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Structure of almost diagonal matrices

Vjeran Hari∗

Abstract. Classical and recent results on almost diagonal matri-
ces are presented. These results measure the absolute and the relative
distance between diagonal elements and the appropriate eigenvalues or
singular values, and in case of multiple eigenvalues or singular values,
reveal special structure in matrices. Simple MATLAB programs serve to
illustrate how good the theoretical estimates are.
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Introduction

In this overview paper we present classical and recent results concerning special
properties of almost diagonal matrices. Almost diagonal matrices play an impor-
tant role in the asymptotic convergence analysis of different matrix algorithms for
eigenvalue and singular value problems. Our intention is to extract the most impor-
tant or the characteristic information from the papers that appeared in this area.
We shall not prove theorems, except in one instance to show the tools and reason-
ings. Instead, we shall illustrate the results by observing the quantities they deal
with. To this end we use MATLAB.

The paper is divided into two sections. The first one deals with “older” or
classical results, while the second one deals with more recent results.

1. Classical results

This section is divided into three subsections. In the first one, we provide examples
of almost diagonal matrices with simple eigenvalues or singular values and observe
how closely they are approximated by diagonal elements. In the second one, we deal
with matrices having multiple eigenvalues or singular values. We observe interesting
structures associated with certain matrix block partitions. Finally, in the third
subsection we provide theoretical results which explain these observations. We note
that in the classical results one uses absolute gaps in the spectrum or in the set of
singular values and norms of certain submatrices.
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1.1. Simple eigenvalues and singular values

Let us consider the following symmetric matrix of order 6,

A =




1 0.01 −0.01 −0.001 0.002 0
0.01 −2 0.01 −0.003 −0.001 0.002

−0.01 0.01 3 0.001 −0.001 −0.0001
−0.001 −0.003 0.001 −4 0.003 0.001

0.002 −0.001 −0.001 0.003 5 0.003
0 0.002 −0.0001 0.001 0.003 −6




Using the spectral norm, we find out

‖A − diag(A)‖2 ≈ 2.029490 · 10−2,

while absolute values of the diagonal elements are not smaller than 1. Thus, it
can be considered as almost diagonal. To estimate how close the diagonal elements
are from the eigenvalues, we can use the classical perturbation result for Hermitian
matrices: if A and B are symmetric, then (see [35])

| λi(A) − λi(B) |≤ ‖A − B‖2, 1 ≤ i ≤ n , (1)

where λi(A) and λi(B) are the eigenvalues of A and B, respectively. Assuming
B = diag(A), where diag(A) is the diagonal of A, we obtain

| λi − aii |≤ ‖A − diag(A)‖2, 1 ≤ i ≤ n.

Computing the eigenvalues of A by MATLAB, one can find

i aii λi (aii − λi)/λi

1 -6 −6.00000232037038 −3.8673 · 10−7

2 -4 −4.00000533797954 −1.3345 · 10−6

3 -2 −2.00004811652753 −2.4058 · 10−5

4 1 0.99998287851289 1.7122 · 10−5

5 3 3.00006943063431 −2.3143 · 10−5

6 5 5.00000346573025 −6.9315 · 10−7

Denoting ‖A− diag(A)‖2 by ε, we see that | aii − λi | / | λi | is actually of order ε2.
Later, we shall see that this holds because the condition

‖A − diag(A)‖2 < min
i6=j

| λi − λj |

is fulfilled.
Next, we consider how close the singular values of an almost diagonal triangular

matrix are to (the moduli of) diagonal elements. For general m×n matrices A and
B, we have the known perturbation result, which can be deduced from (1) (cf. [7,
Corollary 8.3.2]),

| σi(A) − σi(B) |≤ ‖A − B‖2, 1 ≤ i ≤ n .
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Here σi(A) and σi(B) are the singular values of A and B, respectively, and n ≤ m.
If one takes B = diag(A), this result reduces to

| σi− | aii ||≤ ‖A − diag(A)‖2, 1 ≤ i ≤ n,

where σi = σi(A) for all i and diag(A) is m × n. The usual preprocessing step for
singular value computations is the QR factorization (often with column pivoting),
which transforms A to the upper-triangular form. For this reason, we first consider
upper-triangular matrices.

Consider the following example. Let A be the matrix of order 6 from the first
example, and let it be split into lower-triangular, diagonal and upper-triangular
part, A = L + D + U = L + T (in MATLAB notation, T = triu(A)),

T =




1 0.01 −0.01 −0.001 0.002 0
−2 0.01 0.003 −0.001 0.002

3 0.001 −0.001 −0.0001
−4 0.003 0.001

5 0.003
−6




.

Since

‖T − diag(T )‖2 ≈ 1.638970 · 10−2 � min
i

| tii |= 1, T = (tij),

T can be considered as almost diagonal. Computing the singular values of T , we
obtain

i | tii | σi (| tii | −σi)/σi

1 1 0.99997705061184 2.2950 · 10−5

2 2 2.00001214305070 −6.0715 · 10−5

3 3 3.00004859484805 −1.6198 · 10−5

4 4 3.99999981504819 4.6238 · 10−8

5 5 5.00000114649816 −2.2930 · 10−7

6 6 6.00000298158935 −4.9693 · 10−7

.

Denoting ε = ‖T − diag(T )‖2, we see that | | tii | −σi | = O(ε2). Later, we shall see
that this is true because

‖T − diag(T )‖2 < min
i6=j

| σi − σj |

holds.
The same property holds for a full square matrix. For example, let

C = D + N, D = diag(1,−2, 3,−4, 5,−6)
N = (nij), nij = 10−2 · rij · δij ,
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where δij is the Kronecker symbol and each rij is a random number (generated by
the MATLAB rand function) in the interval (0, 1). The matrix reads

C =
1

1000




1000 6.5502 4.8063 3.5191 3.1944 9.1158
9.1029 −2000 5.3722 2.6872 0.7282 6.4122
7.7302 0.3600 3000 6.9243 9.7534 8.3867
1.6254 7.9346 9.9191 −4000 8.6082 4.0731
1.6525 9.0016 0.4876 7.2894 5000 5.0003
4.9974 6.2425 2.5143 8.3743 3.7282 −6000




,

where only four decimals are displayed. We have

‖N‖2 ≈ 2.739199 · 10−2 � min
i

| cii |= 1

and the SVD computation reveals

i | cii | σi (| cii | −σi)/σi

1 1 1.00000556168780 −5.5617 · 10−6

2 2 1.99999209161829 3.9542 · 10−6

3 3 3.00002608164948 −8.6938 · 10−6

4 4 4.00001696355321 −4.2409 · 10−6

5 5 5.00003095907297 −6.1918 · 10−6

6 6 6.00004753371360 −7.9222 · 10−6

.

