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Sensitivity analysis in models
of data envelopment analysis∗†

Luka Neralić‡

Abstract. Sensitivity analysis in Data Envelopment Analysis
(DEA) is studied in this paper for the Charnes-Cooper-Rhodes (CCR)
ratio model and for the additive model. Different cases of additive or
proportionate changes of inputs or/and of outputs of an efficient Deci-
sion Making Unit (DMU) according to the CCR model or according to
the additive model are considered. Sufficient conditions for an efficient
DMU to preserve its efficiency after the corresponding changes of its in-
puts or/and of outputs are presented for these cases. Similar results for
arbitrary (or nonnegative) additive perturbations of data of all DMUs in
the additive model are described, too.

Key words: data envelopment analysis, efficiency, additive (pro-
portionate) change of inputs or/and of outputs, sensitivity analysis, lin-
ear programming

Sažetak. Analiza osjetljivosti u modelima analize omed̄iva-
nja podataka. U ovom radu razmatra se analiza osjetljivosti Charnes-
Cooper-Rhodesovog (CCR) modela i aditivnog modela analize omed̄ivanja
podataka. Promatrani su različiti slučajevi aditivne ili proporcionalne
promjene inputa i/ili outputa efikasnog donosioca odluke prema CCR
modelu ili prema aditivnom modelu. Navedeni su dovoljni uvjeti uz koje
se pri odgovarajućoj promjeni inputa i/ili outputa efikasnog donosioca
odluke čuva njegova efikasnost u tim slučajevima. Takod̄er su prikazani
slični rezultati za proizvoljne (ili nenegativne) aditivne perturbacije po-
dataka svih donosilaca odluke u aditivnom modelu.

Ključne riječi: analiza omed̄ivanja podataka, efikasnost, aditivna
(proporcionalna) promjena inputa i/ili outputa, analiza osjetljivosti, li-
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AMS subject classifications: 90C05, 90C31, 90C50

Received June 12, 1998
∗The lecture presented at the Mathematical Colloquium in Osijek organized by Croatian

Mathematical Society - Division Osijek, January 21, 1998.
†This research was partially supported by the Research Council of Croatia.
‡Faculty of Economics, University of Zagreb, Kennedyjev trg 6, HR-10 000 Zagreb, Croatia,

e-mail: neralic@oliver.efzg.hr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14376375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


42 L. Neralić

1. Introduction

Sensitivity analysis in Data Envelopment Analysis (DEA) for the Charnes–Cooper–
Rhodes (CCR) ratio model (see [6], [9], [3]) was studied in [8] for the case of the
change of a single output. Sufficient conditions for an efficient Decision Making
Unit (DMU) to continue to be efficient after the change of a single output were
found first [8]. The generalizations of that result for the case of the simultaneous
change of all outputs, the case of the simultaneous single output and single input
changes, the case of the simultaneous change of all inputs and the case of the
simultaneous change of all inputs and outputs for the CCR ratio model were given
in [12], [13], [17]. Similar results for the additive model (see [7], [3], [9]) were
found in [14]. Sufficient conditions for an efficient DMU to preserve efficiency after
the proportionate change of inputs (or outputs) in the CCR model were given in
[18]. Similar results for the case of the simultaneous proportionate change of inputs
and outputs of the CCR model were established in [15], [16]. The cases of the
proportionate change of inputs and/or outputs of the additive model were studied
in [23] (see also [25], [24], [28]). Sensitivity analysis for the case of discretionary and
nondiscretionary inputs and outputs of the additive model was studied in [20] (see
also [19]). An alternative approach to sensitivity analysis in DEA, with change of
inputs or/and of outputs of all DMUs, has been used in [30]. Stability of efficiency
evaluations in DEA was studied in [21] (see also [10]). New results in sensitivity of
efficiency classifications in the additive model were established in [11] (see also [4])
and [31]. Sensitivity analysis of the additive model for arbitrary perturbations of
all data was studied in [27].

The aim of this paper is to review some results in sensitivity analysis in DEA
for the CCR ratio model and for the additive model.

The paper is organized as follows. Sensitivity analysis of the CCR model is
studied in Section 2. The case of the additive changes of inputs and outputs of
an efficient DMU preserving its efficiency is studied first. After that, the cases of
the proportionate changes of inputs or/and outputs with two coefficients of pro-
portionality (one for inputs, the other for outputs) are studied. The case of the
proportionate change of inputs and outputs with different coefficients of propor-
tionality for each input and for each output is studied, too. Sufficient conditions
for an efficient DMU to preserve its efficiency after the corresponding changes in
these cases are presented. Similar results are presented in Section 3 for the additive
model. Sensitivity analysis of the additive model is studied for the cases of additive
or proportionate changes of inputs or/and outputs of an efficient DMU. The cases of
arbitrary additive perturbations and of nonnegative additive perturbations of data
of all DMUs in the additive model preserving efficiency of an efficient DMU are
studied, too. The last Section contains summary, some conclusions and suggestions
for further research.

