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Abel-type inequalities, complex numbers and
Gauss—Pdlya type integral inequalities

S.S. DraGOMIR® C. E. M. PEARCEAND J. SUNDE!

Abstract. We obtain inequalities of Abel type but for nondecreas-
ing sequences rather than the usual nonincreasing sequences. Striking
complex analogues are presented. The inequalities on the real domain
are used to derive new integral inequalities related to those of Gauss—
Pdlya type.
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Sazetak. Nejednakosti Abelovog tipa, kompleksni brojevi i
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1. Introduction

The following result is well-known in the literature as Abel’s inequality (see [1], p.
335).

Theorem 1. Let p be a real n—tuple and a a nonnegative, nonincreasing n—tuple.
Then for Py := )", | pi, we have

n

a1 min P, < E pia; < a; max Py.

1<k<n — 1<k<n
i—

This early result was subsequently generalized by Bromwich (see [1], p. 337),
who derived the following theorem.
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Theorem 2. For a given real n—tuple p and given integer v (1 < v < n), de-

fine H = hy = 0, H, = max(Py,...,Py_1), hy = min(Py,...,P,_1), H, =
max(P,,...,P,), h, = min(P,,...,P,). If a is a positive, nonincreasing n—tuple,

then

n
ho(ay — ay) + hya, < Zpiai < Hy(ay — ay) + H, a,.
=1

These inequalities contain in their proof the identities

n n n n n n—1 A
quxaz' = Zpi+z (Zpk) Aa;—q :anZPi—Z < pk) Aa; (1)
i=1 i=1 i=1 k=1

1=2 \k=t i=1

(where Aa; := a;+1 — a;) due to Abel.

This nest of relations is a surprisingly fertile one despite its simplicity. Recently
the Abel motif has been exploited to effect by Pearce, Pecari¢ and Sunde [2] in
connection with the Chebyshev and Popoviciu inequalities.

In this note we ring the changes and take a as a nondecreasing rather than a
nonincreasing n—tuple. In Section 2 we present Abel-type inequalities for this case.
In Section 3 we derive some analogous results in the complex domain. These are
striking in that although there are constraints involved on the complex n—tuples z
and a, the relations hold for any complex n—tuples w whatsoever.

Finally, in Section 4, we use the results of Section 2 to derive an integral in-
equality. Recently a number of results have been derived extending the classical
Gauss—Polya inequalities to yield various results connecting weighted means of a set
of functions and their derivatives (see [3], [5—7]). The methods are here analogous
to some used in that connection, but the inequalities found are new and different.

2. Inequalities for real numbers

We start with the following theorem.

Theorem 3. Let a = (ay,...,a,) and p = (p1,...,pn) be n-tuple of real numbers
such that a1 < ... <a, and Y ,_;pr >0 fori=2,...,n. Then

> pilai| = || Pl - (2)

i=1

n
Zpiai Z alpn +
i=1

Proof. As a is nondecreasing we have that
Aai—1 = a; —a;—1 = |a; — a;—1| > [|a;| = |a;—1]| = |Ala;—1|[ > 0

foralli=2,...,n and

0< Zpk =
k=i

n
Zpk
k=i
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for all i = 2,...,n. Thus, by the first equality in (1), we have

n
S

k=i

|Aa;—1]

sz’ai —a P, = Z (Zpk> Aa;_ = Z
i=1

=2 \k=i =2

n n n n
SIS (zpk> Ala|
i=2 | k=i i=2 | \k=i
n n
-y (zpk> M.
i=2 \k=i
By Abel’s identity for |a| := (Ja1],. .. ,|an|), we have also that
n n n n
S el oY =3 (zpk> Aol
i=1 i=1 i=2 \k=i
Thus
n n n
Zpiai —ay Zpi > ZPHM\ —lay|Pn| >0
i=1 i=1 i=1
and (2) is proved. m)
The second result is embodied in the following theorem.
Theorem 4. Leta = (ai,...,a,) and p = (p1,...,pn) be n—tuples of real numbers

such that a; < ... <a, andzzzlpkzo (i=1,....,n—1). Then

an Py — Zpiai > > 0. (3)
=1

n
lan| Py = pilail
i=1

Proof. By the second identity in (1) we can write

n—1 n—1 %
anPp =Y piai =Y ( pk) Aa.
i=1 k=1

i=1 \k=

Since
Aa; = aiy1 — a; = |air1 — ai] 2 |[aip1]| — |ai|| = |Alail|

and Zpk >0fori=1,...,n—1, we have that

k=1
n—1 7 n—1 7 n—1 7
z( ) poc= SIS w18t = S [S oe 18
=1 k=1 1=1 |n=1 1=1 |k=1

n—1]| 14 n—1 i
S TS (2) Alad|-
i1=1 |n=1 =1 k=1
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By Abel’s identity for |a| we have also

n n—1 [
> pilail = lan|P =) ( pk) Alagl,
i=1 k=1

i=1 =

whence we derive (3). a

Remark 1. The condition Y ;_,pr >0 (i =2,...,n) is equivalent to P,, — P;,_1 >
0(i=2,...,n) or P, > P, fori =1,....,n—1 and the condition Y ;_, pr > 0,
(t=1,...,n—1) is equivalent to P, >0 (i=1,...,n—1).

The following corollary also holds.