Later, we shall understand that this result holds whenever

‖C − diag(C)‖2 < min
i6=j

| σi − σj | .

Next, we construct a pair of Hermitian almost diagonal matrices (A, B), such that
B is positive definite. Let A be as in the first example, while

B = diag(1,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
) + 10−3 ·NB ,

where NB is symmetric with (NB)ij = δijrij, i ≤ j and rij are as above. We have

A = 10−4 ·




10000 100 −100 −10 20 0
100 −20000 100 −30 −10 20

−100 100 30000 10 −10 −1
−10 −30 10 −40000 30 10

20 −10 −10 30 50000 30
0 20 −1 10 30 −60000




,

B = 10−4 ·




10000 2.64 4.39 2.03 6.63 8.47
2.64 5000 5.28 5.36 4.09 4.87
4.39 5.28 10000/3 8.67 3.78 4.92
2.03 5.36 8.67 2500 4.35 5.22
6.63 4.09 3.78 4.35 2000 4.95
8.47 4.87 4.92 5.22 4.95 10000/6



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where only four decimals are displayed for the elements of B. Since

‖A − diag(A)‖2 ≈ 2.02949 · 10−2 � min
i

| aii |= 1

and

‖B − diag(B)‖2 ≈ 2.57188 · 10−3 � min
i

| bii |=
1
6
,

both matrices can be considered as almost diagonal. From the perturbation theory
for Hermitian matrices we know that quotients aii/bii approximate the eigenvalues
of the pair (A, B) by quantities bouned by ε = ‖B− 1

2 AB− 1
2 − diag(B− 1

2 AB− 1
2 )‖2,

which is of order 10−2. Computing the eigenvalues of (A, B), we find

i
aii

bii
λi(A, B)

aii/bii − λi

λi

1 -36 −36.000995971169 −2.7665 · 10−5

2 -16 −16.000058846852 −3.6779 · 10−6

3 -4 −4.0001082947362 −2.7073 · 10−5

4 1 0.9999951457235 4.8543 · 10−6

5 9 9.0000580297349 −6.4477 · 10−6

6 25 25.000634216742 −2.5368 · 10−5

Again, we see that aii/bii approximate the eigenvalues by O(ε2).
We can notice that in all examples presented so far, the eigenvalues and the

singular values were simple. What happens if they are multiple?

1.2. Multiple eigenvalues and singular values

In order to construct matrices with multiple eigenvalues and/or singular values we
shall use the following MATLAB function.

function q=rado2(n,m)
% rado2: Generates random, almost diagonal, orthogonal matrix
% of order n whose off-diagonal elements are of order 10^(-m)
% Usage: Q=rado2(n,m)
% Standard precision (double).
C=rand(n); D=diag(diag(C)); C=D+(C-D)*10^(-m); [Q,R]=qr(C);

For example, the command Q =rado2(6,5) generates the following orthogonal 6× 6
matrix whose off-diagonal elements are of order 10−5,




−1.0000e + 00 7.4136e − 05 3.8998e − 05 7.7435e − 05 2.5064e − 05 −4.7130e − 05
−7.4134e − 05 −1.0000e + 00 5.2260e − 06 4.3292e − 06 1.4150e − 05 −1.0449e − 05
−3.8995e − 05 −5.2225e − 06 −1.0000e + 00 2.6712e − 05 2.1571e − 05 −1.5348e − 05
−7.7435e − 05 −4.3233e − 06 −2.6709e − 05 −1.0000e + 00 1.3510e − 05 −9.0622e − 06
−2.5067e − 05 −1.4149e − 05 −2.1570e − 05 −1.3507e − 05 −1.0000e + 00 −2.7418e − 06
−4.7132e − 05 −1.0445e − 05 −1.5347e − 05 −9.0582e − 06 −2.7400e − 06 1.0000e + 00




.

Using this tool, we can easily generate almost diagonal matrices that have (up to
the finite arithmetic accuracy) multiple eigenvalues or singular values.
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Almost diagonal symmetric matrices

The following MATLAB code generates a symmetric matrix with prescribed eigen-
values and displays its diagonal elements, its eigenvalues and their relative distances.

format short e; S=diag([1,1,1,2,3,3]’); Q=rado2(6,6); H=Q’*S*Q;
H=(H+H’)/2; D=sort(diag(H)); EV=sort(eig(H)); H format long e;
disp(’ diagonals eigenvalues relative error’);
disp([D,EV,(D-EV)./EV])

Here is the matrix



1.0000e + 00 1.8923e − 11 2.8546e − 11 1.6529e − 05 5.0062e − 06 −6.3360e − 07
1.8923e − 11 1.0000e + 00 8.2134e − 12 8.4769e − 07 1.6709e − 06 −2.3022e − 06
2.8546e − 11 8.2134e − 12 1.0000e + 00 1.1456e − 06 3.3511e − 06 −3.8594e − 06
1.6529e − 05 8.4769e − 07 1.1456e − 06 2.0000e + 00 1.5423e − 06 −1.9950e − 06
5.0062e − 06 1.6709e − 06 3.3511e − 06 1.5423e − 06 3.0000e + 00 1.3053e − 11

−6.3360e − 07 −2.3022e − 06 −3.8594e − 06 −1.9950e − 06 1.3053e − 11 3.0000e + 00




.

We have partitioned the matrix according to the multiplicities of the eigenvalues.
The relative distances between the diagonals and the corresponding eigenvalues are
given in the following table:

i diagonals eigenvalues relative error
1 1.000000000001434 0.999999999999999 1.4343e-12
2 1.000000000031410 1.000000000000000 3.1410e-11
3 1.000000000041638 1.000000000000001 4.1637e-11
4 2.000000000002086 2.000000000000000 1.0432e-12
5 2.999999999953910 3.000000000000000 -1.5363e-11
6 2.999999999969522 3.000000000000004 -1.0160e-11

.