2. Sensitivity analysis of the CCR model

2.1. Let us suppose that there are n Decision Making Units (DMUs) with m inputs
and s outputs. Let xij be the observed amount of the ith type of input of the jth
DMU ( xij > 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n) and let yrj be the observed amount
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of output of the rth type for the jth DMU (yrj > 0, r = 1, 2, . . . , s, j = 1, 2, . . . , n).
Let Yj , Xj be the observed vectors of outputs and inputs of the DMUj , respectively,
j = 1, 2, . . . , n. Let e be the column vector of ones and let T as a superscript denote
the transpose. In order to see if the DMUj0 = DMU0 is efficient according to the
CCR ratio model the following linear programming problem should be solved:

min 0λ1 + · · ·+ 0λ0 + · · ·+ 0λn − εeT s+ − εeT s− + θ

subject to

Y1λ1 + · · ·+ Y0λ0 + · · ·+ Ynλn − s+ = Y0

−X1λ1 − · · · −X0λ0 − · · · −Xnλn − s− + X0θ = 0
λ1, . . . , λn, s+, s− ≥ 0,

(1)

with Y0 = Yj0 , X0 = Xj0 , λ0 = λj0 and θ unconstrained. DMU0 is DEA efficient
if and only if for the optimal solution (λ∗, s+∗, s−∗, θ∗) of the linear programming
problem (1) both of the following are satisfied (for details see [6]):

min θ = θ∗ = 1
s+∗ = s−∗ = 0, in all alternative optima.

(2)

Let us consider changes of inputs or/and outputs of an efficient DMU0 preserv-
ing its efficiency. An increase of any output cannot worsen an already achieved
efficiency rating. Upward variations of outputs are not possible in the efficiency
rating for an efficient DMU0. Similarly, a decrease of any input cannot worsen
an already achieved efficiency rating. Downward variations are not possible in the
efficiency rating for an efficient DMU0. Hence, we can restrict attention to down-
ward variations of outputs and upward variations of inputs. These variations can
be written for outputs as

ŷr0 = yr0 − αr > 0, αr ≥ 0, r = 1, 2, . . . , s, (3)

and for inputs as

x̂i0 = xi0 + βi, βi ≥ 0, i = 1, 2, . . . ,m. (4)

We will also be interested in the proportionate change (decrease) of all outputs

ŷr0 = α̂yr0, 0 < α̂ ≤ 1, r = 1, 2, . . . , s, (5)

or/and of the proportionate change (increase) of all inputs

x̂i0 = β̂xi0, β̂ ≥ 1, i = 1, 2, . . . , m, (6)

of an efficient DMUU0 preserving its efficiency.
We will also consider the proportionate change (decrease) of all outputs with a

different coefficient of proportionality for each output

ŷr0 = α̂ryr0, 0 < α̂ ≤ 1, r = 1, 2, . . . , s, (7)
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or/and of the proportionate change (increase) of all inputs with different coefficient
of proportionality for each input

x̂i0 = β̂ixi0, β̂ ≥ 1, i = 1, 2, . . . , m, (8)

of an efficient DMU0 preserving its efficiency.

2.2. For an efficient DMU0 according to the CCR model vectors
[

Y0

−X0

]
and

[
0

X0

]
, (9)

must occur in some optimal basis of linear programming problem (1), what means
that there is a basic optimal solution to (1) in which λ∗0 = 1 and θ∗ = 1. Changes
(3)-(4), (5)-(6) or (7)-(8) are accompanied by alterations in the inverse

B−1 =
[
b−1
ij

]
, i, j = 1, 2, . . . , s + m,

of the optimal basis matrix

B =
[

YB −I+
B 0 0

−XB 0 −I−B X0

]
, (10)

which corresponds to the optimal solution (λ∗, s+∗, s−∗, θ∗) of (1) with λ∗0 = 1 and
θ∗ = 1.

Let Pj , j = 1, 2, . . . , n+s+m+1 be the columns of the matrix and let P0 be the
right-hand side of the linear programming problem (1). We will use the following
notation:

Γj = B−1Pj , j = 0, 1, . . . , n + s + m + 1,

ωT = cT
BB−1,

zj = cT
BB−1Pj

= ωT Pj , j = 0, 1, . . . , n + s + m + 1.

