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Minimization of the blocking time of the

unreliable Geo/GD/1 queueing system∗

Verica Bakeva† and Nikolai Kolev‡

Abstract. In this paper we study the blocking time of an unreli-
able single-server queueing system Geo/GD/1. The service can be in-
terrupted upon explicit or implicit breakdowns. For the successful finish
of the service we use a special service discipline dividing the pure service
time X (assumed to be a random variable with known distribution) in
subintervals with deterministically selected time-points 0 = t0 < t1 <
. . . < tk < tk+1; tk < X ≤ tk+1, and making a copy at the end of each
subinterval (if no breakdowns occur during it) we derive the probability
generating function of the blocking time of the server by a customer.
As an application, we consider an unreliable system Geo/D/1 and the
results is that the expected blocking time is minimized when the time-
points t0, t1, . . . are equidistant. We determine the optimal number of
copies and the length of the corresponding interval between two consec-
utive copies.

Key words: blocking time, breakdowns, discrete-time single-server
unreliable queueing system, geometric distribution, minimization, ser-
vice discipline
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1. Introduction

The study of discrete time queueing systems with service interruptions begun in
the mid seventies, but much more attention on the subject is observed in the last
decade. The main aspects in which the various investigations differ are: the capacity
of waiting room, the number of servers, the nature of server-interruption process.
For single server systems with an infinite waiting room, the analysis presented by
Bruneel and Kim in their monograph [2, Chapter 3] is probably the most general
currently available.
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In this paper we study the unreliable single-server queueing system Geo/GD/1.
For these purposes we use a special service discipline. The goal is to minimize
the expected blocking time by dividing the pure service time X (when there are
no breakdowns), which is assumed to be a positive random variable (r.v.) with
known distribution. The same idea is used by Dimitrov et al. (see [4]) who study
the unreliable M/G/1 system. In Section 2 we describe the unreliable Geo/GD/1
queueing system and the service discipline when the breakdowns are explicit or
implicit. In Section 3 we introduce a special service discipline and derive the prob-
ability generating function (p.g.f.) of the blocking time of an unreliable server by
a customer when the pure service time is divided in subintervals by time-points
0 = t0 < t1 < . . . < tk < tk+1, tk < X ≤ tk+1. In Section 4 we consider a system
Geo/D/1 with constant service time X . We obtain that the expected blocking time
has its minimum when the time intervals ti − ti−1, i = 1, 2, . . . , k + 1 are equal. In
that case, we determine the optimal number of time intervals and their correspond-
ing length. Some conclusions are given at the end of the paper.

2. A queueing system Geo/GD/1 with an unreliable server
and service repetition

Consider a discrete-time single-server queueing system. The time axis is divided
into equal intervals called slots. When the customers arrive, they are stored in
a buffer (queue). The service of a customer is synchronized to start only at slot
boundaries. Without loss of generality, we assume that the length of a slot is equal
to a unit time. Slots are numbered as nonnegative integers so that the k-th slot
corresponds to the time-interval (k − 1, k], k = 1, 2, . . .. Let k− and k+ be the two
time points immediately before and after the time k, correspondingly. In this paper
we assume that:

- a customer completing service in the k-th slot is considered to be leaving the
system sometime in (k−, k);

- a customer whose service starts in slot (k+1) commences the service in (k, k+);

- customer arrivals are assumed to form an ordinary flow. That means that
there is at most one customer per slot and over the entire slot k is assumed
to be taking place before the time k−.

The above conventions mean that a customer completing service at the end of the
k-th slot will leave behind those customers that arrived during that k-th slot as well
as those waiting at the beginning of the slot.

We assume that the input stream is geometrical with parameter p0, 0 < p0 < 1,
i.e. the inter-arrival times T1, T2, ... are independent identically geometrical distrib-
uted r.v.’s defined as follows

P{T = k} = (1 − p0)k−1p0, k = 1, 2, . . . (1)

where T is the generic r.v. We will denote this by T ∼ Geo(p0). The last relation
means that during the first k − 1 slots there are no arrivals and an arrival appears
just in the following k-th slot, k = 1, 2, . . .
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If a customer arrives in an empty system, its service starts in the first discrete
moment after arrival epoch. If the server is busy, the customer remains in the
queue and waits for service according some rule. We will assume that the service
time of a customer, when the server is absolutely reliable, is given by a positive
discrete r.v. X having an arbitrary distribution and p.g.f. PX(t), 0 < t < 1. We
will refer this to service time as pure service time. The described system is usually
abbreviated as Geo(p0)/GD/1, specifying the single server system where customers
arrive according to the geometric law (given by relation (1)) and the number of
slots required for services is governed by an arbitrary positive discrete distribution.
Such types of discrete-time queueing systems with absolutely reliable servers are
studied, for instance, by Bruneel and Kim in [2] and Georgieva in [5].