Again, we see that diagonal elements approximate the eigenavalues, in the relative
sense, by quantities which are of order ε2. From the displayed matrix we can notice
another interesting property: all off-diagonal elements within diagonal blocks are
of order ε2.

Almost diagonal square matrices

To generate a square matrix with multiple singular values one can first define a
diagonal matrix with prescribed singular values and then multiply it (from both
sides) with almost diagonal orthogonal matrices. Here is the MATLAB code

format short e;
S=diag([1,1,1,2,3,3]’); Q1=rado2(6,6); Q2=rado2(6,6);
C=Q1’*S*Q2
D=sort(abs(diag(C))); SV=sort(svd(C)); format long e;
disp(’c(i,i) s(i) (c(i,i)-s(i))/s(i)’);
disp([D,SV,(D-SV)./SV])

here the generated matrix,



1.0000e + 00 −5.2059e − 07 2.3338e − 06 5.5417e − 06 1.2732e − 05 −4.6115e − 06
5.2064e − 07 1.0000e + 00 −1.5587e − 06 −2.6820e − 06 1.6057e − 07 −1.5511e − 06

−2.3337e − 06 1.5588e − 06 1.0000e + 00 9.5698e − 06 2.5433e − 05 −2.0974e − 05
−1.7762e − 06 5.5570e − 06 −4.0199e − 07 2.0000e + 00 2.0095e − 05 −9.7478e − 06
−4.0468e − 06 4.6179e − 06 5.8989e − 06 −1.2367e − 05 3.0000e + 00 −2.6155e − 05
−1.7717e − 07 −1.8079e − 06 −7.5699e − 06 3.3136e − 06 2.6156e − 05 3.0000e + 00




,

and finally, the diagonals, the singular values and their relative distances
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i diagonals singular values relative error
1 0.999999999989694 1.000000000000000 -1.0306e-011
2 0.999999999998078 1.000000000000000 -1.9216e-012
3 1.000000000198260 1.000000000000000 1.9826e-010
4 1.999999999919032 2.000000000000001 -4.0484e-011
5 2.999999999640680 2.999999999999999 -1.1977e-010
6 2.999999999748523 2.999999999999999 -8.3826e-011

.

Beside the expected result seen in the last column of the table, we can see a peculiar
behavior of the off-diagonal elements within diagonal blocks. In particular, we see
that for these elements there holds

aij + aji = O(ε2), aij = O(ε) = aji. (2)

Almost diagonal triangular matrices

Let us make the QR factorization of the last matrix. Using MATLAB, we obtain
the triangular matrix




−1.0000e + 00 −1.1112e − 11 −3.7085e − 11 −1.9893e − 06 −5.9185e − 07 5.1428e − 06
0 −1.0000e + 00 −1.3828e − 10 −8.4320e − 06 −1.4014e − 05 6.9750e − 06
0 0 −1.0000e + 00 −8.7658e − 06 −4.3129e − 05 4.3683e − 05
0 0 0 −2.0000e + 00 −1.5445e − 06 4.7772e − 06
0 0 0 0 −3.0000e + 00 −7.4873e − 10
0 0 0 0 0 3.0000e + 000




and we compute the quantities for the next table

i diagonals singular values relative error
1 1.000000000002334 1.000000000000000 2.3346e-012
2 1.000000000027166 1.000000000000000 2.7166e-011
3 1.000000000248329 1.000000000000000 2.4833e-010
4 1.999999999954411 2.000000000000001 -2.2794e-011
5 2.999999999613621 2.999999999999999 -1.2879e-010
6 2.999999999621276 2.999999999999999 -1.2624e-010

.

As expected, the relative distances displayed in the last column of the table are ε2

small. More interesting, all off-diagonal elements from the diagonal blocks are ε2

small, just like in the symmetric case.

Positive definite pair of almost diagonal symmetric matrices

Let us generate a pair of almost diagonal symmetric matrices (A, B), such that B is
positive definite, and such that the pair has prescribed multiple eigenvalues. This
can be accomplished by defining a diagonal matrix D with prescribed eigenvalues,
and then making A = F TDF , B = F TF . We can control the condition of F by
premultiplying and postmultiplying an almost diagonal orthogonal matrix Q with
appropriate diagonal scaling matrices. Here is the code that generates A and B.

format short e; Q=rado2(6,6); D1=diag(diag(rand(6)));
D2=diag(diag(rand(6))); F=D1*Q*D2; cond(F)
A=F’*diag([1,1,1,2,3,3]’)*F; A=(A+A’)/2
B=F’*F; B=(B+B’)/2
DAB=diag(A)./diag(B); C=A-diag(DAB)*B
EV=sort(qzval(A,B)); format long e; disp([DAB,EV,(DAB-EV)./EV])
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Here are the results,

cond(F ) = 5.95e + 01

A =




1.71e-4 0.15e-9 9.49e-9 −0.58e-9 4.36e-8 −2.66e-9
0.15e-9 9.61e-3 5.36e-7 −8.21e-8 2.19e-5 −8.43e-7
9.49e-9 5.36e-7 1.69e-1 −4.06e-8 2.36e-6 −5.25e-8

−0.58e-9 −8.21e-8 −4.06e-8 −3.10e-4 2.63e-8 −3.73e-9
4.36e-8 2.19e-5 2.36e-6 2.63e-8 1.64e + 0 1.07e-7

−2.66e-9 −8.43e-7 −5.25e-8 −3.73e-9 1.07e-7 7.10e-3




B =




1.71e-4 0.15e-9 9.49e-9 0.09e-9 1.42e-8 −0.81e-9
0.15e-9 9.61e-3 5.36e-7 1.02e-8 7.15e-6 −2.54e-7
9.49e-9 5.36e-7 1.69e-1 −2.53e-8 6.14e-7 6.31e-9
0.09e-9 1.02e-8 −2.53e-8 1.55e-4 8.05e-9 −0.87e-9
1.42e-8 7.15e-6 6.14e-7 8.05e-9 5.47e-1 3.58e-8

−0.81e-9 −2.54e-7 6.31e-9 −0.87e-9 3.58e-8 2.37e-3



.