Simultaneous changes (3) of all outputs and changes (4) of all inputs of an
efficient DMU0 means the following perturbation of the optimal basis B

B̂ = B +4B (11)

with

4B =




k
↓

s+m
↓

0 · · · 0 −α1 0 · · · 0
0 · · · 0 −α2 0 · · · 0
...

...
...

...
...

0 · · · 0 −αs 0 · · · 0
0 · · · 0 −β1 0 · · · β1

0 · · · 0 −β2 0 · · · β2
...

...
...

...
...

0 · · · 0 −βm 0 · · · βm




(12)
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and the following change of the right-hand side vector

P̂0 = P0 + [−α1 − α2 . . .− αs 0 . . . 0 ]T , (13)

where the index k corresponds to the basic variable λ∗0 = λk and s+m corresponds
to the basic variable θ∗.

Using matrices

U(s+m)×2 =




α1 α1

α2 α2

...
...

αs αs

β1 0
β2 0
...

...
βm 0




(14)

and

V T
2×(s+m) =

(
k
↓

s+m
↓

0 · · · 0 −1 0 · · · 0 1
0 · · · 0 0 0 · · · 0 −1

)
, (15)

we can write the perturbation matrix (12) as

4B = UV T . (16)

Because of (11) and (16) we can use the Sherman–Morrison–Woodbury formula
(see, for example, [22], p. 3) in order to get the following perturbed basis inverse

(B̂)−1 = (B + UV T )−1

= B−1 −B−1U(I + V T B−1U)−1V T B−1. (17)

Using the abbreviation

D = U(I + V T B−1U)−1V T (18)

we can write (17) as

(B̂)−1 = B−1 −B−1DB−1

= B−1(I −DB−1)
= (I −B−1D)B−1. (19)

Let
M = I + V T B−1U (20)

where matrix M is nonsingular with

detM = 1−
s∑

t=1

b−1
k,tαt +

m∑
t=1

(−b−1
k,s+t + b−1

s+m,s+t)βt +

+ (
s∑

t=1

b−1
s+m,tαt)(

m∑
t=1

b−1
k,s+tβt)− (

s∑
t=1

b−1
k,tαt)(

m∑
t=1

b−1
s+m,s+tβt), (21)
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and
D = UM−1V T . (22)

Now we can prove the following

Theorem 1. Let us suppose that DMU0 is efficient. Conditions

ωT DΓj ≥ zj − cj , j an index of nonbasic variables, (23)

are sufficient for DMU0 to be efficient after the simultaneous changes of outputs
(3) and inputs (4).

For the proof and details see [17], Theorem1.
From Theorem1 it is easy to get the following

Corollary 1. If for detM in (21) holds detM > 0, conditions (23) can be written
as

γkΓj,k + γs+mΓs+m,k ≥ (zj − cj) det M, (24)

j an index of nonbasic variables.

with

γk = −(1 +
m∑

t=1

b−1
s+m,s+tβt)(

s∑
t=1

ωtαt) + (−1 +
s∑

t=1

b−1
s+m,tαt)(

m∑
t=1

ωs+tβt), (25)

γs+m = (
m∑

t=1

b−1
k,s+tβt)(

s∑
t=1

ωtαt) + (1−
s∑

t=1

b−1
k,tαt)(

m∑
t=1

ωs+tβt). (26)

2.3. For fixed outputs let us consider the proportionate change (increase) of
all inputs (6) of an efficient DMU0 preserving its efficiency. We are interested
in sufficient conditions for DMU0 to preserve efficiency after the change (6). We
also want to find the maximal value β̂∗ of β̂ for which the efficiency of DMU0 is
preserved after the change (6). In that case in order to get the perturbed optimal
basis inverse (B̂)−1 we can use Theorem6 in the subsection 3.2 below instead of the
Sherman–Morrison–Woodbury formula (17).

Theorem 2. Let us suppose that for

p = 1 +
m∑

t=1

(−b−1
k,s+t + b−1

s+m,s+t)βt, (27)

with βt = (β̂ − 1)xt0, t = 1, 2, . . . , m holds p > 0. Let

a =
s∑

t=1

ωs+txt0, b =
m∑

t=1

(−b−1
k,s+t + b−1

s+m,s+t)xt0, (28)

dj = a(−Γkj + Γs+m,j)− bc̄j , j = 1, 2, . . . , n + s + m + 1, (29)

with c̄j = zj − cj. Then the conditions

β̂dj ≥ dj + c̄j , j an index of nonbasic variables, (30)

are sufficient for DMU0 to preserve efficiency after the proportionate change (6) of
inputs.



Sensitivity analysis in models of DEA 47

For the proof and details see Theorem3.1 in [18].

