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EXTENSION DIMENSION OF INVERSE LIMITS.
CORRECTION OF A PROOF

Sibe Mardešić

University of Zagreb, Croatia

Abstract. The erroneous proof of a lemma in a previous paper of
the author on extension dimension of inverse limits is replaced by a correct
one.

Recently I. Ivanšić and L. Rubin discovered an error in the proof of
Lemma 4 of the author’s paper [2]. In that proof, for a simplicial com-
plex K, its geometric realization |K| (endowed with the weak topology),
a mapping φ : V → I = [0, 1] of a space V and two contiguous mappings
g, h : V → |K|, the author considered the function k : V → |K|, defined by
putting k(x) = φ(x)g(x) + (1 − φ(x))h(x), for x ∈ V . Then he erroneously
assumed that k is continuous, which is not always the case (see [1]). The
purpose of this note is to give a correct proof of Lemma 4.

Lemma 4. Let X be a normal space and K a simplicial complex. Let
A ⊆ X be a closed set and let V, U ⊆ X be open sets such that A ⊆ V ⊆
V ⊆ U . If h : U → |K| and g : V → |K| are mappings such that h|V and g
are contiguous mappings, then there exists a mapping k : U → |K|, which is
contiguous to h and is such that

(1) k|A = g|A,

(2) k|U\V = h|U\V.

In the proof we will use the following Lemma.

Lemma 4’. Let V be a topological space, K a simplicial complex and
let h, g : V → |K| be contiguous mappings. Then there exists a homotopy
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φ : V × I → |K| such that φ(x, 0) = h(x) and φ(x, 1) = g(x), for x ∈ V .
Moreover, if for an x ∈ V , g(x) and h(x) belong to a simplex σ ∈ K, then
φ(x × I) ⊆ σ.

Proof of Lemma 4. By normality of X , there exist an open set H , A ⊆
H ⊆ H ⊆ V and a mapping α : X → I such that α|A = 1 and α|(X\H) = 0.
By Lemma 4′, there is a homotopy φ : V × I → |K| such that φ(x, 0) = h(x)
and φ(x, 1) = g(x), for x ∈ V . Moreover, if for an x ∈ V , g(x) and h(x) belong
to a simplex σ ∈ K, then φ(x× I) ⊆ σ. We define a mapping k : U → |K| by
putting

(3) k(x) =

{
φ(x, α(x)) x ∈ V,
h(x), x ∈ U\H.

Note that V and U\H are open subsets of U , which cover U . Moreover,
since U\H ⊆ X\H, we see that, for x ∈ V ∩ (U\H), α(x) = 0, and thus,
the first line of (3) yields the value k(x) = φ(x, 0) = h(x). Therefore, k is
indeed a well-defined mapping k : U → |K|. If x ∈ A, then α(x) = 1. Since
x ∈ V , we conclude that k(x) = φ(x, 1) = g(x). If x ∈ U\V , then x ∈ U\H
and thus, k(x) = h(x). Finally, every x ∈ V admits a simplex σ ∈ K such
that h(x), g(x) ∈ σ. Let us show that also k(x) ∈ σ. Indeed, by Lemma
4′, φ(x, t) ⊆ σ, for every t ∈ I . In particular, k(x) = φ(x, α(x)) ∈ σ. If
x ∈ U\V , then by definition (3), k(x) = h(x). All this proves that h and k
are contiguous mappings.

Proof of Lemma 4′. Let |K|m denote the geometric realization of the
complex K, endowed with the metric topology (see [3], Appendix 1.3). It is
well known that the identity function i : |K| → |K|m is continuous (see [3],
Appendix 1.3, Corollary 5). Therefore, the mappings h, g : V → |K| can also
be viewed as mappings h, g : V → |K|m. Since the mappings h and g are
contiguous, the following formula defines a function ψ : V × I → |K|m.

(4) ψ(x, t) = (1− t)h(x) + tg(x), (x, t) ∈ V × I.

Moreover, if for an x ∈ V , both points h(x) and g(x) belong to a simplex
σ ∈ K, then also ψ(x × I) ⊆ σ. By Theorem 8 of Appendix 1.3 of [3],
ψ : V × I → |K|m is continuous and thus, it is a homotopy which connects h
to g.

There exists a mapping j : |K|m → |K| and a homotopy J : |K|×I → |K|,
which connects the identity 1|K| to ji. Moreover, for each simplex σ ∈ K,
J(σ × I) ⊆ σ (see [3], Appendix 1.3, the proof of Theorem 10 and Remark 1
or Lemma 2.3 of [4]). We now define φ : V × I → |K| as the juxtaposition of
three homotopies Jh, jψ and the reverse of Jg, i.e., for (x, t) ∈ V × I , we put
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(5) φ(x, t) =





J(h(x), 3t) t ∈ [0, 1/3],
jψ(x, 3t− 1), t ∈ [1/3, 2/3],
J(g(x),−3t+ 3), t ∈ [2/3, 1].

The mapping φ is well defined, because for t = 1/3, the first and the
second row in (5) yield the same value φ(x, 1/3) = jh(x) and for t = 2/3,
the second and the third row in (5) yield the same value φ(x, 2/3) = jh(x).
Furthermore, φ(x, 0) = J(h(x), 0) = h(x) and φ(x, 1) = J(g(x), 0) = g(x).
Finally, let us show that whenever g(x) and h(x) belong to a simplex σ ∈ K,
then φ(x × I) ⊆ σ. Indeed, J(σ × I) ⊆ σ and thus, the first and third row
of (5) imply that φ(x, t) ∈ σ, for t ∈ [0, 1/3] ∪ [2/3, 1]. Moreover, by (4),
ψ(x × I) ⊆ σ. Since j(σ) = J(σ × 1) ⊆ J(σ × I) ⊆ σ, we conclude that
also jψ(x × I) ⊆ σ. Consequently, by the second row in (5), φ(x, t) ∈ σ, for
t ∈ [1/3, 2/3].
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