Note the relative distance between the quantities aii/bii and the eigenvalues of the
pair (A, B),

i aii/bii λi(A, B) (aii/bii − λi)/λi

1 1.00000000000323 1 3.2334e-12
2 1.00000002650055 1 2.6501e-08
3 1.00000000001790 1 1.7902e-11
4 -1.99999999901644 -2 -4.9178e-10
5 2.99999999997519 3 -8.2688e-12
6 2.99999999985046 3 -4.9846e-11

.

The special structure in the pair (A, B) is revealed from the matrix A−diag(λi) ·B,
or from the matrix

C = A − diag(aii/bii) ·B

=




0 4.94e-13 4.79e-14 −6.65e-10 2.94e-08 −1.85e-09
4.94e-13 0 2.79e-11 −9.23e-08 1.48e-05 −5.89e-07
4.79e-14 2.79e-11 0 −1.53e-08 1.75e-06 −5.88e-08

−3.91e-10 −6.18e-08 −9.11e-08 0 4.24e-08 −5.48e-09
8.64e-10 4.95e-07 5.21e-07 2.13e-09 0 2.19e-12

−2.21e-10 −8.05e-08 −7.14e-08 −1.12e-09 2.19e-12 0




.

We see that actually each diagonal block in A is an ε2 good approximation of the
corresponding diagonal block in B premultiplied by the appropriate eigenvalue.

1.3. Theoretical results

After providing examples of almost diagonal matrices, we present the known theo-
retical results. First, we introduce notation and basic assumptions.

The eigenvalues of the underlying matrices (or matrix pairs) are assumed to be
ordered nonincreasingly,

λ1 ≥ λ2 ≥ · · · ≥ λn .
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The same will hold for the singular values,

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

To avoid usage of permutation matrices we assume the same ordering of the diagonal
elements. In particular, we assume that for a

(a) single Hermitian matrix H = (hij) there holds

h11 ≥ h22 ≥ · · · ≥ hnn ;

(b) pair of Hermitian matrices A = (aij), B = (bij), with positive definite B, there
holds

a11

b11
≥ a22

b22
≥ · · · ≥ ann

bnn
;

(c) single non-Hermitian matrix C = (cij) (if its singular values are considered),
there holds

| c11 |≥| c22 |≥ · · · ≥| cnn | .

In the case of multiple eigenvalues and singular values we assume

λ1 = · · · = λs1 > λs1+1 = · · · = λs2 > · · · > λsp−1+1 = · · · = λsp ,

σ1 = · · · = σs1 > · · · > σsp−1+1 = · · · = σsp ,

where sp = n. Note that for each 1 ≤ i ≤ p,

ni = si − si−1, (s0
def= 0)

is the multiplicity of λsi and σsi. Closely connected with multiplicities n1, . . . ,np

and with the ordering of diagonal elements, is the following matrix block partition,

X =




X11 · · · X1p

...
. . .

...
Xp1 · · · Xpp


 , Xij ∈ Cni×nj , 1 ≤ i , j ≤ p ,

where X stands for the considered matrix. In connection with the block partition
X = (Xij), we introduce measures π(X) and τ (X),





X = π(X) + τ (X)
π(X) = diag(X11, . . . , Xpp)
τ (X) = X − π(X)

Thus, π(X) is the block-diagonal part of X and τ (X) is the block off-diagonal part
of X. We shall also use the notation

πi(X) = Xii,

τi(X) = [Xi1 . . .Xi,i−1 Xi,i+1 . . .Xip] .

Note that in case n1 = · · · = np = 1, π(X) = diag(X) and τ (X) = Ω(X), where
generally,

Ω(X) = X − diag(X)
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is the off-diagonal part of X.
As for the norms, we shall mostly use the Frobenius and the spectral (operator)

matrix norm,

‖X‖F =
√

trace(X∗X), ‖X‖2 =
√

spr(X∗X) .

Note that ‖Ω(X)‖F (or ‖Ω(X)‖2) can be considered as departure from the diagonal
form. Then ‖τ (X)‖F (or ‖τ (X)‖2) is departure from the block diagonal form. More
frequently, we shall use the quantities

‖Ω(πi(X))‖F = ‖Ω(Xii)‖F = ‖Xii − diag(Xii)‖F and

‖τi(X)‖2
F =

∑

j=1
j 6=i

‖Xij‖2
F .

The absolute value of the matrix X = (xij) is |X| = (|xij|).
As we may have noticed from the displayed almost diagonal matrices, the min-

imum distance between two distinct eigenvalues (singular values) matters. There-
fore, for each 1 ≤ i ≤ p, we define the absolute gap (or separation) of λsi from other
eigenvalues as

δi = min
1≤j≤p

j 6=i

| λsi − λsj | .

Similarly, in case of singular values, absolute gap of σsi is (we use the same notation)

δi = min
1≤j≤p

j 6=i

| σsi − σsj | .

The minimum absolute gap is then

δ = min
1≤i≤p

δi.

In the following we present the sharpest known estimates for almost diagonal ma-
trices based on absolute gaps.

Estimates for a positive definite pair

We start with a simple proof of the result for a positive definite pair of almost
diagonal Hermitian matrices. We assume that diagonal elements and eigenvalues
are ordered as indicated above.

Theorem 1. [12, 16] Let A be a Hermitian and B a Hermitian positive definite
matrix, both of order n. Let BS = ∆−1

B B∆−1
B , ∆B = [diag (B)]1/2. If

‖Ω
(
∆−1

B A∆−1
B − λsiBS

)
‖2 <

1
3
δi ,

holds for all 1 ≤ i ≤ p, then

∥∥πi

(
∆−1

B A∆−1
B − λsiBS

)∥∥
F
≤ 3

δi

∥∥τi

(
∆−1

B A∆−1
B − λsiBS)

)∥∥2

F
, 1 ≤ i ≤ p.
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Proof. Note that (A, B) and (∆−1
B A∆−1

B , BS) have the same eigenvalues. There-
fore, in the proof we shall assume that the diagonal elements of B are ones, so that
∆B = In.

