
GLASNIK MATEMATIČKI
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SOME QUESTIONS OF EQUIVARIANT MOVABILITY

P.S. Gevorgyan

Moscow State University, Russia

Abstract. In this article some questions of equivariant movability,
connected with the substitution of the acting group G on closed subgroup
H and with transitions to spaces of H-orbits and H-fixed points spaces,
are investigated. In a special case, the characterization of equivariantly
movable G-spaces is given.

1. Introduction

This paper is devoted to equivariant movability of G-spaces, i.e., topolog-
ical spaces endowed with an action of a given compact group G.

More precisely, in § 3 we define the notion of equivariant movability or
G-movability and we prove several theorems, including the following ones. If
X is p-paracompact and H ⊆ G is a closed subgroup, then G-movability of X
implies its H-movability (§ 3, Theorem 3.3). G-movability of X also implies
movability of the space X [H ] of H-fixed points in X (§ 4, Theorem 4.1). In
particular, equivariant movability of a G-space X implies ordinary movability
of the topological space X (§ 3, Corollary 3.5). We construct a non-trivial
example which shows, that the converse, in general, is not true, even if we take
for G the cyclic group Z2 of order 2 (§ 5, Example 5.1). If X is a metrizable
G-movable space and H is a closed normal subgroup of G, then the space X |H
of its H-orbits is also G-movable (§ 6, Theorem 6.1). In the case H = G we
obtain that G-movability of a metrizable G-space implies ordinary movability
of the orbit space X |G (§ 6, Corollary 6.2). The last assertion, in general, is
not invertible (§ 6, Example 6.3). However, if X is metrizable, G is a compact
Lie group and the action of G on X is free, then X is G-movable if and only
if the orbit space X |G is movable (§ 7, Theorem 7.2). Examples 6.3 (§ 6) and
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3 (§ 8) show that in the last theorem the assumption that the group G is a
Lie group and the assumption that the action is free cannot be omitted.

Some of the above listed results with an outline of proof were given in [9].
Let us denote the category of all topological spaces and continuous maps

by Top, the category of all metrizable spaces and continuous maps by M and
the category of all p-paracompact spaces and continuous maps by P . Always
in this article it is assumed that all topological spaces are p-paracompact
spaces and the group G is compact.

The author is extremely grateful to the referee for his helpful remarks and
comments.

The reader is referred to the books by K. Borsuk [4] and by S. Mardešić
and J. Segal [15] for general information about shape theory and to the book
by G. Bredon [5] for introduction to compact transformation groups.

2. Basic notions and conventions concerning equivariant
topology

Let G be a topological group. A topological space X is called a G-space
if there is a continuous map θ : G×X → X of the direct product G×X into
X , θ(g, x) = gx, such that

1) g(hx) = (gh)x; 2) ex = x,

for all g, h ∈ G, x ∈ X ; here e is the unity of G. Such a (continuous) map
θ : G × X → X is called an (continuous) action of the group G on the
topological space X . An evident example is the so called trivial action of G
on X : gx = x, for all g ∈ G, x ∈ X . Another example is the action of the
group G on itself, defined by (g, x)→ gx for all g ∈ G, x ∈ G.

If X and Y are G-spaces, then so is X × Y , where g(x, y) = (gx, gy),
g ∈ G, (x, y) ∈ X × Y .

A subset A of a G space X is called invariant provided g ∈ G, a ∈ A
implies ga ∈ A. It is evident, that an invariant subset of a G space is itself a
G space. If A is an invariant subset of a G space X , then every neighborhood
of A contains an open invariant neighborhood of A (see [17], Proposition
1.1.14).

Let X be any G-space and let H be a closed and normal subgroup of the
group G. The set Hx = {hx;h ∈ H} is called the H-orbit of the point x ∈ X .
Clearly the H-orbits of any two points in X are either equal or disjoint, in
other wordsX is partitioned by its H-orbits. We denote the set of all H-orbits
of the G-space X by X |H . The set X |H endowed with the quotient topology
is called the H-orbit space of X . There is a continuous action of the group
G on the space X |H defined by the formula gHx = Hgx, g ∈ G, x ∈ X . So,
X |H is a G-space. In case H = G the G-orbit of the point x ∈ X is called
the orbit of the point x and the G-orbit space is called the orbit space of the
G-space X .
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We denote byX [H ] the subspace of fixed points ofH onX , or the H-fixed
point subspace of the G-space X . Let us recall that X [H ] = {x ∈ X ;hx = x,
for any h ∈ H}.

