
Mathematical Communications 3(1998), 61-66 61

Least-squares fitting of parametric curves with
a linear function of several variables as argument

Helmuth Späth∗

Abstract. We discuss fitting of a parametric curve in the plane in
the least-squares sense when the independent variable is a linear func-
tion of several variables with unknown coefficients. A general numerical
method is recommended. For two special models the algorithmic details
and numerical examples are given.

Key words: orthogonal least squares, TLS

Sažetak.Fitovanje u smislu najmanih kvadrata parametar-
skih krivulja kojima je nezavisna varijabla linearna funkcija
vǐse varijabli. U radu se diskutira fitovanje u smislu najmanjih kva-
drata parametarski zadane ravninske krivulje pri ćemu je nezavisna var-
ijabla linearna funkcija vǐse varijabli s nepoznatim koeficijentima. Pred-
laže se opća numerička metoda. Za dva specijalna modela navedeni su
algoritamski detalji i numerički primjeri.

Ključne riječi: ortogonalna metoda najmanjih kvadrata, potpuna
metoda najmanjih kvadrata

AMS subject classifications: 65D10

Received February 9, 1998 Accepted March 11, 1998

1. The general problem

Let
a = (a1, . . . , au)T ,

b = (b1, . . . , bv)T ,

c = (c1, . . . , cn)T

(1)

denote parameters of some curve to be estimated. The curve is assumed to be given
by

x = f(a; z) ,

y = g(b; z) ,
(2)

∗Fachbereich Mathematik, Carl von Ossietzky Universität Oldenburg, Postfach 2503, 26111
Oldenburg, Germany, e-mail: spaeth@mathematik.uni-oldenburg.de

62 H. Späth

where the independent variable z is some linear function of n ≥ 2 variables t1, . . . , tn,
i.e.

z = c1t1 + · · ·+ cntn . (3)

Further, let the measured points

(xj , yj), j = 1, . . . , m > u + v + n (4)

be given in the plane and measured values

(tkj), k = 1, . . . , n, j = 1, . . . ,m (5)

for the variables tk, k = 1, . . . , n, too.
We want to fit the parameters a, b, and c such that

S(a, b, c) =
m∑

j=1

(
xj − f(a; zj)

)2 +
(
yj − g(b; zj)

)2 (6)

is minimized, where

zj = zj(c) = c1t1j + · · ·+ cntnj , j = 1, . . . , m (7)

corresponding to (3).
In turn, we consider for each parameter set the necessary conditions for a mini-

mum of (6). We have

∂S

∂ai
= 0 ⇐⇒

m∑

j=1

∂f

∂ai
(a; zj)

(
xj − f(a; zj)

)
= 0, i = 1, . . . , u , (8)

∂S

∂bk
= 0 ⇐⇒

m∑

j=1

∂g

∂bk
(b; zj)

(
yj − g(b; zj)

)
= 0, k = 1, . . . , v . (9)

If we now assume – this is true in most practical models of type (2) – that a and
b linearly appear in (2), then (8) and (9) are linear systems of equations for u
variables a and v variables b if c, i.e. zj , j = 1, . . . , m is fixed. Finally,

∂S

∂cr
= 0 ⇐⇒

m∑

j=1

trj

[
∂f

∂z
(a; zj)

(
xj − f(a; zj)

)

+
∂g

∂z
(b; zj)

(
yj − g(b; tj)

)]
= 0 , r = 1, . . . , n .

(10)

For given a and b this is a nonlinear system of n equations for n unknowns c.
The structure of the equations (8), (9), and (10) suggests the following algorithm

indicated by Mardia for angular regression (see [1]):

Step 0. Let the starting values c(0) for c be given. Set ` = 0.
Step 1. Solve the linear systems (8) and (9) for c = c(`) and set a(`) = a, b(`) = b.

TLS with curves with a linear function as argument 63

Step 2. For a = a(`), b = b(`) perform one (or several) Newton iterations for (10),
i.e. set

c(`+1) = c(`) − F ′
(
c(`)

)−1
F

(
c(`)

)
(11)

and, if no convergence has occurred, set ` := ` + 1 and go back to Step 1.

In (11) we have

F (c) = OS(c) =

(
∂S

∂c1
(c), . . . ,

∂S

∂cn
(c)

)
(12)

(see (10)), and

F ′(c) = O2S(c) =

(
∂2S

∂cr∂cs

)

r,s=1,...,n

(13)

is the Jacobian with

∂2S

∂cr∂cs
= −

m∑

j=1

trj tsj

[
∂2f

∂z2
(a; zj)

(
xj − f(a; zj)

)−
(

∂f

∂z
(a; zj)

)2

+
∂2g

∂z2
(b; zj)

(
yj − g(b; zj)

)−
(

∂g

∂z
(b; zj)

)2
]

.

(14)

In the next two sections we will discuss the algorithm for two special models (2)
and we will give numerical examples and corresponding experiences with the above
algorithm.