Let i ∈ {1, 2, . . ., p} and let γ
(i)
j , 1 ≤ j ≤ n be the eigenvalues of the Hermitian

matrix Ci = A − λsiB. Using the perturbation theorem (c.f. [38, Section 2.44]) for
the eigenvalues of Hermitian matrices (that is the relation (1) here) in connection
with Ci and Di = diag(Ci), and using the assumption, we conclude that

| γ
(i)
j − (ajj − λsibjj) |≤ ‖Ci − Di‖2 <

1
3
δi, 1 ≤ j ≤ n, (3)

holds for an ordering γ
(i)
1 , . . . , γ

(i)
n . Since Ci has rank n − ni, there are exactly ni

eigenvalues γ
(i)
j which are zeroes. Hence, from the relation (3), we see that

| ajj − λsi · 1 |≤ 1
3
δi (4)

holds for at least ni values of j. Let Si be the set of all indices j (1 ≤ j ≤ n) for
which the inequality (4) holds. Then Si ⊆ S, where S = {1, . . . , n}. This conclusion
holds for all i; hence ∪iSi ⊆ S. Since for j ∈ Si, i 6= k there holds

| ajj − λsk | ≥ | λsi − λsk | − | ajj − λsi |

> max{δi, δk} −
1
3
δi

≥ 2
3

max{δi, δk}

≥ 2
3
δk ,

we conclude that Si ∩ Sk = ∅ whenever i 6= k. Note that each Si contains at least
ni elements and that n1 + · · ·+ np = n. So, we can conclude that S1, . . . ,Sp make
a partition of S and that each Si contains exactly ni indices. Now the orderings of
eigenvalues and of diagonal elements imply that

Si = {si−1 + 1, . . . , sp}, 1 ≤ i ≤ p.

Let Ci = (C(i)
jk ) be the block partition of Ci. By an appropriate permutation matrix

Pi, we can write

P ∗
i CiPi =

[
C

(i)
ii Gi

G∗
i Ki

]
, 1 ≤ i ≤ p.

Let κ
(i)
j , j ∈ S\Si denote the eigenvalues of Ki. Applying the perturbation theorem

to Ki and diag(Ki) we obtain

| (ajj − λsi) − κ
(i)
j |≤ ‖Ki − diag(Ki)‖2, j ∈ S \ Si. (5)

Since the spectral norm of a principal submatrix is not larger than the spectral
norm of the whole matrix, we have

‖Ki − diag(Ki)‖2 ≤ ‖P ∗
i (Ci − Di)Pi‖2 <

1
3
δi. (6)
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Combining (5) and (6), we have

| κ
(i)
j |≥| ajj − λsi | −

1
3
δi >

2
3
δi −

1
3
δi =

1
3
δi, j ∈ S \ Si.

Thus Ki is invertible and

‖K−1
i ‖2 =

1

minj∈S\Si
| κ

(i)
j |

≤ ‖P ∗
i (Ci − Di)Pi‖2 <

3
δi

, 1 ≤ i ≤ p.

Since the rank of Ci is equal to the order of Ki, which is invertible, we can conclude
that the Schur complement Cii(i) − GiK

−1
i G∗

i is the null matrix. Now, we have

‖C(i)
ii ‖F = ‖GiK

−1
i G∗

i ‖F ≤ ‖GiK
−1
i ‖2‖G∗

i ‖F

≤ ‖K−1
i ‖2‖Gi‖2

F ≤ 3
δi
‖Gi‖2

F , 1 ≤ i ≤ p.

The assertion now follows by recognizing that

‖Gi‖2
F = ‖τi(A − λsiB)‖F .

2

If neither A nor B is positive definite, but there exists a real linear combination
αA + βB, α, β ∈ R, which is positive definite (such pairs are called definite), one
can generalize the above result by using projective lines and the chordal metrics
(see [16]).

The above result is used in the quadratic convergence proof of diagonalization
methods for solving the positive definite generalized eigenproblem (see [12, 16]) and
the definite generalized eigenproblem (using the Falk-Langemeyer method, see [33]).

Estimates for a single Hermitian matrix

Assuming B = In and therefore ∆B = In in Theorem1, we obtain

Corollary 1. Let H = H∗. If

‖Ω(H)‖F <
δ

3
, then ‖Hii − λsiIni‖F ≤ 3

δi

∑

j=1
j 6=i

‖Hij‖2
F .

In [17] it has been shown that under the same assumptions, the constant 3 in the
numerator can be replaced by 1.32. Note however, that for tiny δi, the bound
becomes large and often useless.

Example 1. Let

H =




1 10−8 10−8

10−8 10−6 10−11

10−8 10−11 10−8


 , H ′ =




1 10−8 10−8

10−8 10−8 10−11

10−8 10−11 10−8


 .

We have
λ1(H) ≈ 1.00000000000000e+00
λ2(H) ≈ 9.99999979899192e-09
λ3(H) ≈ 1.00000000000101e-06





δ1 ≈ 0.999999
δ2 ≈ 9.9e − 07
δ3 ≈ 9.9e − 07

.
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Since
‖Ω(H)‖F ≈ 2e − 08 < δ ≈ 9.9e − 07 ,

we can apply Corollary1. From the table below

i | hii − λi | 1.32
δi

‖τi(A)‖2
F

1 2.000001e-16 2.64e-16
2 1.007981e-18 1.33e-10
3 -2.010081e-16 1.33e-10

we see that the bounds for | h22−λ2 | and | h33−λ3 | are 6 and 8 orders of magnitude
larger than the true values.

The matrix H ′ is obtained from H by replacing the central element 10−6 with
10−8. For H ′ we have

λ1(H ′) ≈ 1.000000000e + 00
λ2(H ′) ≈ 1.000999980e− 08
λ3(H ′) ≈ 9.990000000e− 09





δ′1 ≈ 0.99999999
δ′2 ≈ 1.99998e− 11
δ′3 ≈ 1.99998e− 11

.

Since
‖Ω(H ′)‖F ≈ 2e − 08 � 1.99998e− 11 ≈ δ(H ′)

no estimate can be obtained from Corollary1.