The set Gx = {g ∈ G; g(x) = x} is a closed subgroup of the group G,
for every x ∈ X . Gx is called the stationary subgroup (or stabilizer) at the
point x. The action of the group G on X (or the G-space X) is called free
if the stationary subgroup Gx is trivial, for every x ∈ X . It is clear that
Ggx = gGxg

−1, i.e., the stationary subgroups at any two points of the same
orbit are conjugate. The orbits Gx and Gy of points x and y, respectively,
are said to have the same type if the stationary subgroups Gx and Gy are
conjugate.

Let X , Y be G-spaces. A (continuous) map f : X → Y is called a
G-map, or an equivariant map, if f(gx) = gf(x) for every g ∈ G, x ∈ X .
Note that the identity map i : X → X is equivariant and the composition
of equivariant maps is equivariant. Therefore, all G-spaces and equivariant
maps form a category. Let us denote the category of all topological G-spaces
and equivariant maps by TopG, the category of all metrizable G-spaces and
equivariant maps byMG and the category of all p-paracompact G-spaces and
equivariant maps by PG.

Let Z be a G-space and let Y ⊆ Z be an invariant subset. A G-retraction
of Z to Y is a G-map r : Z → Y such that r|Y = 1Y .

Let KG be class of G-spaces. A G-space Y is called a G-absolute neigh-
borhood retract for the class KG or a G−ANR(KG) (G-absolute retract for
the classKG or a G−AR(KG)), provided Y ∈ KG and whenever Y is a closed
invariant subset of a G-space Z ∈ KG, then there exist an invariant neigh-
borhood U of Y and a G-retraction r : U → Y (there exists a G-retraction
r : Z → Y ).

A G-space Y is called a G-absolute neighborhood extensor for the class
KG or a G − ANE(KG) (G-absolute extensor for the class KG or a G −
AE(KG)), provided for any G-space X ∈ KG and any closed invariant subset
A ⊆ X , every equivariant map f : A → Y admits an equivariant extension
f̃ : U → Y , where U is an invariant neighborhood of A in X (f̃ : X → Y ).

3. Movability and equivariant movability

The important shape invariant, called movability, was originally intro-
duced by K. Borsuk [2] for metric compacta. Mardešić and Segal [14] general-
ized the notion of movability to compacta using the ANR-system approach.
Kozlowski and Segal in [11] gave a categorical description of this property
which applied to arbitrary topological spaces.

Following Mardešić and Segal [14], let us define the notion of equivariant
movability or G-movability :



188 P.S. GEVORGYAN

Definition 3.1. An inverse G-system X = {Xα, pαα′ , A} where each Xα,
α ∈ A, is a G-space and every pαα′ : Xα′ → Xα, α 6 α′, is a G-homotopy
class, is called equivariantly movable or G-movable if for every α ∈ A, there
exists an α′ ∈ A, α′ > α such that for all α′′ ∈ A, α′′ > α there exists a
G-homotopy class rα′α′′

: Xα′ → Xα′′ such that

pαα′′ ◦ rα′α′′

= pαα′ .

It is known (see [1], Theorem 2) that everyG-space X admits a G−ANR-
expansion in the sense of Mardešić (see [15], I, § 2.1), which is the same
as saying that there is an inverse G − ANR-system (G-system consisting of
G−ANR’s) X = {Xα, pαα′ , A} associated with X in the sense of Morita [16].

Definition 3.2. A G-space X is called equivariantly movable or G-
movable if there is an equivariantly movable inverse G − ANR-system X =
{Xα, pαα′ , A} associated with X.

Note that the last definition of equivariant movability coincides with the
notion of ordinary movability if G = {e} is the trivial group.

Let X be an equivariantly movable G-space. The evident question arises:
does movability of the space X follows from its equivariant movability? The
following, more general theorem gives a positive answer (Corollary 3.5) to the
above question.

Theorem 3.3. Let H be a closed subgroup of a group G. Every G-movable
G-space is H-movable.

To prove this theorem the next result is important.