In this paper we study the case when the server is unreliable. This means that
the service can be interrupted upon some breakdowns. The unreliable server may
fail at random moments during the service of a customer. The failure stream is
described by a discrete r.v. Z given by its p.g.f. PZ(t). The r.v. Z represents
the length of the interval between the beginning of the service and the end of the
corresponding slot where the failure appears, i.e. Z = k, if the failure occurs at first
just during the k-th service slot. Further on, we will assume that Z ∼ Geo(p1).

The breakdowns can be explicit or implicit. A breakdown is explicit if it is
registered at the same moment when it appears. An implicit breakdown can be
discovered only by a suitable test provided at the end of the service of a customer.
In both cases, after recovering of the server, the interrupted service is restarted
anew and ends whenever the service of the customer is failure free. The duration
of the test is assumed to be a discrete r.v.S given by its p.g.f. PS(t) and having
a finite mean ES < ∞. The time Y between the beginning and the end of the
service of a customer is known in queueing theory as blocking time. It includes
the repair times of the server which are assumed here to be instantaneous. The
blocking time Y is a positive discrete r.v. given by its p.g.f. PY (t). We will follow
the pre-emptive-different service discipline, i.e. if the job execution is interrupted
by a failure, it will be repeated anew upon the recovery of the server, requiring pure
service time X of the same distribution.

In the sequel, we will need the probabilistic interpretation of p.g.f.’s, which is
described by the following remark.

Remark 1 [Probabilistic interpretation of the p.g.f.]. Let A be a positive
integer valued r.v. which represents the time-interval between two consecutive events
from a stream. We consider another stream which is similarly generated by a r.v.
B ∼ Geo(s), 0 < s < 1, independent of the r.v. A. The event from the stream
determined by the r.v. B will be called “catastrophe”. Then the p.g.f.

PA(t) =
∞∑

k=1

P{A = k}tk =
∞∑

k=1

P{A = k}P{B > k},

where t = 1 − s, i.e.
PA(t) = P{B > A}.

The last relation can be interpreted as follows: An event from the stream gen-
erated by the r.v. A will occur before arriving of a “catastrophe” belonging to the
stream generated by the r.v. B.
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For the described Geo(p0)/GD/1 an unreliable queueing system with a pure
service time X and a failure stream generated by a r.v. Z ∼ Geo(p1), 0 < p1 < 1,
Bakeva et al. (see [1]) show (see their Theorem1) that the blocking time Y of
the server by a customer when explicit breakdowns appear is determined by the
following p.g.f.

PY (t) =
PX(q1t)

1 − p1
1−q1t [1 − PX(q1t)]

, (2)

where q1 = 1 − p1.
If the breakdowns are implicit, by using similar arguments one can obtain that

the p.g.f. of the blocking time is given by

PY (t) =
PX(q1t)PS(t)

1 − [PX(t) − PX(q1t)]PS(t)
. (3)

In the following exposition, we will study in parallel the systems with explicit
and implicit breakdowns, and we will denote the corresponding results by (e), and
(i), respectively.

In the particular case, when the service time is assumed to be a known constant
m, i.e. P{X = m} = 1, the relations (2) and (3) have the following form

case (e): PY (t) = qm
1 tm

1− p1
1−q1t [1−qm

1 tm]
;

case (i): PY (t) = qm
1 tmPS(t)

1−(1−qm
1 )tmPS(t) .