Corollary 1 is used for proving the quadratic (cubic) convergence of the standard
row-cyclic (quasi-cyclic) Jacobi method for the symmetric or Hermitian eigenvalue
problem (see [39, 22, 17, 27]).

Estimates for a J-symmetric matrix

Let H ∈ Cn×n be Hermitian and J = Ik ⊕ (−In−k). If there is a real scalar µ,
such that H −µJ is positive definite, then the pair (H, J) is called positive definite.
Such pairs have real eigenvalues. The matrix H̃ = JH which is referred to as J-
Hermitian (J-symmetric if H is real symmetric) has the same eigenvalues as the
pair (H, J).

Using the same assumptions on the orderings of eigenvalues and diagonals of H̃,
and using a similar technique as in the proof of Theorem1, one can prove (see [5])

Theorem 2. If

‖Ω(H)‖F <
1
η
· δ

3
, η ≥ 1,

then

‖H̃ii − λsiIni‖F = ‖πi(H̃ − λsiIn)‖F ≤ 3η

3η − 2
· 1
δi

∑

j=1
j 6=i

‖Hij‖2
F .

This result is used in [5] for proving the quadratic convergence of the J−symmetric
Jacobi method, introduced by Veselić in [36]). A positive definite pair (H, J) is
illustrated in the example below.



148 V. Hari

Example 2. Let

H =




2.00 −6.44e-14 −4.82e-13 6.16e-07 6.13e-07 2.09e-07
−6.44e-14 2.00 −3.78e-13 −8.65e-09 −5.73e-07 1.26e-08
−4.82e-13 −3.78e-13 2.00 1.48e-06 3.38e-06 3.73e-07

6.16e-07 −8.65e-09 1.48e-06 1.00 −6.02e-07 1.08e-05

6.13e-07 −5.73e-07 3.38e-06 −6.02e-07 3.00 −1.35e-12
2.09e-07 1.26e-08 3.73e-07 1.08e-05 −1.35e-12 3.00




and J = diag(1, 1, 1, 1,−1,−1).
From the table below, one can see that the pair (H, J) has multiple eigenvalues.

Hence, one can recognize the block partition in the displayed matrix, and see how
well the estimates of Theorem 2 describe the inherent structure in the matrix.

i hii/jii λ(H, J) = λ(JH) (hii/jii − λi)λj

1 -3.00000000002922 -3.00000000000000 9.7393e-12
2 -3.00000000000252 -3.00000000000000 8.3918e-13
3 1.00000000003184 1.00000000000000 3.1845e-11
4 1.99999999999970 2.00000000000000 -1.4599e-13
5 2.00000000000007 2.00000000000000 3.2862e-14
6 2.00000000000012 2.00000000000000 5.9064e-14

,

where H = (hrs) and J = (jrs).

Estimates for a general square matrix

If C ∈ Cm×n, m ≥ n, has singular values σ1 ≥ · · · ≥ σn, then the Hermitian matrix
(see [7, Sec.8.3])

H =
[

0 C
C∗ 0

]
(7)

has eigenvalues σ1 ≥ · · · ≥ σn ≥ 0 = · · · = 0 ≥ −σn ≥ · · · ≥ −σ1 with exactly 2(m−
n) zeros between σn and −σn. To avoid singularity of H we further assume m = n.
Also, to avoid multiplying C by an appropriate diagonal unitary matrix, we assume
that the diagonal elements of C are nonnegative (and ordered nonincreasingly).
Now, let

H̃ = Q∗HQ =
1
2

[
C + C∗ C − C∗

−(C − C∗) −(C + C∗)

]
, Q =

√
2

2

[
In −In

In In

]
.

The Hermitian matrix H̃ has the diagonals c11,. . . ,cnn, −c11, . . . ,−cnn, and the
eigenvalues σ1, . . . ,σn, −σ1, . . . ,−σn. Since

Ω(H̃) = Q∗
[

0 Ω(C)
Ω(C)∗ 0

]
,

we have ‖Ω(H̃)‖F =
√

2‖Ω(C)‖F and ‖Ω(H̃)‖2 = ‖Ω(C)‖2. These facts make it
possible to apply Corollary 1 to H̃ in order to obtain appropriate estimates for the
matrix C. Note however, that this approach takes into account a gap between
eigenvalues σn and −σn provided that σn 6= 0. Although such a gap does not
exist among the singular values of C, it appears in the result. For the complete
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formulation of the result, one defines the additional (we can call it “artificial”) local
gap δ̃p,

δ̃p =
{

σsp−1 − σsp if σsp = 0 or σsp−1 − σsp ≤ 2σsp

2σsp if 0 < 2σsp < σsp−1 − σsp

,

and the additional minimum gap, δ̃ = min{δ , δ̃p}.
Theorem 3. [14] Let C ∈ Cn×n have diagonal elements c11 ≥ · · · ≥ cnn ≥ 0. If

‖Ω(C)‖2 <
δ

3
, (8)

then for 1 ≤ i ≤ p − 1 there holds

‖(Cii + C∗
ii)/2 − σsiIni‖F ≤ 3

8δi


‖Cii − C∗

ii‖2
F + 2

∑

j=1
j 6=i

(‖Cij‖2
F + ‖Cji‖2

F )


 ,

where (Cij) is the block partition of C. The estimate holds for i = p provided that
any of the following conditions is met:
(i) C is singular;
(ii) C is nonsingular and 2σsp ≥ δ;
(iii) C is nonsingular and in the assumption (8) δ is replaced by δ̃.

This result explains the peculiar relation (2). Theorem3 has been used in proving
the failure of the quadratic convergence of the SVD Jacobi methods for general
square matrices (see [14]). Note that it has been proved earlier in [13] and [3],
that these methods are quadratically convergent provided the singular values were
distinct or at most double.

Estimates for a triangular matrix

If T = (trs) is triangular, or more generally, essentially triangular (meaning that
trstsr = 0 for all r 6= s), Theorem3 implies

Corollary 2. [14] Let T ∈ Cn×n. If

‖Ω(T )‖2 <
δ

3
,

then for 1 ≤ i ≤ p − 1 there holds

‖Ω(Tii)‖F ≤
√

2‖(Tii + T ∗
ii)/2 − σsiIni‖F

≤ 3
√

2
4δi


‖Ω(Tii)‖2

F +
∑

j=1
j 6=i

(‖Tij‖2
F + ‖Tji‖2

F )


 ,

where (Tij) is the block partition of T . The estimate holds for i = p provided that
any of the three corresponding conditions from Theorem 3 are met.