Theorem 3.4. Let H be a closed subgroup of a group G. Every G −
AR(PG) (G−ANR(PG))-space is an H −AR(PH )(H −ANR(PH))-space.

Proof. According to a theorem of de Vries ([7], Theorm 4.4), it is suffi-
cient to show that if X is a p-paracompact H-space, then the twisted product
G ×H X is also p-paracompact. Indeed, since X is p-paracompact and G is
compact, G ×X is p-paracompact. Therefore, the twisted product G ×H X
is p-paracompact.

Proof of Theorem 3.3. Let X be any equivariantly movable G-space.
With respect to the theorem of Smirnov ([18], Theorem 1.3), there is a closed
and equivariant embedding of the G-space X to some G − AR(PG)-space
Y . Let us consider all open G-invariant neighborhoods of type Fσ of the
G-space X in Y . By a result of R. Palais ([17], Proposition 1.1.14), these
neighborhoods form a cofinal family in the set of all open neighborhoods of
X in Y , in particular, in the set of all open and H-invariant neighborhoods of
the H-space X in the H-space Y , which, by Theorem 3.3 is an H −AR(PH)-
space. Hence, from the G-movability of the above mentioned family follows
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its H-movability, i.e. from the G-movability of the G-space X follows the
H-movability of the H-space X .

From Theorem 3.3 we obtain the following corollary if we consider the
trivial subgroup H = {e} of the group G.

Corollary 3.5. Every equivariantly movable G-space X is movable.

The converse, in general, is not true, even if one takes for G the cyclic
group Z2 of order 2 (see Example 5.1).

4. Movability of the H-fixed point space

Theorem 4.1. Let H be a closed subgroup of a group G. If a G-space X
is equivariantly movable, then the H-fixed point space X [H ] is movable.

The proof requires the use of the following theorem.

Theorem 4.2. Let H be a closed subgroup of a group G. Let X be a
G − AR(PG)(G − ANR(PG))- space. Then the H-fixed point space X [H ] is
an AR(P )(ANR(P ))-space.

Proof. Let X be a G−AR(PG)(G−ANR(PG))-space. By Theorem 3.4,
it is sufficient to prove the theorem in the case H = G. I.e., we must prove
that X [G] is AR(P )-space. By a theorem of Smirnov ([18], Theorem 1.3), we
can considerX as a closed G-subspace of aG−AR(PG)-space C(G, V )×

∏
Dλ

where V is a normed vector space and thus an AE(M)-space, C(G, V ) is the
space of continuous maps from G to V with the compact-open topology and
with the action (g′f)(g) = f(gg′), g, g′ ∈ G, f ∈ C(G, V ) of the group G
and Dλ is a closed ball of a finite-dimensional Euclidean space Eλ with the
orthogonal action of the group G.

First, let us prove that the set (C(G, V ) ×∏Dλ)[G] of all fixed points
of the G-space C(G, V ) × ∏Dλ is an AR(P )-space. The spaces C(G, V )
and Eλ are normed spaces. Since the actions of the group G on C(G, V )
and Eλ are linear, the sets C(G, V )[G] and Eλ[G] will be closed convex sets
of locally convex spaces C(G, V ) and Eλ, respectively. Therefore, by a well-
known theorem of Kuratowski and Dugundji [3], C(G, V ) and Eλ are absolute
retracts for metrizable spaces. By a theorem of Lisica [12], they are also
absolute retracts for p-paracompact spaces. For a closed ball Dλ ⊂ Eλ the
last conclusion is true since the set Dλ[G] = Dλ

⋂
Eλ[G] is closed and convex

in Eλ.
Since the group G acts on the product C(G, V )×∏Dλ coordinate-wise,

(C(G, V )×
∏

Dλ)[G] = C(G, V )[G]×
(∏

Dλ

)
[G].

Hence, (C(G, V )×∏Dλ)[G] is an AR(P )-space, because it is a product
of two AR(P )-spaces.
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Now let us prove that X [G] is an AR(P )-space. Since X is a G−AR(PG)-
space, it is a G-retract of the product C(G, V )×∏Dλ. Therefore, X [G] is a
retract of the AR(P )-space (C(G, V )×∏Dλ)[G], hence, it is an AR(P )-space.

The absolute neighborhood retract case is proved similarly.