Remark 1. For

J1 = {j | dj < 0, j an index of nonbasic variables },

it follows from (6) and (30) that

1 ≤ β̂ ≤ 1 + min{ c̄j

dj
| j ∈ J1}. (31)

This means that the maximal value β̂∗ of β̂ for which the efficiency of DMU0 is
preserved after change (6) is

β̂∗ = 1 + min{ c̄j

dj
| j ∈ J1}. (32)

The maximal percentage of increase of all inputs preserving efficiency od DMU0

after the change (6) is β∗ · 100% = (β̂∗ − 1) · 100%.

Remark 2. For the case p < 0 instead of p > 0 in conditions (30) the inequality
sign ≥ should be changed into ≤.

2.4. For fixed inputs we are interested in the proportionate change (decrease)
of all outputs (5) of an efficient DMU0 preserving its efficiency. We want to find the
sufficient conditions for DMU0 to preserve efficiency and also the minimal value α̂∗

of α̂ for which efficiency of DMU0 is preserved after the change (5) of outputs. We
can also use Theorem6 below instead of the Sherman–Morrison–Woodbury formula.

Theorem 3. Let us suppose that for

p1 = −
s∑

t=1

b−1
k,tαt (33)

with αt = (1− α̂)yt0, t = 1, 2, . . . , s holds 1 + p1 > 0. Let

gj =
s∑

t=1

(c̄jb
−1
k,t − Γjkωt)yt0, j an index of nonbasic variables, (34)

with c̄j = zj − cj. Conditions

α̂gj ≤ gj − c̄j , j an index of nonbasic variables, (35)

are sufficient for DMU0 to preserve efficiency after the proportionate change (5) of
outputs.

For the proof and details see Theorem4.1 in [18].
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Remark 3. For

J2 = {j | gj < 0, j an index of nonbasic variables },
using (5) and (35) we can get

1−min{ c̄j

gj
| j ∈ J2} ≤ α̂ ≤ 1. (36)

According to (36), the minimal value α̂∗ of α̂ for which the efficiency of DMU0 is
preserved after change (5) is

α̂∗ = 1−min{ c̄j

gj
| j ∈ J2}. (37)

The maximal percentage of decrease of all outputs preserving efficiency of DMU0

after change (5) is α∗ · 100% = (1− α̂∗) · 100%.

Remark 4. If there holds 1 + p1 < 0 instead of 1 + p1 > 0, then in conditions (35)
the inequality sign should be changed from ≤ to ≥.

2.5. Let us consider the simultaneous proportionate change (increase) of all
outputs (5) and the proportionate change (decrease) of all inputs (6) of an efficient
DMU0 preserving efficiency. We are interested in sufficient conditions for DMU0 to
preserve efficiency after the simultaneous changes (5) and (6). In this case we have
to use the Sherman–Morrison–Wodbury formula (17).

Theorem 4. Let us suppose that DMU0 is efficient. Let for M in (20) with αt =
yt0(1− α̂t), t = 1, 2, . . . , s and βt = xt0(β̂t − 1), t = 1, 2, . . . , m there hold

detM = 1− a1(1− α̂) + (−b1 + b2)(β̂ − 1) + (a2b1 − a1b2)(1− α̂)(β̂ − 1) > 0, (38)

with

a1 =
s∑

t=1

b−1
kt yt0, a2 =

s∑
t=1

b−1
s+m,tyt0, b1 =

m∑
t=1

b−1
k,s+txt0, b2 =

m∑
t=1

b−1
s+m,s+txt0.

(39)
Let

a3 =
s∑

t=1

ωtyt0, b3 =
m∑

t=1

ωs+txt0, (40)

dj = −a3Γkj + a1c̄j , ej = −b3(Γkj − Γs+m,j)− (−b1 + b2)c̄j , (41)

fj = (a2b3 − a3b2)Γkj + (a3b1 − a1b3)Γs+m,j − (a2b1 − a1b2)c̄j , (42)

j = 1, 2, . . . , n + s + m + 1,

with c̄j = zj − cj. Then the conditions

dj(1− α̂) + ej(β̂ − 1) + fj(1− α̂)(β̂ − 1) ≥ c̄j , (43)

j an index of nonbasic variables,

are sufficient for DMU0 to preserve efficiency after the simultaneous proportionate
changes of outputs (5) and inputs (6).
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For the proof and details see Theorem2 in [16].

Remark 5. For the case det M < 0 instead of det M > 0 in (38), the inequality
sign ≥ in conditions (43) should be changed into ≤.

Remark 6. The system of inequalities (43) together with conditions (5), (6) and
(38) for α̂ and β̂ gives the area Â0 in the plane with the coordinate system α̂Ôβ̂.
For each point (α̂, β̂) in the area Â0 efficiency of DMU0 will be preserved after the
simultaneous proportionate changes of inputs (5) and outputs (6).