From the last two expressions one can easy calculate the corresponding expected
blocking time EY in both cases :

case (e): EY = P ′
Y (1) =

q1

p1

[
1

qm
1

− 1
]

; (4)

case (i): EY = P ′
Y (1) =

m + ES

qm
1

. (5)

3. Blocking time of the unreliable Geo(p0)/GD/1 system by
using the special service discipline

Now, we will describe the service discipline that we use. We divide the pure
service time X in subintervals by the sequence {ti}, i = 0, . . . , k + 1, of determin-
istically selected time-points 0 = t0 < t1 < . . . < tk < tk+1, tk < X ≤ tk+1 and we
follow the pre-emptive-different service discipline, for each subinterval. If the server
does not fail during a subinterval, we make a copy at its end. If a failure appears
during an interval, the service will be repeated starting from the last successfully
copied state. If the failures are implicit, we make a test for their discovering at the
end of each subinterval, making a copy of the current state, if no implicit breakdown
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was discovered. We assume that the copy-time is a discrete r.v. θ given by its p.g.f.
Pθ(t) and having a finite mean Eθ < ∞.

Let YX be the blocking time of the server by a customer. It is a discrete r.v.
since it is a sum of discrete r.v.’s: the blocking times Tτν in all subintervals [tν−1, tν ],
where τν = tν − tν−1, ν = 1, 2, . . . , k, the k copy-times after these intervals and
the blocking time in the last subinterval [ti, X ]. Let us note that we do not need to
make a copy at the end of the service, i.e. after the last subinterval.

The following general theorem is true.
Theorem 1. For the described Geo/GD/1 unreliable system, the blocking time

YX of the server by a customer, by using the special service discipline, is given by
the following p.g.f.

PYX (t) =
∞∑

k=0

[
k∏

ν=1

(PYτν
(t)Pθ(t))

]
tk+1∑

τ=tk+1

PYτ−tk
(t)P{X = τ}, (6)

where PYτν
(t) is the p.g.f of the blocking time Yτν in the interval [tν−1, tν ], ν =

1, 2, . . . k, and PYτ−tk
(t) is p.g.f. of the blocking time corresponding to the last

subinterval [tk, X ].
Proof. Independently of the service process, we introduce a supplementary

geometrical stream of “catastrophes” with parameter 1− t. Then, using the proba-
bilistic interpretation of the p.g.f. given by Remark 1, we have that the p.g.f. PYX (t)
is the probability of the event:

H =
{

There is not an event from the geometrical stream of
“catastrophes” during the blocking time of a customer

}
.

The event H occurs if and only if one of the following disjoint events occurs:

Hτν =

⎧⎪⎪⎨⎪⎪⎩
There is not a “catastrophe” during

the blocking time of a customer
in the subinterval [tν−1, tν ], τν = tν − tν−1

and during the copy-time after this interval

⎫⎪⎪⎬⎪⎪⎭ , ν = 1, 2, . . . , k

and

HX−tk
=

⎧⎨⎩
There is not a “catastrophe” during

the blocking time of a customer
in the last subinterval [tk, X ]

⎫⎬⎭ ,

where tk < X ≤ tk+1, k = 0, 1, . . ..
Taking into account Remark 1, we have P (Hτν ) = PYτν

(t)Pθ(t) andP (HX−tk
) =

PYX−tk
(t). �

Let us note that the p.g.f.’s PYτν
(t) and PYX−tk

(t) in (6) are given by expressions
(2) or (3) for the cases of explicit or implicit breakdowns, respectively.

For the considered unreliable Geo(p0)/GD/1 system the expected blocking time
of the server by a customer can be obtained by (6). In this case we have
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EYX = P ′
YX

(1) =
∑∞

i=1 EYτiP{X ≥ ti} +
∑∞

k=0

∑tk+1
τ=tk+1 EYτ−tk

P{X = τ}
+Eθ

∑∞
i=0 iP{ti < X ≤ ti+1} .

(7)

4. Minimization of the blocking time when X = const

Consider a Geo(p0)/D/1 unreliable system where the pure service time X is a
given constant m, i.e. P{X = m} = 1. Then the p.g.f. of X is PX(t) = tm. We
divide the pure service time with determinatively selected time-points 0 = t0 <
t1 < . . . < tk < tk+1 = m according the service discipline described in Section 3.
By using relations (4) and (5) in (7), we obtain that the expected blocking time of
the server by a customer is given by the following expressions:

case (e): EYm =
k+1∑
i=1

q1

p1

(
1

q
ti−ti−1
1

− 1

)
+ kEθ; (8)

case (i): EYm =
k+1∑
i=1

ti − ti−1 + ES

q
ti−ti−1
1

+ kEθ. (9)

Our goal is to minimize the expected blocking time of the server. The first result
is given by the following theorem.