Proof of Theorem 4.1. Let X be a G-movable space. By Theo-
rem 3.3, it is sufficient to prove the theorem in the case H = G. So, we
must prove movability of the space X [G] of all G-fixed points. We consider
the G-space X as a closed and G-invariant space of some G−AR(PG)-space
Y ([18], Theorem 1.3). The family of all open, G-invariant Fσ-type neighbor-
hoods Uα of the G-spaceX in Y , is cofinal in the set of all open neighborhoods
of X in Y ([17], Proposition 1.1.14). It consists of G−ANR(PG)-spaces. The
intersections Uα ∩ Y [G] = Uα[G] are ANR(P )-spaces (Theorem 4.2). They
form a cofinal family of neighborhoods of the space X [G] in Y [G]. Indeed, for
any neighborhood U of the set X [G] in Y [G] there is a neighborhood V of the
set X [G] in Y such that V ∩ Y [G] = U . Then the set W = (Y \ Y [G]) ∪ V is
a neighborhood of the set X in Y , moreover, W ∩ Y [G] = U . There is an α
such that Uα ⊂W and therefore Uα[G] ⊂ U . So the family of neighborhoods
Uα[G] is cofinal.

Since X is G-movable, for every Uα there is a neighborhood Uα′ ⊂ Uα

such that, for any other neighborhood Uα′′ ⊂ Uα′ , there exists a G-equivariant
homotopy F : Uα′ × I → Uα such that F (y, 0) = y and F (y, 1) ∈ Uα′′ , for any
y ∈ Uα′ . It is not difficult to verify that the homotopy F [G] : Uα′ [G] × I →
Uα[G], induced by F , satisfies the condition of movability of X [G].

5. Example of a movable, but not equivariantly movable space

Example 5.1. We will use the idea of S. Mardešić [13]. Let us consider
the unit circle S = {z ∈ C; |z| = 1}. Let us denote B = [S ×{1}]∪ [{1}× S].
B is the wedge of two copies of the unit circle S with base point {1}. Let us
define a continuous map f : B → B by the formulas:

f(z, 1) =





(z4, 1), 0 6 arg(z) 6 π
2

(1, z4), π
2 6 arg(z) 6 π

(z−4, 1), π 6 arg(z) 6 3π
2

(1, z−4), 3π
2 6 arg(z) 6 2π

f(1, t) =





(t−4, 1), 0 6 arg(t) 6 π
2

(1, t−4), π
2 6 arg(t) 6 π

(t4, 1), π 6 arg(t) 6 3π
2

(1, t4), 3π
2 6 arg(t) 6 2π
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for every z and t from S. Let us consider the ANR-sequences

B
f←− B f←− B f←− · · ·

and

ΣB
Σf←− ΣB Σf←− ΣB Σf←− · · ·

where Σ is the operation of suspension. Let us denote

P = lim←−{B, f}.
Then

ΣP = lim←−{ΣB,Σf}.
Let us define an action of the group Z2 = {e, g} on ΣB by the formulas

e[x, t] = [x, t]; g[x, t] = [x,−t].
for every [x, t] ∈ ΣB,−1 6 t 6 1. It induces an action on ΣP .

Proposition 5.2. The space ΣP has trivial shape, but it is not Z2-
movable.

Proof. The triviality of shape of the space ΣP is proved by the method
of Mardešić [13]. Let us prove that the space ΣP is not Z2-movable. Consider
the set ΣP [Z2] of all fixed-points of Z2-space ΣP . It is obvious that ΣP [Z2] =
P . Hence, by Theorem 4.1, it is sufficient to prove the following proposition.

Proposition 5.3. The space P is not movable.

Proof. Since the movability of an inverse system remains unchanged
under the action of a functor, it is sufficient to prove non-movability of the
inverse sequence of groups

(1) π1(B)
f∗←− π1(B)

f∗←− π1(B)
f∗←− · · · ,

where π1(B) is the fundamental group of the space B and f∗ is the homomor-
phism induced by the mapping f : B → B.

It is known that for sequences of groups movability implies the following
condition of Mittag-Leffler, abbreviated as ML ([15], p. 166, Corollary 4):

The inverse system {Gα, pαα′ , A} of the pro − GROUP category is said
to be ML provided for every α ∈ A, there exist α′ ∈ A,α′ > α, such that
pαα′(Gα′) = pαα′′(Gα′′ ), for any α′′ ∈ A,α′′ > α .

