ON LANDAU'S THEOREMS

Dragoslav S. Mitrinović,
Josip E. Pečarić and Hrvoje Kraljević
University of Belgrade, Yugoslavia and University of Zagreb, Croatia

Abstract

In this paper we give some applications and special cases of a generalization of the Landau's theorem for Frechet-differentiable functions.

1. Introduction

E. Landau has proved the following theorems [11]:

Theorem A. Let $I \subseteq \mathbf{R}$ be an interval of length not less than 2 and let $f: I \rightarrow \mathbf{R}$ be a twice differentiable function satisfying $|f(x)| \leq 1$ and $\left|f^{\prime \prime}(x)\right| \leq 1(x \in I)$. Then

$$
\left|f^{\prime}(x)\right| \leq 2 \quad(x \in I)
$$

Furthermore, 2 is the best possible constant in the above inequality.
Theorem B. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a twice differentiable function satisfying $|f(x)| \leq 1$ and $\left|f^{\prime \prime}(x)\right| \leq 1(x \in I)$. Then

$$
\left|f^{\prime}(x)\right| \leq \sqrt{2} \quad(x \in \mathbf{R})
$$

Furthermore, $\sqrt{2}$ is the best possible constant in the above inequality.
There exists many generalizations of these results. In Section 2 we give some remarks about the generalization of Theorem A given in [9]. Some applications and special cases are given in Section 3.

[^0]
2. Landau's theorems for Frechet-differentiable functions

Let X and Y be Banach spaces. Given $a, b \in X(a \neq b)$ define $g: X \rightarrow \mathbf{R}$ by

$$
g(x)=\|x-a\|^{2}+\|b-x\|^{2} \quad(x \in X)
$$

Let D be a convex subset of X such that $g(x) \leq\|b-a\|^{2}$ for every $x \in D$ and suppose that $a, b \in \bar{D}$. Furthermore, let $f: X \rightarrow Y$ be twice Frechetdifferentiable on \bar{D}. With these assumptions the following generalizations of Theorems A and B have been proven in [9]:

Theorem C. If $\|F(x)\| \leq M(x \in \bar{D})$ and $\left\|F_{(x)}^{\prime \prime}(h, h)\right\| \leq N\|h\|^{2}(h \in$ $X, x \in D)$, then

$$
\left\|F_{(x)}^{\prime}(b-a)\right\| \leq 2 M+\frac{N}{2} g(x) \leq 2 M+\frac{N}{2}\|b-a\|^{2} \quad(x \in \bar{D})
$$

Theorem D. If $\left\|F_{(x)}^{\prime \prime}(h, h)\right\| \leq N\|h\|^{2}(h \in X, x \in D)$, then

$$
\left\|F_{(x)}^{\prime}(b-a)-F(b)+F(a)\right\| \leq \frac{N}{2} g(x) \quad(x \in \bar{D})
$$

We prove now the following generalization of these results.
Theorem 2.1. Suppose that

$$
\begin{equation*}
\left\|F_{(x)}^{\prime \prime}(h, h)\right\| \leq H(h) \quad(h \in X, x \in D) \tag{2.1}
\end{equation*}
$$

where H is a function from X to \mathbf{R}^{+}. Then for all $x \in \bar{D}$

$$
\begin{equation*}
\left\|F_{(x)}(b-a)-F(b)+F(a)\right\| \leq \frac{1}{2}(H(a-x)+H(b-x)) \tag{2.2}
\end{equation*}
$$

Under the further assumption

$$
\begin{equation*}
\|F(x)\| \leq M \quad(x \in \bar{D}) \tag{2.3}
\end{equation*}
$$

then for all $x \in \bar{D}$

$$
\begin{equation*}
\left\|F_{(x)}^{\prime}(b-a)\right\| \leq 2 M+\frac{1}{2}(H(a-x)+H(b-x)) \tag{2.4}
\end{equation*}
$$