Remark 7. We can use the area Â0 for ranking among efficient DMUs. For ex-
ample, if for efficient DMU1 and DMU2 there holds Â1 > Â2 it can be said that
”DMU1 is relatively more efficient than DMU2” because DMU1 is less sensitive to
the simultaneous proportionate change of inputs and outputs preserving efficiency
than DMU2.

2.6. Let us consider the simultaneous proportionate change (decrease) of all
outputs (7) and the proportionate change (increase) of all inputs (8) of an efficient
DMU0 preserving efficiency. We are interested in sufficient conditions for DMU0 to
preserve efficiency after the simultaneous changes (7) of outpus and (8) of inputs.

Let us introduce the following notation:

A1 =
s∑

t=1

b−1
kt yt0(1− α̂t), A2 =

s∑
t=1

b−1
s+m,tyt0(1− α̂t),

A3 =
s∑

t=1

ωtyt0(1− α̂t), (44)

B1 =
m∑

t=1

b−1
k,s+txt0(β̂t − 1), B2 =

m∑
t=1

b−1
s+m,s+txt0(β̂t − 1),

B3 =
m∑

t=1

ωs+txt0(β̂t − 1). (45)

Theorem 5. Let us suppose that DMU0 is efficient and let for M in (20) with
αt = yt0(1− α̂t), t = 1, 2, . . . , s and βt = xt0(β̂t − 1), t = 1, 2, . . . ,m there hold

det M = 1−A1 −B1 + B2 + A2B1 −A1B2 > 0. (46)

Then the conditions

(A3 −B3 + A2B3 −A3B2)Γkj +
+ (B3 + A3B1 −A1B3)Γs+m,j +
+ (A1 + B1 −B2 −A2B1 + A1B2)c̄j ≥ c̄j , (47)

j an index of nonbasic variables,

with c̄j = zj − cj, are sufficient for DMU0 to preserve efficiency after the simulta-
neous proportionate changes of outputs (7) and inputs (8).

The proof is similar to the proof of Theorem2 in [16]. See also Theorem2 in
[28].
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3. Sensitivity analysis of the additive model

3.1. We will use the same notation as in Section 2. In order to see if for j = j0,
DMUj0 = DMU0 with vector of inputs Xj0 = X0 and vector of outputs Yj0 = Y0

is Pareto-Koopmans efficient according to the additive model, the following linear
programming problem should be solved

min 0λ1 + · · ·+ 0λ0 + · · ·+ 0λn − eT s+ − eT s−

subject to

Y1λ1 + · · ·+ Y0λ0 + · · ·+ Ynλn − s+ = Y0

−X1λ1 − · · · −X0λ0 − · · · −Xnλn − s− = −X0

λ1 + · · ·+ λ0 + · · ·+ λn = 1
λ1, . . . , λn, s+, s− ≥ 0.

(48)

DMU0 is Pareto-Koopmans efficient if and only if for the optimal solution (λ∗, s+∗, s−∗)
of the linear programming problem (48) holds

min(−eT s+ − eT s−) = −eT s+∗ − eT s−∗ = 0 (49)

(for details see [7], [9], [3]).

3.2. Let us consider the simultaneous change (decrease) of outputs (3) and
change (increase) of inputs (4) of a Pareto-Koopmans efficient DMU0 preserving
its efficiency. We are interested in sufficient conditions for DMU0 to preserve its
efficiency under the simultaneous changes (3) and (4).

It is easy to see that for Pareto-Koopmans efficient DMU0 there is a basic
optimal solution (λ∗, s+∗, s−∗) of (48) with optimal basis matrix

B =




YB −I+
B 0

−XB 0 −I+
B

eT 0 0


 .

Let the inverse of the matrix B be

B−1 = [b−1
ij ], i, j = 1, 2, . . . , s + m + 1.

The simultaneous change of outputs (3) and change of inputs (4) means the
following perturbation of the optimal basis matrix B

B̂ = B + D, (50)

with

D =




k
↓

0 · · · 0 −α1 0 · · · 0
0 · · · 0 −α2 0 · · · 0
...

...
...

...
...

0 · · · 0 −αs 0 · · · 0
0 · · · 0 −β1 0 · · · 0
0 · · · 0 −β2 0 · · · 0
...

...
...

...
...