Thus, it sufficient to prove that the sequence (1) does not satisfy condition
ML. Let us observe that π1(B) is a free group with two generators a and b,
and f∗ is the homomorphism defined by the formulas

f∗(a) = aba−1b−1, f∗(b) = a−1b−1ab.
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f∗ is a monomorphism, because f∗(a) 6= f∗(b), but not an epimorphism,
because, for example, f∗(x) 6= a, for all x ∈ π1(B). Hence, for any natural m
and n, Imfm

∗ & Imfn
∗ only if m > n. It means that the inverse sequence (1)

does not satisfy condition ML.

6. Movability of the orbit space

Theorem 6.1. Let X be a metrizable G-space. If X is G-movable then
for any closed and normal subgroup H of the group G, the H-orbit space X |H
is also G-movable.

Proof. Without losing generality one may suppose that X is a closed
G-invariant subset of some G − AR(MG)-space Y ([18], Theorem 1.1). X |H
is a closed G-invariant subset of Y |H ([5], Theorem 3.1).

Let {Xα, α ∈ A} be the family of all G-invariant neighborhoods ofX in Y .
Let us consider the family {Xα|H , α ∈ A}, where eachXα|H ∈ G−ANR(MG)
and is aG-invariant neighborhood ofX |H in Y |H . Let us prove that the family
{Xα|H , α ∈ A} is cofinal in the family of all neighborhoods of X |H in Y |H .
Let U be an arbitrary neighborhood of X |H in Y |H . By a theorem of Palais
([17], Proposition 1.1.14), there exists a G-invariant neighborhood V ⊃ X |H
laying in U . Let us denote Ṽ = (pr)−1(V ), where pr : Y → Y |H is the

H-orbit projection. It is evident that Ṽ is a G-invariant neighborhood of
the space X in Y and V = Ṽ |H . So in any neighborhood of the space X |H
in Y |H , there is a neighborhood of type Xα|H , where Xα is a G-invariant
neighborhood of X in Y .

Now let us prove theG-movability of the spaceX |H . LetX be G-movable.
It means that the inverse system {Xα, iαα′ , A} is G-movable. We must prove
that the induced inverse system {Xα|H , iαα′ |H , A} is G-movable. Let α ∈ A
be any index. By the G-movability of the inverse system {Xα, iαα′ , A}, there
is α′ ∈ A,α′ > α, such that for any other index α′′ ∈ A,α′′ > α, there exists
a G-mapping rα′α′′

: Xα′ → Xα′′ , which makes the following diagram
G-homotopy commutative

Xα

Xα′′

Xα′�������

iαα′

HHHHHHY

iαα′′
?

rα′α′′

Diagram 1.
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It turns out that, for given α ∈ A, the obtained index α′ ∈ A,α′ > α,
also satisfies the condition of G-movability of the inverse system

{Xα|H , iαα′ |H , A}.
This is obvious, because the G-homotopy commutativity of Diagram 1 implies
the G-homotopy commutativity of the following diagram

Xα|H

Xα′′ |H

Xα′ |H������

iαα′ |H

HHHHHY

iαα′′ |H ?

rα′α′′ |H

Diagram 2.

where rα′α′′ |H : Xα′ |H → Xα′′ |H is induced by the mapping rα′α′′

. So, the
G-movability of the space X |H is proved.

Corollary 6.2. Let X be a metrizable G-space. If X is G-movable, then
the orbit space X |G is movable.

Proof. In the caseH = G from the last theorem we obtain that the orbit
space X |G with the trivial action of the group G is G-movable. Therefore, it
will be movable by Corollary 3.5.

Corollary 6.2 in general is not invertible:

Example 6.3. Let Σ be a solenoid. It is known ([4], Theorem 13.5) that
Σ is a non-movable compact metrizable Abelian group. By Corollary 3.5, the
solenoid Σ with the natural group action is not Σ-movable although the orbit
space Σ|Σ as a one-point set is movable.

The converse of Corollary 6.2 is true if the group G is a Lie group and
the action is free (see Theorem 7.2).