Proof. If $x \in \bar{D}$ and $h \in X$ are such that $x+t h \in D$ for every t, $0<t<1$, then the Taylor's formula holds true:

$$
F(x+h)=F(x)+F_{(x)}^{\prime}(h)+w(x, h)
$$

where $w(x, h)=\frac{1}{2} F_{(x+t h)}(h, h)$ for some $t, 0<t<1$. Combining the two formulas for $h=a-x$ and $h=b-x$ we obtain

$$
\begin{equation*}
F_{(x)}^{\prime}(b-a)-F(b)+F(a)=w(x, a-x)-w(b-x) \tag{2.5}
\end{equation*}
$$

Now, (2.5) together with (2.1) implies (2.2). Similarly, (2.5) together with (2.1) and (2.3) implies (2.4).

Remark 2.2. If the function H in Theorem 2.1 is even $(H(-h)=H(h))$ then for $a=x-h$ and $b=x+h$ we obtain from (2.4):

$$
\begin{equation*}
\left\|F_{(x)}^{\prime}(2 h)\right\| \leq 2 M+H(h) . \tag{2.6}
\end{equation*}
$$

Remark 2.3. The inequalities (2.4) and (2.6) hold true if instead of (2.3) we have

$$
\begin{equation*}
\|F(b)-F(a)\| \leq 2 M . \tag{2.7}
\end{equation*}
$$

Remark 2.4. For $\left(H(h)=N\|h\|^{2}\right.$ we obtain Theorems C and D.

3. Some applications

Corollary 3.1. Let $f:[a, b+h] \rightarrow \mathbf{R}$ be a differentiable function ($a<$ b, $h>0$) such that

$$
\begin{equation*}
\left|\delta_{h} f^{\prime}(x)\right| \leq N \quad(x \in(a, b)), \tag{3.8}
\end{equation*}
$$

where $\delta_{h} g(x)=\frac{1}{h}(g(x+h)-g(x))$. Then

$$
\begin{equation*}
\left|(b-a) \delta_{h} f(x)-f(b)+f(a)\right| \leq \frac{N}{2}\left[(x-a)^{2}+(x-b)^{2}\right] . \tag{3.9}
\end{equation*}
$$

If we also have

$$
\begin{equation*}
m \leq f(x) \leq M \quad(a \leq x \leq b+h) \tag{3.10}
\end{equation*}
$$

then

$$
\begin{equation*}
(b-a)\left|\delta_{h} f(x)\right| \leq M-m+\frac{N}{2}\left[(x-a)^{2}+(x-b)^{2}\right] . \tag{3.11}
\end{equation*}
$$

Proof. This follows from Theorem 2.1 and Remark 2.3 for $X=Y=\mathbf{R}$, $\|x\|=|x|, F(x)=\frac{1}{h} \int_{x}^{x+h} f(t) d t(a \leq x \leq b), D=(a, b), H(h)=N h^{2}$.

Corollary 3.2. Let the conditions of Corollary 3.1 be fulfilled. Then

$$
\left|\delta_{n} f(x)\right| \leq \begin{cases}\frac{M-m}{b-a}+\frac{b-a}{2} N, & \text { if } b-a \leq \sqrt{\frac{2(M-m)}{N}} \tag{3.12}\\ \sqrt{2(M-m) N}, & \text { if } b-a \geq \sqrt{\frac{2(M-m)}{N}} .\end{cases}
$$

Proof. From (3.11) we get

$$
\left|\delta_{h} f(x)\right| \leq \frac{M-m}{b-a}+\frac{b-a}{2} N
$$

and if $b-a \geq \sqrt{2(M-m) / N}$ we obtain

$$
\left|\delta_{h} f(x)\right| \leq \sqrt{2(M-m) N}
$$

since the function $g(y)=\frac{M-m}{y}+\frac{N}{2} y$ has the minimum $\sqrt{2(M-m) N}$ for $y=\sqrt{2(M-m) / N}$.