Corollary 2 has been slightly improved in [15] and [17], mostly in connection with
obtaining sharp quadratic convergence bounds for the Kogbetliantz method for
triangular matrices.
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Other similar results

Here we note some other results concerning the structure of almost diagonal ma-
trices. Since they do not seem so important in applications, we shall not explicitly
state the theorems. Instead, we shall very briefly explain the topics and give the
proper references.

In [29, 30] Ruhe gives estimate for almost diagonal normal and diagonazible
square matrices having multiple eigenvalues. These results are used for proving
the quadratic and also global [11] convergence of the appropriate diagonalization
methods.

In [9, 10] an “almost diagonal”1 skew-symmetric matrix is described and a very
special structure estimated, when multiple eigenvalues are present. These esti-
mates are used in connection with the quadratic and cubic convergence of the
Paardekooper method for reducing a skew-symmetric matrix to Murnaghan form
(see [10, 19, 28, 8]). A more complicated structure is connected with the pair (A, B)
of an almost diagonal positive definite matrix B and a skew-symmetric A which is
almost in Murnaghan form (see [20]).

2. Scaled almost diagonal matrices

Let us consider the following symmetric matrix of order four,

H =




1 10−5 10−8 10−8

10−5 10−6 10−10 −10−12

10−8 10−10 −10−10 10−14

10−8 −10−12 10−14 −10−12


 .

Since
λ1 ≈ 1.0000e + 00
λ2 ≈ 9.9990e− 07
λ3 ≈ −1.0001e− 10
λ4 ≈ −1.0001e− 12





δ1 ≈ 0.999999e + 00
δ2 ≈ 9.999010e− 07
δ3 ≈ 9.900998e− 11
δ4 ≈ 9.900998e− 11

we have δ = δ3 = δ4 ≈ 9.900998e− 11 and therefore

‖H − diag(H)‖F ≈ 1.41e − 05 � δ .

Thus, almost no information concerning the relative distances between the eigenval-
ues and the diagonal elements of H can be deduced from earlier results. Still, from
the displayed data, one can see that these distances are very small. Even more, if we
“normalize” H by diagonal congruency transformation, so that diagonals become
ones,

HS = ∆−1
2

H H∆− 1
2

H , ∆H =| diag(H) |
we can see that the obtained matrix

HS =




1 10−2 10−3 10−2

10−2 1 10−2 −10−3

10−3 10−3 −1 10−3

10−2 −10−3 10−3 −1


 ,

1Meaning almost in the Murnaghan form.
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is in some way almost diagonal. For example, we have

‖Ω(HS)‖F ≤ 2.4618 · 10−2.

Such matrices recently became important for several reasons. First, the new theory
of the so-called relative perturbations of eigenvalues, singular values and the corre-
sponding eigenvectors, frequently uses such diagonal scaling (see [1, 2, 37, 34, 21]).
Second, in [2], [32] and elsewhere, it has been proved that diagonalization methods
can compute the eigendecomposition and SVD with high relative accuracy. This
precious property is not shared with other algorithms. In connection with this,
it has been found that the proper measure for advancing of the process by such
algorithms is not the off-norm of the matrix itself, but of the scaled matrix which
is obtained by diagonal scaling.

This is the reason why several papers appeared recently (see [1, 5, 24]), that deal
with almost diagonal matrices in the scaled sense. We propose a common name for
such matrices: “scaled almost diagonal matrices”. The main class of such matrices
is the class of

2.1. Scaled diagonally dominant matrices

In [1] Barlow and Demmel introduced scaled diagonally dominant matrices and
matrix pairs. Later, Drmač [4], and Hari and Drmač [18] slightly generalized the
notion of scaled diagonally dominant matrix pairs. Scaled diagonally dominant
matrices with special (symplectic) structure are considered in [26]. Finally, scaled
diagonally dominant matrices with multiple singular values are considered in [24].

Suppose A = D + N , where D is diagonal and N has zero diagonal. Then
A = (aij) is referred to as α–diagonally dominant with respect to a norm ‖ · ‖ if
‖N‖ ≤ α min1≤i≤n |aii|, with 0 ≤ α < 1. If A = D+N with |aii| = 1, 1 ≤ i ≤ n and
∆1, ∆2 are arbitrary nonsingular diagonal matrices, then Ã = ∆1A∆2 is α–scaled
diagonally dominant ( α–s.d.d.) with respect to a given norm, provided that A is
α–diagonally dominant with respect to that norm. Note that an α–s.d.d matrix
has nonzero diagonal elements. If A is Hermitian, it is presumed that ∆1 = ∆2

and ∆1 is real. Such scaling, which is a congruence transformation, will be called
symmetric.

The pair (A, B) of Hermitian matrices is (α, β)–scaled diagonally dominant
definite ( (α, β)–s.d.d.d.) with respect to a given norm if A is α–s.d.d., B is β–
s.d.d., both with respect to that norm, and B is positive definite. If A is positive
definite as well, (A, B) is (α, β)–scaled diagonally dominant positive definite ((α, β)–
s.d.d.p.d.). If α = β, (α, α)–s.d.d.d. ((α, α)–s.d.d.p.d.) is abbreviated to α–s.d.d.d.
(α–s.d.d.p.d.) matrix pair.

In the classical results, described in Section 1, special role is played by the ab-
solute gap(s) in the spectrum or in the set of singular values. The so-called relative
gaps are closely connected With s.d.d. matrices.
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Relative gaps

Although there are several definitions of relative gaps (cf. [34, 21]), here we use the
following one. For each 1 ≤ i ≤ p, the relative gap of the eigenvalue λsi , is given by

γi = min
1≤j≤p

j 6=i

| λsi − λsj |
| λsi | + | λsj |

.

The relative gap of σsi is defined by

γi = min
1≤j≤p

j 6=i

| σsi − σsj |
σsi + σsj

.