7. Equivariant movability of a free G-space

Theorem 7.1. Let G be a compact Lie group and let Y be a metrizable
G − AR(MG)-space. Suppose that a closed invariant subset X of Y has an
invariant neighborhood whose orbits have the same type. If the orbit space
X |G is movable, then X is equivariantly movable.

Proof. The orbit space X |G is closed in Y |G, which is a G − AR(M)-
space. Let U be an arbitrary invariant neighborhood of X in Y . By the
assumption of the theorem, it follows that there exists a cofinal family of
neighborhoods of X in Y , whose orbits have the same type. Therefore, one
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may suppose that all orbits of the neighborhood U have the same type. The
orbit set U |G will be a neighborhood of X |G in Y |G. From the movability of

X |G it follows that, for the neighborhood U |G, there is a neighborhood Ṽ of
the space X |G in Y |G, which lies in the neighborhood U |G and contracts to
any preassigned neighborhood of the space X |G.

Let us denote V = (pr)−1(Ṽ ), where pr : Y → Y |G is the orbit projection.
It is evident that V is an invariant neighborhood of the space X lying in U .
Let us prove that V contracts in U to any preassigned invariant neighborhood
of X . Let W be any invariant neighborhood of X in Y . We must prove the
existence of an equivariant homotopy F : V × I → U , which satisfies the
condition

F (x, 0) = x, F (x, 1) ∈W,
for any x ∈ V . Since W |G is a neighborhood of the space X |G in Y |G, there
is a homotopy F̃ : V |G × I → U |G such that

(2) F (x̃, 0) = x̃, F̃ (x̃, 1) ∈ W |G,

for any x̃ ∈ V |G. The homotopy F̃ : V |G × I → U |G preserves the G-
orbit structure, because V ⊂ U and all orbits of U have the same types (see
Diagram 3).

V |G U |G

V U

-i′

-i

?

pr

?

pr

Diagram 3.

By the covering homotopy theorem of Palais ([17], Theorem 2.4.1), there is

an equivariant homotopy F : V × I → U , which covers the homotopy F̃ and
satisfies F (x, 0) = i(x) = x. That is, the following diagram is commutative
(Diagram 4).

V |G × I U |G

V × I U

-F̃

-F

?

pr

?

pr

Diagram 4.
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F : V × I → U is the designed equivariant homotopy. It only remains
to verify that F (x, 1) ∈ W . But this immediately follows from (2) and the
commutativity of Diagram 4.

Theorem 7.2. Let G be a compact Lie group. A metrizable free G-space
X is equivariantly movable if and only if the orbit space X |G is movable.

Proof. The necessity in a more general case was proved in Corollary 6.2.
Let us prove the sufficiency. Let the orbit space X |G be movable. One can
consider the G-spaceX as a closed and invariant subset of some G−AR(MG)-
space Y . Let P ⊂ X be any orbit. From the existence of slices it follows that
around P there is such an invariant neighborhood U(P ) in Y that typeQ >
typeP , for any orbit Q from U(P ) ([5], Corollary 5.5). Since the action of the
group G on X is free, typeQ = typeP = typeG, for any orbit Q lying in U(P ).
Let us denote V = ∪{U(P );P ∈ X |G}. It is evident that V is an invariant
neighborhood of the space X in Y and that all of its orbits have the same
type. Then, by Theorem 7.1, X is equivariantly movable.

Example 6.3 shows that the assumption that G is a Lie group is essential
in the above theorem. The Example 8.1 which follows shows that the condition
of freeness of the action of the group G is also essential in the above theorem.

8. Example of a non-free not Z2-movable space with a movable
orbit space

Example 8.1. Let us consider the space P = lim←−{B, f} constructed in
Example 5.1. Let us define an action of the group Z2 = {e, g} on the space
B by the formulas

(3)

e(z, 1) = (z, 1)

e(1, t) = (1, t)

g(z, 1) = (1, z−1)

g(1, t) = (t−1, 1),

for any z and t from S. B is a Z2 − ANR(MZ2) space with the fixed-point
b0 = (1, 1).

Proposition 8.2. The mapping f : B → B, defined by formulas (3), is
equivariant.

Proof. It is necessary to prove the following two equalities:

(4)
f(g(z, 1)) = g(f(z, 1))

f(g(1, t)) = g(f(1, t)),

for any z and t from S. Let us prove the first one. Consider the following
cases:
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Case 1. 0 6 argz 6 π
2 ⇔ 3π

2 6 argz−1 6 2π.