Corollary 3.3. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a differentiable function such that

$$
m \leq f(x) \leq M, \quad\left|\delta_{h} f^{\prime}(x)\right| \leq N \quad(x \in \mathbf{R}, h>0) .
$$

Then

$$
\begin{equation*}
\left|\delta_{h} f(x)\right| \leq \sqrt{(M-m) N} \quad(x \in \mathbf{R}, h>0) . \tag{3.13}
\end{equation*}
$$

Proof. Using (2.6) (i. e. (3.11) for $a=x-y, b=x+y$), we get

$$
\begin{equation*}
\left|\delta_{h} f(x)\right| \leq \frac{M-m}{2 y}+\frac{y N}{2} . \tag{3.14}
\end{equation*}
$$

The function $g(y)=\frac{M-m}{2 y}+\frac{y N}{2}$ has the minimum $\sqrt{(M-m) N}$ for $y=$ $\sqrt{(M-m) / N}$, hence for $y \geq \sqrt{(M-m) / N}$ we get (3.13) from (3.14).

Corollary 3.4. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be twice differentiable on \bar{D}, where $D=\left\{x \in \mathbf{R}^{n} ; a_{i}<x_{i}<b_{i}\right\}$. Suppose that

$$
\begin{equation*}
\left|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right| \leq N_{i j} \quad \text { on } \quad D . \tag{3.15}
\end{equation*}
$$

Then

$$
\begin{align*}
& \left|\sum_{i=1}^{n}\left(b_{i}-a_{i}\right) \frac{\partial f}{\partial x_{i}}-f(a)+f(b)\right| \tag{3.16}\\
& \quad \leq \frac{1}{2} \sum_{i, j} N_{i j}\left[\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right)+\left(b_{i}-x_{i}\right)\left(b_{j}-x_{j}\right)\right] \\
& \quad \leq \frac{1}{2} \sum_{i, j} N_{i j}\left(b_{i}-a_{i}\right)\left(b_{j}-a_{j}\right) .
\end{align*}
$$

If, furthermore,

$$
\begin{equation*}
m \leq f(x) \leq M \quad(x \in \bar{D}), \tag{3.17}
\end{equation*}
$$

then
$\left|\sum_{i=1}^{n}\left(b_{i}-a_{i}\right) \frac{\partial f}{\partial x_{i}}\right| \leq M-m$ $+\frac{1}{2} \sum_{i, j} N_{i j}\left[\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right)+\left(b_{i}-x_{i}\right)\left(b_{j}-x_{j}\right)\right]$

$$
\begin{equation*}
\leq M-m+\frac{1}{2} \sum_{i, j} N_{i j}\left(b_{i}-a_{i}\right)\left(b_{j}-a_{j}\right) . \tag{3.18}
\end{equation*}
$$

Proof. We use Theorem 2.1 and Remark 2.3 with $X=\mathbf{R}^{n}, Y=\mathbf{R}$, $F=f,\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|\left(x \in \mathbf{R}^{n}\right),\|y\|=|y|(y \in \mathbf{R})$. In this case (3.15) implies

$$
\left\|F_{(x)}^{\prime \prime}(h, h)\right\|=\left|\sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} h_{i} h_{j}\right| \leq \sum_{i, j} N_{i j}\left|h_{i}\right|\left|h_{j}\right| .
$$

So, Theorem 2.1 implies the first inequalities in (3.16) and (3.18) (note that $\|F(b)-F(a)\| \leq M-m)$. The second inequalities follow from the obvious inequality: $a b+c d \leq(a+c)(b+d)(a, b, c, d \geq 0)$.