0 · · · 0 −βm 0 · · · 0
0 · · · 0 0 0 · · · 0




(51)



Sensitivity analysis in models of DEA 51

where the index k corresponds to the optimal basic variable λ∗0 = λ∗k. It also
means the following change of the right-hand side vector of the linear programming
problem (48)

P̂0 = P0 + [ −α1 − α2 . . .− αs − β1 − β2 . . .− βm 0 ]T . (52)

It is easy to show that for matrices B−1 and D holds

B−1DB−1D = pB−1D, (53)

where

p = −(
s∑

t=1

b−1
kt αt +

m∑
t=1

b−1
k,s+tβt). (54)

Because of (53) we will use the following theorem of Charnes and Cooper, which is
proved in a more general form in [5].

Theorem 6. Let B be a k × k matrix with inverse B−1. Let D be a k × k matrix
such that B−1DB−1D = pB−1D for some real scalar p. If σ is any scalar such
that pσ 6= −1, then

(B + σD)−1 = B−1(I + τDB−1)
= (I + τB−1D)B−1,

where
τ = −σ(1 + pσ)−1.

Let us suppose that for p in (54) there holds p 6= −1. Because of (53) it follows
from Theorem6 for σ = 1, that the inverse of the perturbed optimal basis B̂ in (50)
is given by

(B̂)−1 = (B + D)−1

= B−1(I + τDB−1)
= (I + τB−1D)B−1, (55)

with
τ = − 1

1 + p
. (56)

Now we can prove the following

Theorem 7. Conditions

−τωT DΓj ≥ zj − cj , j an index of nonbasic variables, (57)

are sufficient for Pareto-Koopmans efficient DMU0 to preserve efficiency after the
simultaneous changes (3) and (4).

For the proof and details see Theorem2 in [14].
From Theorem7 it is easy to get the following
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Corollary 2. Let us suppose that for p in (54) there holds 1 + p > 0. Conditions

s∑
t=1

(b−1
kt c̄j − ωtΓkj)αt +

m∑
t=1

(b−1
k,s+tc̄j − ωs+tΓkj)βt ≥ c̄j , (58)

j an index of nonbasic variables,

with c̄j = zj − cj are sufficient for DMU0 to preserve its efficiency after the simul-
taneous changes (3) and (4).

3.3. Let us consider the simultaneous proportionate change (decrease) (5) of
outputs and proportionate change (increase) (6) of inputs. We are interested in
sufficient conditions for DMU0 to preserve efficiency after the simultaneous changes
(5) and (6). We are also interested in the area Â0 which is the solution set of the
corresponding system of inequalities in α̂ and β̂ in the coordinate system α̂Ôβ̂. The
size of that area is a measure of stability of efficiency for DMU0.

Theorem 8. Let us suppose that DMU0 is Pareto - Koopmans efficient. Let us
denote

a1 =
s∑

t=1

b−1
kt yt0, b1 =

m∑
t=1

b−1
k,s+txt0, a2 =

s∑
t=1

ωtyt0, b2 =
m∑

t=1

ωs+txt0.

Let for p in (54) with αt = (1 − α̂)yt0, t = 1, 2, . . . , s and βt = (β̂ − 1)xt0, t =
1, 2, . . . , m there hold

1 + p = 1−
[
(1− α̂)a1 + (β̂ − 1)b1

]
> 0. (59)

Then conditions

(1− α̂)dj + (β̂ − 1)ej ≥ c̄j , j an index of nonbasic variables (60)

with
dj = −a2Γkj + a1c̄j , ej = b1c̄j − b2Γkj , (61)

j = 1, 2, . . . , n + s + m.

and c̄j = zj − cj, are sufficient for DMU0 to continue to be efficient after the
simultaneous proportionate change (5) of outputs and proportionate change (6) of
inputs.

For the proof and details see Theorem4 in [25].

Remark 8. The system of ineqalities (60) together with conditions (5), (6) and
(59) for α̂ and β̂ gives the area Â0 in the plane with the coordinate system α̂Ôβ̂.
For each point (α̂, β̂) in the area Â0 efficiency of DMU0 will be preserved after the
simultaneous proportionate change (5) of outputs and proportionate change (6) of
inputs.
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Remark 9. The size of the area Â0 is a measure of stability of efficiency for an
efficient DMU0. If for efficient DMU1 and DMU2 there holds Â1 > Â2 it can be
said that DMU1 is more stable than DMU2. In other words DMU1 is less sensitive
to the simultaneous proportionate change of outputs and proportionate change of
inputs preserving efficiency than DMU2.

3.4. Let us consider the simultaneous proportionate change (decrease) (7) of
outputs and proportionate change (increase) (8) of inputs of a Pareto - Koopmans
efficient DMU0 with different coefficient of proportionality for each output and each
input. We are interested in sufficient conditions for Pareto - Koopmans efficient
DMU0 to preserve efficiency after the simultaneous changes (7) of outputs and (8)
of inputs.

