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ABSTRACT. In this paper we give some applications and special cases
of a generalization of the Landau’s theorem for Frechet-differentiable func-
tions.

1. INTRODUCTION
E. Landau has proved the following theorems [11]:

THEOREM A. Let I C R be an interval of length not less than 2 and
let f: I — R be a twice differentiable function satisfying |f(z)] < 1 and
|f"(x)] <1 (zel). Then

If'@) <2 (zel).
Furthermore, 2 is the best possible constant in the above inequality.

THEOREM B. Let f: R — R be a twice differentiable function satisfying
lf(2)] <1 and|f’(x)| <1 (xzel). Then

[f'(@)<vV2 (z€R).
Furthermore, \/2 is the best possible constant in the above inequality.

There exists many generalizations of these results. In Section 2 we give
some remarks about the generalization of Theorem A given in [9]. Some
applications and special cases are given in Section 3.
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2. LANDAU’S THEOREMS FOR FRECHET-DIFFERENTIABLE FUNCTIONS

Let X and Y be Banach spaces. Given a,b € X (a #b) defineg: X — R
by
9(@) = llz —al* + o — 2| (x € X).
Let D be a convex subset of X such that g(z) < ||b — a||? for every z € D
and suppose that a,b € D. Furthermore, let f : X — Y be twice Frechet—
differentiable on D. With these assumptions the following generalizations of
Theorems A and B have been proven in [9]:

THEOREM C. If |[F(z)| < M (x € D) and [P UNDIES N|A|? (h €
X, z € D), then
N N —
IFGy (b= a)ll < 2M + g(x) <2M + —[lb—a|® (x € D).

THEOREM D. If | F/

()| < N|IR|? (h € X, « € D), then

| (6~ a) ~ F(8) + F(@) < Tg(x) (z € D).
We prove now the following generalization of these results.
THEOREM 2.1. Suppose that
(2.1) [F ey (h, W)l < H(h) (h € X, x € D),
where H is a function from X to RT. Then for all x € D
(22)  [Fin(b—a)—~ FO) + F(@)| < 5 (H(a— )+ Hb - 1)).

Under the further assumption

(2.3) |F(z)| <M (z€D),
then for all x € D
1

(2.4) [ F{y(b—a)ll §2M+§(H(a—x)+H(b—x)).

PROOF. If 2 € D and h € X are such that o + th € D for every t,
0 <t < 1, then the Taylor’s formula holds true:

F(z +h) = F(2) + F(y)(h) + w(z, h)

where w(z,h) = %F(m+th)(h,h) for some ¢, 0 < t < 1. Combining the two
formulas for h = a — x and h = b — x we obtain
(2.5) Fipy(b—a) = F(b) + F(a) = w(z,a — x) —w(b - ).

Now, (2.5) together with (2.1) implies (2.2). Similarly, (2.5) together with
(2.1) and (2.3) implies (2.4). O
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REMARK 2.2. If the function H in Theorem 2.1 is even (H(—h) = H(h))
then for a = z — h and b = = 4+ h we obtain from (2.4):
(2.6 Ly (2)] < 20 + H ().

REMARK 2.3. The inequalities (2.4) and (2.6) hold true if instead of (2.3)
we have

(2.7) I1E(b) = F(a)|| < 2M.
REMARK 2.4. For (H(h) = N| h||* we obtain Theorems C and D.

3. SOME APPLICATIONS

COROLLARY 3.1. Let f : [a,b+ h] — R be a differentiable function (a <
b, h > 0) such that

(3.8) onf' (@) <N (2 € (a,b)),
where p,9(x) = £(g(z + h) — g(x)). Then

(39) b))~ F(b) + fla)] < 5 [z~ ) + (2 )]
If we also have

(3.10) m< flz) <M (a<z<b+h),

then

(3.11) (b—a)|onf()] gM—m+%[(x—a)2+(:c—b)2}.

PROOF. This follows from Theorem 2.1 and Remark 2.3 for X =Y =R,
x+h
el = |z|, F(z) = 4 [ f(t)dt (a <2 <), D=(a,b), H(h) = Nh*. O

COROLLARY 3.2. Let the conditions of Corollary 3.1 be fulfilled. Then

—m 4 oca ; 2(M—m
(3.12) 6nf ()] < B+ beN, if b—a< \/?

2M —m)N,  if b—a> /2

PRrROOF. From (3.11) we get
M-m b—a
0 <
)] < Ty

and if b —a > /2(M —m)/N we obtain
0nf(2)] < V2(M —m)N
since the function g(y) = M%m + &y has the minimum /2(M —m)N for

y=+/2(M —m)/N. O

N
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COROLLARY 3.3. Let f: R — R be a differentiable function such that
m<f@) <M, [0nf @ <N (z€R, h>0).
Then
(3.13) lonf(x)] </ (M —m)N (zeR, h>0).