Corollary 3.5. Let the conditions of Corollary 3.4 be fulfilled and let $h=\min \left\{b_{i}-a_{i} ; 1 \leq i \leq n\right\}$. Then

$$
\left|\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\right| \leq \begin{cases}\frac{M-m}{h}+\frac{h}{2} N, & \text { if } h \leq \sqrt{2(M-m) / N} \tag{3.19}\\ \sqrt{2(M-m) N}, & \text { if } h \geq \sqrt{2(M-m) / N}\end{cases}
$$

where $N=\sum_{i, j} N_{i j}$.
Proof. We can suppose $b_{i}-a_{i}=h$ for every i. Then we get from (3.18)

$$
\begin{equation*}
\left|\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\right| \leq \frac{M-m}{h}+\frac{h}{2} N . \tag{3.20}
\end{equation*}
$$

Now, as in the proof of Corollary 3.2, (3.20) implies (3.19).
Corollary 3.6. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a differentiable function such that

$$
m \leq f(x) \leq M \quad \text { and } \quad\left|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right| \leq N_{i j} \quad \text { on } \mathbf{R}^{n} .
$$

Then

$$
\begin{equation*}
\left|\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\right| \leq \sqrt{\frac{M-m}{N}}, \tag{3.21}
\end{equation*}
$$

where $N=\sum_{i, j} N_{i j}$.
Proof. For $b_{i}=x_{i}+h_{i}, a_{i}=x_{i}-h_{i}\left(h_{i}>0\right)(3.18)$ gives

$$
\begin{equation*}
\left|\sum_{i=1}^{n} h_{i} \frac{\partial f}{\partial x_{i}}\right| \leq \frac{M-m}{2}+\frac{1}{2} \sum_{i, j} N_{i j} h_{i} h_{j}, \tag{3.22}
\end{equation*}
$$

and for $h_{1}=\cdots=h_{n}=h$ we obtain

$$
\begin{equation*}
\left|\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\right| \leq \frac{M-m}{2 h}+\frac{h N}{2} . \tag{3.23}
\end{equation*}
$$

Taking the minimum over $h>0$ of the right-hand side of (3.23) we obtain (3.21).

A simple consequence of (3.19) is the following generalization of a result from [4].

Corollary 3.7. Let $D=\left\{x \in \mathbf{R}^{n} ; 0<x_{i}<1\right\}$ and let $f: \bar{D} \rightarrow \mathbf{R}$ be a twice differentiable function. Suppose that $|f(x)| \leq 1(x \in \bar{D})$ and that (3.15) is fulfilled. Then

$$
\left|\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\right| \leq \begin{cases}\frac{N+4}{2}, & \text { if } 0<N \leq 4 \tag{3.24}\\ 2 \sqrt{N}, & \text { if } N>4\end{cases}
$$

where $N=\sum_{i, j} N_{i j}$.
Corollary 3.8. Under the assumptions of Corollary 3.6 with

$$
\begin{equation*}
\left|\sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right| \leq A \quad(x \in D) \tag{3.25}
\end{equation*}
$$

instead of (3.15), the following inequality holds true:

$$
\begin{equation*}
\left|\sum_{i}^{n} \frac{\partial f}{\partial x_{i}}\right| \leq \sqrt{(M-m) A} \tag{3.26}
\end{equation*}
$$

Proof. In the case $h_{1}=\cdots=h_{n}=h$ we have

$$
\left\|F_{(x)}^{\prime \prime}(h, h)\right\|=h^{2}\left|\sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right| \leq h^{2} A .
$$

Thus, instead of (3.22) we obtain

$$
\begin{equation*}
\left|\sum_{i}^{n} \frac{\partial f}{\partial x_{i}}\right| \leq \frac{M-m}{2 h}+\frac{h A}{2} \tag{3.27}
\end{equation*}
$$

wherefrom (3.26) follows.
Remark 3.9. Corollary 3.8 is a generalization of a result from [17] where the case $n=2$ is given.