Theorem 9. Let us suppose that DMU0 is Pareto - Koopmans efficient. Let for p
in (54) with αt = yt0(1 − α̂t), t = 1, 2, . . . , s and βt = xt0(β̂t − 1), t = 1, 2, . . . , m
there hold

1 + p = 1−
s∑

t=1

b−1
kt yt0(1− α̂t)−

m∑
t=1

b−1
k,s+txt0(β̂t − 1) > 0. (62)

Then the conditions
[
−

s∑
t=1

ωtyt0(1− α̂t)−
m∑

t=1

ωs+txt0(β̂t − 1)

]
Γkj + (63)

+

[
s∑

t=1

b−1
kt yt0(1− α̂t) +

m∑
t=1

b−1
k,s+txt0(β̂t − 1)

]
c̄j ≥ c̄j ,

j an index of nonbasic variables,

are sufficient for DMU0 to preserve efficiency after the changes (7) of outputs and
(8) of inputs.

The proof is similar to the proof of Theorem2 in [16]. See also Theorem4 in
[28].

3.5. Let us suppose that the set of efficient DMUs according to the additive
model (48) is E = {1, 2, . . . , ne} and that the set of inefficient DMUs is N = {ne +
1, ne + 2, . . . , n}. Let us also suppose that the set of efficient DMUs corresponding
to the optimal basic λ∗j variables of the solution of (48), including λ∗0 = λ∗q , is
EB = {j1, j2, . . . , jq, . . . , jh}, q ≤ h ≤ ne. Without loss of generality, in order to
avoid cumbersome notation, let us suppose that EB = {1, 2, . . . , q, . . . , h}. We will
also use the notation SV = {n + 1, n + 2, . . . , n + s + m}.

We are interested in variations of all data that preserve efficiency of DMU0. Let
us consider arbitrary changes of outputs of all DMUs:

ŷrj = yrj + αr > 0, r = 1, 2, . . . , s, j = 1, 2, . . . , n (64)

and arbitrary changes of inputs of all DMUs:

x̂ij = xij + βi > 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n. (65)
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(Here αr and βi are unrestricted in sign.)
The simultaneous change of outputs (64) and change of inputs (65) results in

the following perturbations of the vectors of the matrix of the linear programming
problem (48):

P̂j = Pj + [α1 α2 . . . αs β1 β2 . . . βm 0 ]T , j = 1, 2, . . . , n,

P̂j = Pj , j ∈ SV.

The optimal basis matrix B now assumes the form

B̂ = B + ∆B, (66)

where

∆B =




h
↓

α1 α1 · · · α1 0 · · · 0
α2 α2 · · · α2 0 · · · 0
...

...
...

...
...

αs αs · · · αs 0 · · · 0
−β1 −β1 · · · −β1 0 · · · 0
−β2 −β2 · · · −β2 0 · · · 0

...
...

...
...

...
−βm −βm · · · −βm 0 · · · 0

0 0 · · · 0 0 · · · 0




= D. (67)

Here h denotes the number of optimal basic λ∗j variables, j ∈ E. We also have the
following change of the right-hand side vector

P̂0 = P0 + [α1 α2 . . . αs − β1 − β2 . . .− βm 0 ]T . (68)

It is easy to show that

B−1DB−1D = pB−1D, (69)

where

p =
h∑

k=1

γk (70)

with

γk =
s∑

t=1

b−1
kt αt −

m∑
t=1

b−1
k,s+tβt, k = 1, 2, . . . , s + m + 1. (71)

Let us suppose that p 6= −1. Because of (69), it now follows from Theorem6
that the inverse of the perturbed optimal basis B̂ in (66) is given by

(B̂)−1 = (B + D)−1

= B−1(I + τDB−1)
= (I + τB−1D)B−1, (72)

with
τ = − 1

1 + p
. (73)

Now we can prove the following result for general perturbations.
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Theorem 10. Sufficient conditions for an efficient DMU0 to preserve efficiency
after arbitrary changes of all data (64) and (65), are

−τd(
h∑

k=1

Γkj − 1) ≥ zj − cj , j = 1, 2, . . . , n, an index of nonbasic variables, (74)

and

−τd

h∑

k=1

Γkj ≥ zj − cj , j ∈ SV an index of nonbasic variables, (75)

where

d =
s∑

t=1

ωtαt −
m∑

t=1

ωs+tβt. (76)

For the proof and details see [27].

Remark 10. Let us point out that in the case of positive perturbations αrj >
0, βij > 0, r = 1, 2, . . . , s, i = 1, 2, . . . , m, j = 1, 2, . . . , n, because of the transla-
tion invariance of the additive model (see Ali and Seiford [1]), the efficiency of
DMU0 will be preserved.