Theorem 2. Let the pure service time X = const, i.e. P{X = m} = 1,
for given m. Then the expected blocking time by using the service discipline has
minimal value in both cases if the time-points 0 = t0 < t1 < . . . < tk < tk+1 = m
are equidistant.

Proof. Deriving (8) and (9) by ti, i = 1, 2, . . . , k, we have the following expres-
sions:

case (e): ∂EYm

∂ti
= q1

p1
· (− ln q1)

q
ti−ti−1
1

+ q1
p1

· ln q1

q
ti+1−ti
1

;

case (i): ∂EYm

∂ti
= q

ti−ti−1
1 +(ti−ti−1+ES)q

ti−ti−1
1 (ln q1)

q
ti−ti−1
1

2

+−q
ti+1−ti
1 −(ti+1−ti+ES)q

ti+1−ti
1 (ln q1)

q
ti+1−ti
1

2 .

Solving the equalities ∂EYm

∂ti
= 0, for any i = 1, 2, . . . , k we get

case (e): q
ti−ti−1
1 = q

ti+1−ti

1 ;

case (i): [1 + (ti − ti−1 + ES) ln q1]q
ti+1−ti

1 = [1 + (ti+1 − ti + ES) ln q1]q
ti−ti−1
1 ,
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which mean that
ti − ti−1 = ti+1 − ti,

for all i = 1, 2, . . . k in both cases. Let us denote ti − ti−1 = a = const, for any
i = 1, 2, . . . k.

It is easy to check that the main minors of the matrix of the second partial
derivations

B =
[

∂2

∂ti∂tj
EYm

]
are positive. Using the criterion of Silvester, we conclude that the solutions ti −
ti−1 = a = const, for any i = 1, 2, . . . k minimize the expected blocking time. �

Now, we have to find those number k∗ of copies that minimize the expected
blocking time. The following theorem gives the solution of this problem.

Theorem 3. Let the pure service time X = const, i.e. P{X = m} = 1,
for given m. Then the expected blocking time of the server by a customer has its
minimum if the length of the intervals between two consecutive copies is

a∗ =
[m

k∗
]
,

where k∗ is determined by the relations

case (e): k∗ = arg min
k≥1

{
kq1
p1

(
1

q
m
k

1

− 1
)

+ (k − 1)Eθ

}
;

case (i): k∗ = arg min
k≥1

{
m+kES

q
m
k

1

+ (k − 1)Eθ

}
.

Proof. According to Theorem 2, the equidistant sequence {ti}, i = 1, 2, . . . , k,
gives the minimum of the blocking time. Applying ti − ti−1 = a, i = 1, 2, . . . , k,
and tk+1 − tk = m − ka in (8) and (9), we have:

case (e): EYm = kq1
p1

(
1
qa
1
− 1
)

+ kEθ + q1
p1

(
1

qm−ka
1

− 1
)

;

case (i): EYm = k a+ES
qa
1

+ kEθ + m−ka+ES
qm−ka
1

.

Let k =
[

m
a

]
. Then k ≤ m

a < k + 1, i.e. a ∈
(

m
k+1 , m

k

]
. Therefore, the last

expressions for EYm are true for given k and a ∈
(

m
k+1 , m

k

]
. Let us consider the

functions:

case (e): fk(a) = kq1
p1

(
1
qa
1
− 1
)

+ kEθ + q1
p1

(
1

qm−ka
1

− 1
)

, a ∈
(

m
k+1 , m

k

]
and

case (i): fk(a) = k a+ES
qa
1

+ kEΘ + m−ka+ES

qm−ka
1

, a ∈
(

m
k+1 , m

k

]
.

In both cases the derivatives f ′
k(a) ≥ 0. This means that the functions

fk(a), a ∈
(

m

k + 1
,
m

k

]
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are monotone increasing. We denote

ck = lim
a↓m

k

fk−1(a) , and c̃k = lim
a↑m

k

fk(a) .

Then, we find that

case (e): ck = kq1
p1

(
1

q
m
k

1

− 1
)

+ (k − 1)Eθ, c̃k = kq1
p1

(
1

q
m
k

1

− 1
)

+ kEθ;

case (i): ck = m+kES

q
m
k

1

+ (k − 1)Eθ, c̃k = m+kES

q
m
k

1

+ kEθ + ES.