2. The straight line

Without loss of generality, a straight line can be parametrized by

x = a1 + a2z ,

y = b1 + z .
(15)

Then, u = 2, v = 1, and

S(a, b, c) =
m∑

j=1

(xj − a1 − a2zj)2 + (yj − b1 − zj)2 . (16)

Here
∂S

∂a1
=

∂S

∂a2
= 0 ,

∂S

∂b1
= 0

can very easily be solved for fixed c to give a1, a2, and b1. The necessary conditions
(10) for c are

m∑
j=1

trj(c1t1j + · · ·+ cntnj) = 1
a2
2+1

m∑
j=1

trj

[
a2(xj − a1) + (yj − b1)

]
,

r = 1, . . . , n .
(17)

In this special case thus (10) is a linear system for c. One Newton iteration in
Step 2 of our algorithm means just solving (17). The numerical solution of (17) is

64 H. Späth

preferably realized by using the QR decomposition (see [2] and subroutine MGS in
[3]) to solve the overdetermined system

t11 t21 . . . tn1

t12 t22 . . . tn2

...
...

......
...

......
...

...
t1m t2m . . . tnm

c1

c2

...
cn

 =

d1

d2

.........
dm

, (18)

where

dj =
a2(xj − a1) + (yj − b1)

a2
2 + 1

, j = 1, . . . , m , (19)

in the least-squares sense. Note that the matrix (tkj) does not change during the
iteration, i.e. the QR decomposition can be made once for all. Only the right-hand
side d is changed because d = d(a, b).

Example 1. The data were generated using a1 = 0, a2 = 1/2, b1 = 1, c1 = 6,
c2 = 8, m = 7, n = 2 and

t1j 0 1 1 1 −1 2 1
t2j 1 0 1 −1 1 1 −2

to give

xj 4 3 7 −1 1 10 −5
yj 9 7 15 −1 3 21 −9 .

Then, we disturbed t1j, t2j, xj, yj into

t1j 0 0.9 1 0.8 −1 2.1 1
t2j 1 0 0.9 −1 1.1 0.9 −2
xj 4 4 7 −2 1 11 −5
yj 8 7 15 −1 4 22 −8 .

For three different starting values c(0) = (6, 8), c(0) = (2,−4), and c(0) =
(−10, 10) we got within 7 iterations up to 4 decimal digit accuracy a1 = −.099,
a2 = 0.545, b1 = 1.286, c1 = 6.458, c2 = 7.776, and S = 2.939 in each case. The
results are very likely to represent the absolute minimum.

Example 2. For the completely arbitrary data

t1j 1 5 2 −3 0 3 −2 0
t2j 2 3 0 4 −2 −7 5 0
xj 3 1 −4 9 1 −4 −3 0
yj 4 −2 −3 0 4 0 2 0

and for the same three starting values as above we got within 8 iterations a1 = 0.641,
a2 = 3.078, b1 = 0.711, c1 = −0.197, c2 = 0.098 and S = 136.18. This might not
correspond to the absolute minimum here.

TLS with curves with a linear function as argument 65

3. The ellipse in normal position

We use the parametrization

x = a + p cos z ,
y = b + q sin z .

(20)

Here (a, b) is the center and (p, q) are the half axes. We have u = v = 2, (a1, a2) =
(a, p), (b1, b2) = (b, q). The function to be minimized is

S(a, b, c) =
m∑

j=1

(xj − a− p cos zj)2 + (yj − b− q sin zj)2 , (21)

where zj = zj(c) is given by (7). Note with (a, b, p, q, c) also (a, b, p,−q,−c) would
be a solution. For (8) and (9) we have

ma + p
m∑

j=1

cos zj =
m∑

j=1

xj ,

a
m∑

j=1

cos zj + p
m∑

j=1

cos2 zj =
m∑

j=1

xj cos zj ,
(22)

and
mb + q

m∑
j=1

sin zj =
m∑

j=1

yj ,

b
m∑

j=1

sin zj + q
m∑

j=1

sin2 zj =
m∑

j=1

yj sin zj .
(23)

These two 2× 2 systems can very easily be solved. However, (10) now results into
nonlinear equations

m∑
j=1

trj

[
(q2 − p2) sin zj cos zj + p sin zj(xj − a)− q cos zj(yj − b)

]
= 0 ,

r = 1, . . . , n ,
(24)

and (14) gives

∂2S

∂cr∂cs
=

m∑

j=1

trjtsj

[
(q2−p2)(cos2 zj−sin2 zj)+p cos zj(xj−a)+q sin zj(yk−b)

]
. (25)

Thus, the Newton step can easily be implemented.

Example 3. The data

t1j −3.2 −0.9 2.8 −1.3 0.8 7.1 −0.9 −3 7
t2j −5 −3 −1 1.2 2.8 3 5.2 7.3 9.1
xj 1 −2 4 3 −2 −2 −1 3 −2
yj 3 −4 −4 2 0 −3 −6 −5 1

were first generated and then disturbed like in Example 1. It was necessary now
to use far more starting values c(0) to get an acceptable minimum. We generated

66 H. Späth

one hundred values for c(0) by choosing the components of this vector randomly and
equally distributed in [−1, 1]. The smallest value for S was 3.045. It appeared in
about 8 iterations in 11 out of one hundred cases. The corresponding parameters
were a = 0.726, b = −1.920, p = 3.274, q = 4.596, c1 = 0.148, c2 = 0.840. A
figure to be made indicates that these values correspond to the absolute minimum.
We recommend to use a large number of starting values when f and g are nonlinear
with respect to z. Nevertheless, the computing time for Example 3 was negligible on
a PC.

References

[1] K. V. Mardia, Statistics of Directional Data, Academic Press, 1972.

[2] G. H. Golub, C. F. van Loan, Matrix Computations, 3rd edition, John Hop-
kins University Press, 1996.

[3] H. Späth, Numerik – Eine Einführung für Mathematiker und Informatiker,
Vieweg, 1994.