Then f(g(z, 1)) = f(1, z−1) = (1, z−4) = g(z4, 1) = gf(z, 1).
Case 2. π

2 6 argz 6 π ⇔ π 6 argz−1 6
3π
2 .

Then f(g(z, 1)) = f(1, z−1) = (z−4, 1) = g(1, z4) = gf(z, 1).
Case 3. π 6 argz 6 3π

2 ⇔ π
2 6 argz−1 6 π.

Then f(g(z, 1)) = f(1, z−1) = (1, z4) = g(z−4, 1) = gf(z, 1).
Case 4. 3π

2 6 argz 6 2π ⇔ 0 6 argz−1 6 π
2 .

Then f(g(z, 1)) = f(1, z−1) = (z4, 1) = g(1, z−4) = gf(z, 1).

The second equality of (4) is proved in a similar way.

Proposition 8.3. P is a connected, compact, metrizable and equivari-
antly non-movable Z2-space which is free at all points except at the only fixed
point (b0, b0, ...) and sh(P |Z2)=0.

Proof. P is a Z2-space because it is an inverse limit of Z2−ANR(MZ2)-
spaces B and f is an equivariant mapping. The uniqueness of the fixed point
is evident. The connectedness, compactness and metrizability follows from
the properties of inverse systems ([8], Theorem 6.1.20, Corollary 4.2.5). The
non Z2-movability follows from Proposition 5.3 and Corollary 3.5.

Let us prove that sh(P |Z2) = 0 and thus the orbit space P |Z2 is movable.
Let X = lim←−{B|Z2 , f |Z2}. X is equimorphic to the orbit space P |Z2 .

Indeed, let us define a mapping h : X → P |Z2 in the following way:

h(([x1], [x2], ...)) = [(x1, x2, ...)]

where ([x1], [x2], ...) ∈ X , and x1, x2, ... are selected from the classes
[x1], [x2], ... in such way that (x1, x2, ...) ∈ P or what is the same f(xn+1) =
xn, for any n = 1, 2, .... Let us prove that the mapping h is defined correctly.
Let x̃1, x̃2, ... be some other representatives of the classes [x1], [x2], ..., respec-
tively, satisfying the conditions f(x̃n+1) = x̃n for any n ∈ N . Since each
class [xn] has two representatives: xn and gxn, where g ∈ Z2 = {e, g}, either
x̃n = gxn or x̃n = xn. But it is obvious that, if for some n0 ∈ N, x̃n0 = gxn0 ,
then, for any n ∈ N, x̃n = gxn, because f is equivariant. Thus, in the case of
another choice of the representatives of the classes [x1], [x2], ..., we have

h(([x1], [x2], ...)) = [(x̃1, x̃2, ...)] = [(gx1, gx2, ...)] =

= [g(x1, x2, ...)] = [(x1, x2, ...)].

However, h is a continuous bijection and thus, it is a homeomorphism ([8],
Theorem 3.1.13).

Consequently,

P |Z2 = lim←−{B|Z2 , f |Z2},
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where B|Z2
∼= S and the mapping f̄ = f |Z2 : S → S is defined by the formulas:

(5) f̄(z) =





z4, 0 6 arg(z) 6 π
2

z−4, π
2 6 arg(z) 6 3π

2

z4, 3π
2 6 arg(z) 6 2π

for any z ∈ S. Thus, we conclude that the orbit space P |Z2 is a limit of the
inverse sequence

S
f̄←− S f̄←− S f̄←− · · ·

By formula (5), the mapping f̄ induces a homomorphism f̄∗ : π1(S)→ π1(S),
which acts as follows:

f̄∗(a) = aa−1a−1a,

where a ∈ π1(S) ∼= Z is the generator of the group Z. From the above
formula, it follows that f̄∗ is the null-homomorphism and thus, degf̄ = 0.
For any k = 1, 2, · · · , f̄k

∗ is also a null-homomorphism and thus, degf̄k = 0.
Therefore, by the classical Hopf theorem ([10], Section 2.8, Theorem Hn) all
f̄k : S → S are null-homotopic and sh(P |Z2) = 0.
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