(10)

It is obviously that ck → ∞, when k → ∞. Moreover, for each k = 1, 2, . . . we
have

case (e): c̃k − ck = Eθ > 0;

case (i): c̃k − ck = Eθ + ES > 0,

i.e. in both cases
ck < c̃k, k = 1, 2, . . . .

Using the above results we conclude that the slope of the graph of the functions
fk(a) for a ∈

(
m

k+1 , m
k

]
and k = 1, 2, . . . is right continuous with respect to a and is

presented in Figure 1.

m
6

m
5

m
4

m
3

m
2 m

>

∧
—∧

∨

c̃1

∧

∨

c1—∧

∨

c̃2

–∧

∨

c2

Figure 1. Graph of fk(a) versus a ∈
(

m
k+1 , m

k

]
.

For fixed k, the function fk−1(a), a ∈
(

m
k+1 , m

k

]
has a minimum equal to ck.

This means that the optimal value a∗ (that minimizes the expected blocking time
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EYm) is among the numbers m
k , k = 1, 2, . . .. Therefore,there exists a corresponding

finite integer k∗ (otherwise ck → ∞, when k → ∞), such that a∗ = m
k∗ . Now, we

will show that k∗ is unique.
Let us consider the second finite differences.

case (e): ∆2ck+1 = ck − 2ck+1 + ck+2

= kq1
p1

q
−m

k
1 − 2 (k+1)q1

p1
q
− m

k+1
1 + (k+2)q1

p1
q
− m

k+2
1 ;

case (i): ∆2ck+1 = ck − 2ck+1 + ck+2

= m(q−
m
k

1 − 2q
− m

k+1
1 + q

− m
k+2

1 )

+ES(kq
−m

k
1 − 2(k + 1)q

− m
k+1

1 + (k + 2)q
− m

k+2
1 ).

In both cases one can check that ∆2ck+1 are positive, since the sequence {kq
−m

k
1 }

is convex for k = 1, 2, . . .. It implies that the sequence {ck}, k = 1, 2, . . . is convex.
This means that the sequence {ck} has minimum at most two neighbouring members
k∗ and k∗ + 1. In such case it is profitable to choose the smaller one. Since the
optimal interval a∗ has to be integer valued (according to our model), we choose
the optimal length of the interval between two consecutive copies

a∗ =
[m

k∗
]
.

�

It is interesting to know when it is preferable to use the special discipline for
given values of system parameters. The answer is given by the following statement.

Corollary 1. Let P{X = m} = 1. Then for given m, p1, Eθ and ES use of the
special service discipline makes sense only if the following inequalities are true:

case (e): 2

q
m
2

1

− 1
qm
1

+ p1
q1

Eθ < 1;

case (i): m+ES
qm
1

− m+2ES

q
m
2

1

> Eθ.
(11)

Proof. Since the sequence {ck}, k = 1, 2, . . ., described by (10) is convex and
ck → ∞, when k → ∞, the use of the special service discipline makes sense only if

c1 > c2,

where c1 means the blocking time of the server when using the pre-emptive service
discipline after the required service time X. Now, applying relations (10) in the last
inequality, we obtain (11). �

5. Conclusions
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In this paper we study the blocking time of an unreliable single-server queueing
system Geo/GD/1 with explicit or implicit breakdowns. We use the following ser-
vice discipline: we divide the pure service time (assumed to be a random variable X
with known distribution) in subintervals with deterministically selected time-points
0 = t0 < t1 < . . . < tk < tk+1; tk < X ≤ tk+1. If the server does not fail during a
subinterval, we make a copy at its end. If a failure appears during an interval, the
service will be repeated from the last successfully copied state. If the failures are
implicit, we make a test for their discovering at the end of each subinterval, making
a copy of the current state, if no implicit breakdown was discovered. We derive
the probability generating function of the blocking time for the described service
discipline.

As an application, we consider a system Geo/D/1 with constant service time
X . In this case we obtain that the expecting blocking time is minimum when the
time-points t0, t1, . . . are equidistant. We determine the optimal number of copies
and the length of the corresponding interval between two consecutive copies. We
give conditions which show when it is profitable to use the special service discipline.
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