By using (3.26) and (3.27) we easily obtain the following generalization of a result from [15]:

Corollary 3.10. Let $f:[0,1]^{n} \rightarrow \mathbf{R}$ be a twice differentiable function such that $|f(x)| \leq 1\left(x \in[0,1]^{n}\right)$ and

$$
\left|\sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right| \leq A \quad\left(x \in(0,1)^{n}\right)
$$

Then

$$
\left|\sum_{i}^{n} \frac{\partial f}{\partial x_{i}}\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)\right| \leq \begin{cases}2+\frac{A}{4}, & \text { if } 0<A \leq 8 \tag{3.28}\\ \sqrt{2 A}, & \text { if } A \geq 8\end{cases}
$$

If f is positive then

$$
\left|\sum_{i}^{n} \frac{\partial f}{\partial x_{i}}\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)\right| \leq \begin{cases}1+\frac{A}{4}, & \text { if } 0<A \leq 4 \tag{3.29}\\ \sqrt{A}, & \text { if } A \geq 4\end{cases}
$$

REMARK 3.11. Analogous improvements of Landau's theorems were given by V. M. Olovyanisnikov (see e. g. [16] where some similar results are given).

Additional remark. Let us note that results from this paper are given in monograph [13, pp. 45-50]. Some further related results are given in [2, 3, $5,6,7,10,14,8]$.

References

[1] A. Aglic-Aljinović, Lj. Marangunić and J. Pečarić, On Landau type inequalities via extension of Montgomery identity, Euler and Fink identities, Nonlinear functional analysis and applications, to appear.
[2] W. Chen and Z. Ditzian, Mixed and directional derivatives, Proc. Amer. Math. Soc. 108 (1990), 177-185.
[3] W. Chen and Z. Ditzian, Best approximation and K-functionals, Acta Math. Hungar. 75 (1997), 165-208.
[4] C. K. Chui and P. W. Smith, A note on Landau's problem for bounded intervals, Amer. Math. Monthly 82 (1975), 927-929.
[5] Z. Ditzian, Fractional derivatives and best approximation, Acta Math. Hungar. 81 (1998), 311-336.
[6] Z. Ditzian and K. G. Ivanov, Minimal number of significant directional modulii of smoothness, Analysis Math. 19 (1993), 13-27.
[7] Z. Ditzian, Remarks, questions and conjectures on Landau-Kolmogorov-type inequalities, Math. Inequal. Appl. 3 (2000), 15-24.
[8] S. S. Dragomir and C. I. Preda, Some Landau type inequalities for functions whose derivatives are Hölder continuous, RGMIA 6 (2003), Article 3.
[9] R. Ž. Djordjević and G. V. Milovanović, A generalization of E. Landau's theorem, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 498-541 (1975), 97-106.
[10] M. K. Kwong and A. Zettl, Norm inequalities for derivatives and differences, Lecture Notes in Mathematics 1536, Springer-Verlag, 1992.
[11] E. Landau, Einige Ungleichungen für zweimal differentierbare Funktionen, Proc. Lond. Math. Soc. (2) 13 (1913), 43-49.
[12] Lj. Marangunić and J. Pečarić, On Landau type inequalities for functions with Hölder continuous derivatives, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), Article 72, 5 pp. (electronic).
[13] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht/Boston/London, 1991.
[14] C. P. Niculescu and C. Buse, The Hardy-Landau-Littlewood inequalities with less smoothness, J. Inequal. In Pure and Appl. Math. 4 (2003), Article 51.
[15] A. Sharma and J. Tzimbalario, Some inequalities between derivatives on bounded intervals, Delta 6 (1976), 78-91.
[16] S. B. Stečkin, Inequalities between the norms of derivatives for arbitrary functions (Russian), Acta Sci. Math. Szeged 26 (1965), 225-230.
[17] Tcheng Tchou-Yun, Sur les inégalités différentielles, Paris, 1934, 41 pp.

J.E. Pečarić

Faculty of Technology
University of Zagreb
Kačićeva ul. 26, 10000 Zagreb
Croatia
E-mail: pecaric@mahazu.hazu.hr \& pecaric@element.hr
H. Kraljević

Department of Mathematics
University of Zagreb
Bijenička cesta 30, 10000 Zagreb
Croatia
E-mail: hrk@math.hr
Received: 05.07.1989.
Revised: 11.01.1990. \& 14.09.2003.

[^0]: 2000 Mathematics Subject Classification. 26D10, 47D05, 47D10.
 Key words and phrases. Differentiable functions, Frechet-differentiability, Landau's inequalities.