Corollary 1. Suppose a is nondecreasing and p € IR"™ with P, > P; > 0 for all
t1=1,...,n—1. Then

n n
|an‘Pn_Zpi‘ai| Zpi|ai‘_|a1|Pn
i=1 i=1

Remark 2. The above inequality is similar to Abel’s result as it provides an upper
and a lower bound for Z?:l pia; when the sequence a is nondecreasing and p is
such that 0 < P; < P, foralli=1,...,n—1.

anPn_

n
> Zpiai > a1 P, +
i=1

3. Inequalities for complex numbers

We now derive some similar results valid for complex numbers.

Theorem 5. Suppose z = (z1,...,2,) € C" and a = (ay,...,a,) € R"™ are such
that

|Z¢*Zi_1| Sai—ai_l VZ:2,,H (4)
Then for all w = (w1, ...,w,) € C", we have

n

n
> wilzi| = [z1] Y w;
) =1

i=1

? )

n n
S Jewilas — ar 35 | > max{
7=1 ;

i=1

n n
Z W;z; — 21 Z w;
i=1 i=1

n

n
> willzi] = |21 X2 |wil

=1 =1

)

n n
> wilzi| —|z1] 3wl

i=1 i=1

Proof. By Abel’s identity and (4) we have that

b

Do lwilai —ar Y jwi| =) ( |wk|> Aaiy > <Z |wk> |Azi_q| =: A
=1 =1 k=1 =2 \k=i

By the properties of the modulus mapping, we have further that

n
D> w
k=i

n

Z|wk| >

k=i

)




ABEL-TYPE INEQUALITIES 99

and so

=2

Also, we can write

n

n
E Wiz — 21 E Wi | -
i=1

=1

>

oo

=1

k=i

|Azi—1] = [Alzi-1]]
fori=2,...,n+ 1. Thus

A> z”: <§n:wk> Az
i=2 | \k=i

In the same way, we have

A=) (; |wk|> Anal =Y

1=2

>

=2 \k=i

n n
i=1 =1

<§§WM>A%1

k=i

n n n n
> Z ( |wk|> Aziq| = Z |wi|zi — 21 Z [w;]
=2 \k=i i=1 i=1
and
n n n n
A- z(zmm)m%ﬂzzwéywoamﬁn
i=2 \ k=i i=2 \k=i
n n n n
> (ZIWI) Alzical| = ) lwillzi| = [z ) wil],
i=2 \k—=i i=1 i=1
and we are done. O

In the same way, the second part of Abel’s identity leads to the following theo-
rem.

Theorem 6. Under the conditions of Theorem 5., we have

) )

n n
an 35 Jwi] = 3% fwila; > max{
=1 =1

n n
Zn DLW — Y Wiz
=1 =1

n n
lzn] >0 wi — Y |zilw;
=1 =1

)

n n
Zn Z |wz| - Z |w1‘zl
=1 =1

n n
2 Y Jwil =Y Jwil 2]
=1 =1

} |

Theorem 7. Let f : [a,b] — IR be a nonnegative, increasing function and x; :
[a,b] — IR functions with a continuous first derivative such that

1) z1(t) <--- <a,(t), t €[a,b],

2) xll(t) <0 < x,n(t); te [aab]'

4. Application to integral inequalities
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Suppose also p; > 0 and Z pi = 1. Then
i=1
> i vaoral)|+ |3

< £(0) 2 pi [m4(6) — 21(8)] — f(a) ; pi [:(a) — 71(a)]

i=1

fa zi(t) f dt‘ -

o (a(®)] = 21 (8)]) dF (2)

(5)

Proof. By integration by parts,

n b n n b n
> b / z () f(t)dt = F(b) Y piwi(b)—f(a) D piwi(a)— / <Zpixi<t>> df (t). (6)
=1 a i=1 i=1 a =1

We can apply (2) to obtain

b

Zpl/ dt>/ t)dt +

a

b

0

sz

/1 )t

i |zi(t)] — [x1(2)]

and

Zpifﬂi(t) > a1 (t) +

for all ¢ € [a, b].
Integrating this last inequality, we deduce that

b n b b| n
f(E o) ar) = farraro + | gmxz )= k@] @)
b
= O (8)
n b ‘ b
+5  [l01dr(0) — [loa 0] o).
Using (6)—(8), we derive
b b
fxlf t)dt + lez [z — | [ @) f(t)dt
< IO X pinlb) — Fl0) 3 piaila) = (F(Bs(8) = Fla)aa(a)
b n b
= [ = | o f [1200] r0) - ol arto
which is equivalent to (5). a

Remark 3. Similar results can be obtained from the second Abel-type inequality

(3)-



ABEL-TYPE INEQUALITIES 101

References

1]

2]

D.S. MiTRINOVIC, J. E. PECARIC, A. M. FINK, Classical and new inequalities
in analysis, Kluwer Acad. Publishers, Dordrecht, 1993.

C.E. M. PEARCE, J. PECARIC, J. SUNDE, On a refinement of the Chebyshev
and Popoviciu inequalities, Math. Commun. 1(1996), 121-126.

J. PECARIC, S. VAROSANEC, A generalization of Pélya’s inequalities, Inequal-
ities and applications, World Sci. Ser. Appl. Anal. 3(1994), 501-504.

G.PoLyA, G. SzZEGO, Aufgaben und Lehrsdtze aus der Analysis I, II, Springer—
Verlag, Berlin, 1954.

S. VAROSANEC, Inequalities of Gauss type (in Croatian), Doct. Diss., Univ. of
Zagreb, 1994.

S. VAROSANEC, J.PECARIC, J.SUNDE, Some discrete inequalities, Zeit fiir
Anal. A. 15(1996), 1033-1044.

S. VAROSANEC, J. PECARIC, J. SUNDE, On Gauss—Pdlya’s inequality, submit-
ted to Zeit fiir Anal. A.