3.6. Let us also consider decrease of outputs of efficient DMUs

ŷrj = yrj − αr > 0, αr ≥ 0, r = 1, 2, . . . , s, j ∈ E (77)

and increase of outputs of inefficient DMUs

ŷrj = yrj + αr, αr ≥ 0, r = 1, 2, . . . , s, j ∈ N. (78)

We will also consider increase of inputs of efficient DMUs

x̂ij = xij + βi, βi ≥ 0, i = 1, 2, . . . ,m, j ∈ E, (79)

and decrease of inputs of inefficient DMUs

x̂ij = xij − βi > 0, βi ≥ 0, i = 1, 2, . . . , m, j ∈ N. (80)

The simultaneous change of outputs (77), (78) and change of inputs (79), (80)
result in the following perturbation of the vectors of the matrix of the linear program
(48):

P̂j = Pj + [−α1 − α2 . . .− αs − β1 − β2 . . .− βm 0 ]T , j ∈ E,

P̂j = Pj + [α1 α2 . . . αs β1 β2 . . . βm 0]T , j ∈ N, (81)

P̂j = Pj , j ∈ SV.

It also means the following perturbation of the optimal basis matrix B:

B̂ = B + ∆B, (82)
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with

∆B =




h
↓

−α1 −α1 · · · −α1 0 · · · 0
−α2 −α2 · · · −α2 0 · · · 0

...
...

...
...

...
−αs −αs · · · −αs 0 · · · 0
−β1 −β1 · · · −β1 0 · · · 0
−β2 −β2 · · · −β2 0 · · · 0

...
...

...
...

...
−βm −βm · · · −βm 0 · · · 0

0 0 · · · 0 0 · · · 0




, (83)

where h is the number of optimal basic λ∗j variables, j ∈ E. (Recall that N is the
set of inefficient DMUs.) Finally, it means the following change of the right-hand
side vector

P̂0 = P0 + [−α1 − α2 . . .− αs − β1 − β2 . . .− βm 0 ]T . (84)

Using the same notation as above for p 6= 1, but now with

γk =
s∑

t=1

b−1
kt αt +

m∑
t=1

b−1
k,s+tβt, k = 1, 2, . . . , s + m + 1 (85)

and
τ =

1
1− p

(86)

we obtain the following result.

Theorem 11. Sufficient conditions for an efficient DMU0 to preserve its efficiency
after the nonnegative changes of all data as in (77), (78), (79) and (80), are

−τd(
h∑

k=1

Γkj − 1) ≥ zj − cj , j ∈ E an index of nonbasic variables, (87)

−τd(
h∑

k=1

Γkj + 1) ≥ zj − cj , j ∈ N an index of nonbasic variables, (88)

and

−τd

h∑

k=1

Γkj ≥ zj − cj , j ∈ SV an index of nonbasic variables, (89)

where

d =
s∑

t=1

ωtαt +
m∑

t=1

ωs+tβt. (90)

The proof is similar to the proof of Theorem1 in [27] (see Theorem10 above).
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4. Summary and conclusions

Sensitivity analysis in DEA is studied in this paper for the CCR ratio model and for
the additive model. The case of the additive changes of inputs and of outputs of an
efficient DMU according to the CCR model preserving its efficiency is studied first.
After that the cases of the proportionate changes of inputs or/and outputs with two
coefficients of proportionality (one for inputs, the other for outputs) are studied.
The case of the proportionate change of inputs and outputs with different coefficients
of proportionality for each input and for each output is studied too. Sufficient
conditions for an efficient DMU to preserve its efficiency after the corresponding
changes in these cases are presented. Sensitivity analysis of the additive model
is studied for the cases of additive and proportionate changes of inputs or/and
outputs of an efficient DMU. The cases of arbitrary additive perturbations and of
nonnegative additive perturbations of data of all DMUs preserving efficiency of an
efficient DMU are studied too. Sufficiency conditions for preserving efficiency of an
efficient DMU according to the additive model in these cases are described.

The problem of preserving efficiency of an efficient DMU according to the CCR
and according to the Banker-Charnes-Cooper (BCC) model (see [2], [9], [3]) under
additive (or proportionate changes) of all data is an open question. The case of
the change of all data of an arbitrary subset of DMUs, preserving efficiency of an
efficient DMU, is an open question too. The problem of preserving efficency of all
efficient DMUs and inefficiency of all inefficient DMUs seems to be interesting too.

The question of solving the system of inequalities corresponding to the suffi-
ciency conditions for preserving efficiency of an efficient DMU using PC is open
too. It is important for applications of the results in sensitivity analysis in DEA to
the real world problems.
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[27] L. Neralić, Sensitivity in data envelopment analysis for arbitrary perturba-
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