[t, t−1]⊕Cc⊕ Cd

where c is an element of the center of ĝ and the Lie algebra structure is given by

[x⊗ tn, y ⊗ tm] = [x, y]⊗ tn+m + n(x, y)δn+m,0c, [d, x⊗ tn] = nx⊗ tn
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for x, y ∈ g, n,m ∈ Z. We will write x(n) for x ⊗ tn. Let ĝ′ be the subalgebra
g ⊗C[t, t−1]⊕Cc. Put

ĝ+ = g ⊗C[t]t, ĝ+ = g ⊗C[t−1][t−1].

It is clear that ĝ+ and ĝ− are Lie subalgebras of ĝ. If we identify g with g ⊗ 1, g
becomes a subalgebra of ĝ.

Let U be any g–module and ` ∈ C. Set

c.v = `v, ĝ+.v = 0

for any v ∈ U . Then U becomes P = ĝ+ + g + Cc-module. We define the induced
ĝ′-module (so called generalized Verma module) with M(`, U) = U(ĝ′)⊗U(P ) U .

For λ ∈ h∗ with V (λ) we denote the irreducible highest weight g–module with
the highest weight λ. We will write M(`, λ) for M(`, V (λ)). Let L(`, λ) denote its
irreducible quotient. In the case λ = 0, V (0) is the trivial g-module. Let 1 be the
highest weight vector in M(`, 0).

Let P+ denote the set of all dominant integral weights for g. Then V (λ), λ ∈ P+,
are all finite-dimensional g-modules. The ĝ′-modules L(`, λ) such that ` ∈ N and
(λ, θ) ≤ ` are are all integrable modules of level ` in the category O (cf. [K]).

Now we recall a construction of VOAs associated to the highest weight ĝ-modules
M(`, 0) and L(`, 0). Let

Y (x(−1)1, z) =
∑

n∈Z
x(n)z−n−1, (x ∈ g), (3)

be the family of fields acting on M(`, 0) defined with the action of x(n).
If ` 6= −h∨, ĝ–module M(`, 0) has the structure of vertex operator algebra,

where
Y : M(`, 0) → End(M(`, 0))[[z, z−1]

is a unique extension of the fields defined by (3). Moreover, on the irreducible
ĝ–module L(`, 0) we have the structure of a simple VOA(cf. [9], [14], [13]).

Theorem 1. ([9], [12], [14]) If ` ∈ N, then the vertex operator algebra L(`, 0) is
rational and the set

{L(`, λ) | λ ∈ P+, (λ, θ) ≤ `}
provides a complete list of irreducible L(`, 0)-modules.

Remark 2. Vertex operator algebras L(`, 0) of certain rational levels ` for affine
Lie algebras A

(1)
1 and C

(1)
n have been studied in [4] and [1]. The irreducible repre-

sentations for these vertex operator algebras in the category O are given with the
certain set of modular invariant representations for affine Lie algebra (see [4], [1],
[2]).

4. Neveu-Schwarz SVOAs

In this section we will be concentrated on the SVOAs associated to the Neveu-
Schwarz algebra. We will recall the authors result on the rationality on the Neveu-
Schwarz SVOAs.
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Let us recall first that the Neveu-Schwarz algebra is the Lie superalgebra

NS =
⊕

n∈Z
CLn

⊕ ⊕

m∈ 1
2+Z

CGm

⊕
CC

with commutation relations (m,n ∈ Z):

[Lm, Ln] = (m− n)Lm+n + δm+n,0
m3 −m

12
C,

[Gm+ 1
2
, Ln] = (m +

1
2
− n

2
)Gm+n+ 1

2
,

[Gm+ 1
2
, Gn− 1

2
]+ = 2Lm+n +

1
3
m(m + 1)δm+n,0C,

[Lm, C] = 0, [Gm+ 1
2
, C] = 0.

Set
NS± =

⊕

n∈N
CL±n

⊕ ⊕

m∈ 1
2+Z+

CG±m.

Given complex numbers c and h, the Verma module Mc,h over NS is the free
U(NS−)-module generated by 1, such that NS+1 = 0, L01 = h ·1 and C ·1 = c ·1.
There exists a unique maximal proper submodule Jc,h of Mc,h. Denote the quotient
Mc,h / Jc,h by Lc,h. Recall that v ∈ Mc,h is called a singular vector if NS+v = 0
and v is an eigenvector of L0. For example, G− 1

2
1 is a singular vector of Mc,0

for any c. Denote Mc,0 /〈G− 1
2
1〉 by Mc, where 〈G− 1

2
1〉 is the submodule of Mc,0

generated by the singular vector G− 1
2
1. For simplicity we denote Lc,0 by Lc.

Define the following fields

Y (L−21, z) = L(z) =
∑

n∈Z
Lnz−n−2, Y (G− 3

2
1, z) = G(z) =

∑

n∈Z
G

n+
1
2
z−n−2. (4)

Then there is a unique extension of the fields (4) such that Mc becomes SVOA
and NS–modules Mc,h, Lc,h become modules for SVOA Mc . Moreover, on the
irreducible NS–module Lc we have the structure of simple SVOA. We are interested
in the classification of irreducible Lc–modules.

Set

cp,q =
3
2
(1− 2(p− q)2

pq
), hr,s

p,q =
(sp− rq)2 − (p− q)2

8pq
.

Whenever we mention cp,q again, we always assume that p , q ∈ {2, 3, 4, · · ·}, p− q ∈
2Z, and that (p− q)/2 and q are relatively prime to each other. Set

Sp,q = {hr,s
p,q | 0 < r < p, 0 < s < q, r − s ∈ 2Z}.

For c 6= cp,q, we have that Lc = Mc. So, in this case SVOA Lc is not rational (cf.
[12]).

Theorem 2. ([3], Theorem 3.3) The vertex operator superalgebra Lcp,q is ratio-
nal. Moreover, the minimal series modules Lc,hr,s , 0 < r < p, 0 < s < q, r − s ∈ 2Z
are all the irreducible representations of Lc.
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Remark 3. The proof of the Theorem 2. uses the representation theory of VOAs
associated to affine Lie algebras A

(1)
1 from [4], and the Goddard-Kent-Olive con-

struction [10].

Remark 4. Theorem2. gives the affirmative answer on the Kac-Wang conjecture
[[12], Conjecture 3.1].
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[1] D. Adamović, Some rational vertex algebras, Glasnik matematički
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