PRrOOF. Using (2.6) (i. e. (3.11) fora=xz —y, b=z +y), we get

M—-m yN
3.14 ) < —.
(314) st < M 4
The function g(y) = Mijm + % has the minimum /(M —m)N for y =

V(M —m)/N, hence for y > /(M — m)/N we get (3.13) from (3.14). O

COROLLARY 3.4. Let f : R — R be twice differentiable on D, where
D ={x eR"™ a; <x; <b;}. Suppose that

2f

(3.15) o, <N;; on D.
Then
(3.16) i(bz ai)g—i — f(a) + f(b)
< 33 Ny lGas — ) — ) + (b = 2) (6 — ;)

If, furthermore,

(3.17) m<f@)<M (zeD),
then
;(bi ‘“)a—mi M—m

+% Z Nij [(1'1 - ai)(l’j — aj) + (bi — xi)(bj — 1'])]

(3.18)

IN

1
M —m+ 5 zNij(bi - ai)(bj — aj).

%]
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ProOOF. We use Theorem 2.1 and Remark 2.3 with X = R", Y = R,
F=f || = Z |zi| (x € R™), |lyl| = |yl (y € R). In this case (3.15) implies

1
HF (h, h) H - }Z 8zla%hh <ZNU|h| Ih;].

So, Theorem 2.1 implies the first inequalities in (3.16) and (3.18) (note that
|F(b) — F(a)|| < M — m). The second inequalities follow from the obvious
inequality: ab+ ed < (a +¢)(b+d) (a,b,c,d > 0). O

COROLLARY 3.5. Let the conditions of Corollary 3.4 be fulfilled and let
h =min{b; —a;; 1 <i<n}. Then

(3.19)

{ Mom 4 AN, if h<\2(M—m)/N
2(M —m)N, if h>+/2(M—-m)/N

where N = Z N”

4,J

PROOF. We can suppose b; — a; = h for every i. Then we get from (3.18)

“Of| _M-m h
3.20 < —N.
Now, as in the proof of Corollary 3.2, (3.20) implies (3.19). O

COROLLARY 3.6. Let f : R™ — R be a differentiable function such that

0*f
6:101- 6£Ej

m< f(z) <M and ‘

S Nij on Rn

Then

(3.21)

where N =3 Nyj.

,J

ProOOF. For b; = x; + h;, a; = x; — h; (h; > 0) (3.18) gives

Zh ox;

and for hy = --- = h,, = h we obtain

(3.22) L Mom

+ = ZNwh h;,

,J

M—m hN
(3.23) m
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Taking the minimum over i > 0 of the right-hand side of (3.23) we obtain
(3.21). O

A simple consequence of (3.19) is the following generalization of a result
from [4].

COROLLARY 3.7. Let D={z € R"; 0<z; <1} andlet f : D — R be a
twice differentiable function. Suppose that |f(z)| < 1 (x € D) and that (3.15)
is fulfilled. Then

(3.24) 2v/N, if N >4,

_<{%, if 0<N<4

where N =Y N;j.
4,9

COROLLARY 3.8. Under the assumptions of Corollary 3.6 with

(3.25) Z 8%6% <A (zeD)

instead of (3.15), the followmg inequality holds true:

of

(3.26) o

(M —m)A.

PROOF. In the case h1 =.--=h, = h we have

| (I)hhn—hQZaxax < h2A.
A

Thus, instead of (3.22) we obtain
>
ox;

wherefrom (3.26) follows. O

M—-m hA
_l’_

2
(8:27) 2h 2

<

REMARK 3.9. Corollary 3.8 is a generalization of a result from [17] where
the case n = 2 is given.

By using (3.26) and (3.27) we easily obtain the following generalization
of a result from [15]:

COROLLARY 3.10. Let f : [0,1]" — R be a twice differentiable function
such that |f(x)] <1 (x € [0,1]™) and
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Then

" af (1 1 244 if 0<A<S8
. — | =,..., = < 47 -
o S Ged) < e
If [ is positive then

" af (1 1 144 if 0<A<4
. — | =,..., = < 47 -
(3.29) ;&ci (2’ ’2) _{ VA, if A>4.

REMARK 3.11. Analogous improvements of Landau’s theorems were given

by V. M. Olovyanisnikov (see e. g. [16] where some similar results are given).

ADDITIONAL REMARK. Let us note that results from this paper are given

in monograph [13, pp. 45-50]. Some further related results are given in [2, 3,

5, 6,

(1]

(2]

7,10, 14, 8].
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