The minimum relative gap is therefore

γ = min
1≤i≤p

γi .

Note that all γi and therefore γ lie in the interval [0, 1].

Example 3. Let H be as above. From the given eigenvalues, and the above defini-
tion, one easily computes the relative gaps,

λ1 ≈ 1.0000e + 00
λ2 ≈ 9.9990e− 07

λ3 ≈ −1.0001e− 10
λ4 ≈ −1.0001e− 12





γ1 ≈ 0.9999980
γ2 ≈ 0.9999980
γ2 ≈ 0.9801980
γ3 ≈ 0.9801980

.

We see that γ ≈ 0.9801980, hence all the relative gaps are very close to one.

2.2. Results for a single Hermitian matrix

We start with the case of a scaled diagonally dominant Hermitian matrix. The
following result is deduced from the corresponding result for s.d.d.d. matrix pairs.
We note that the assumptions and notation proposed in Section 1.3 hold throughout
the paper.

Theorem 4. [18] (i) Let H = H∗ be α-s.d.d. and H = ∆HHS∆H , where ∆H =
[ |diag(H)| ]

1
2 . If α < γ/(γ + 3), then

si∑

j=si−1+1

|1− λsi

hjj
|2 + ‖Ω (πi(HS)) ‖2

F ≤ 16
γ2

i

‖τi(HS)‖4
F , 1 ≤ i ≤ p.

(ii) Let H = H∗ be α-s.d.d. and positive definite. Let H = ∆HHS∆H with ∆H =
[diag(H)]

1
2 . If α < γ/3, then

si∑

j=si−1+1

|1− λsi

hjj
|2 + ‖Ω (πi(HS)) ‖2

F ≤ 4
γ2

i

‖τi(HS)‖4
F , 1 ≤ i ≤ p.
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Example 4. Let H be as above. An easy computation yields

α = ‖Ω(HS)‖F ≈ 2.4618 · 10−2 ,

and since γ ≈ 0.9801980, we have

α <
γ

γ + 3
≈ 2.4627 · 10−1.

By the first assertion of Theorem 4,

ri =
∣∣∣∣1 − λsi

hjj

∣∣∣∣ ≤
4
γi
‖τi(HS)‖2

F < 8.205 · 10−4

and therefore, ∣∣∣∣
λsi − hjj

λsi

∣∣∣∣ ≤
ri

1 − ri
< 8.22 · 10−4.

Except for i = 1, this is an overestimate by a factor less than 8.

Theorem4 has several applications. First, it can be used to obtain appropriate
estimates for scaled almost diagonal square matrices with multiple singular values
(see [24]). Second, it is essential in proving the asymptotic convergence of scaled
iterates by the Jacobi method for Hermitian matrices (see [23]).

2.3. Results for (A,B)

A generalization of Theorem4 is proved in [18].

Theorem 5. Let (A, B) be a (α, β)–s.d.d.d. pair, A = ∆AAS∆A, B = ∆BBS∆B

with ∆A = [|diag (A)|]1/2, ∆B = [diag (B)]1/2. If

α + β

1 − α
<

1
3

γ, (1)

then for each 1 ≤ i ≤ p there holds

(i) ‖πi

(
AS − λsi∆

−1
A B∆−1

A

)
‖F ≤ 4

γi
‖τi

(
AS − λsi∆

−1
A B∆−1

A

)
‖2

F ,

(ii) ‖πi (A − λsiB) ‖F ≤ 4
γi
‖τi

(
A∆−1

A − λsiB∆−1
A

)
‖2

F ,

(iii) ‖πi

(
λ−1

si
∆−1

B A∆−1
B − BS

)
‖F ≤ 2

γi
‖τi

(
λ−1

si
∆−1

B A∆−1
B − BS

)
‖2

F ,

(iv) ‖πi

(
λ−1

si
A − B

)
‖F ≤ 2

γi
‖τi

(
λ−1

si
A∆−1

B − B∆−1
B

)
‖2

F .

If both matrices A and B are positive definite, one can further improve the latest
result.

Corollary 3. Suppose the pair (A, B) is (α, β)-s.d.d.p.d. and let AS , ∆A, BS and
∆B be as in Theorem 5.
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(a) If in (1) the denumerator 1−α is replaced by 1−β, then the constants 4 and 2
in the assertions (i), (ii) and (iii), (iv), respectively, interchange their places.

(b) If in (1) the denumerator 1 − α is replaced by 1 − max {α, β}, then all the
assertions of Theorem 5 hold with the same constant 2 on the right-hand sides.

The results expressed in Theorem5 and Corollary 3 can be used for estimating
eigenvalues (or Ritz values) by diagonal elements. This is important for stopping of
eigenvalue routines for the simultaneous diagonalization of a positive definite matrix
pair (e.g. in the subspace iteration method combined with the Falk-Langemeyer
method [33, 6]).

2.4. Results for a square matrix C

By techniques similar to those used in Subsection 1.3, one can deduce from Theo-
rem4 results that deal with square matrices and singular values. Let C be a square
matrix with (possibly multiple) singular values σs1 > · · · > σsp > 0. Then the
Hermitian matrix H from (7) has eigenvalues σs1 > · · · > σsp > 0 > −σsp > · · ·
> −σs1 . When we deal with absolute gaps we have to introduce δ̃p = 2σsp , the
artificial gap between σsp and −σsp . However, if relative gaps are used, the problem
with artificial gaps is avoided in the very natural way. Since

| λsi − λsj |
| λsi | + | λsj |

=
| σsi − (−σsj ) |

σsi + σsj

= 1 ,

whenever λsi = σsi and λsj = −σsj , we see that the relative gap between eigenvalues
of different sign is one. Hence in this measure, σsp and −σsp as eigenvalues of H are
“as far as possible”, and the relative gaps between the eigenvalues of H reduce to
the relative gaps between the singular values of C. This favourable situation results
in the following theorem from [24].

Theorem 6. Let C ∈ Cn×n be an α-s.d.d. matrix whose diagonal elements satisfy
the condition c11 ≥ · · · ≥ c11 ≥ 0, and let C = ∆1/2

C CS∆1/2
C , ∆C = diag(C). Let

C and CS be partitioned according to the multiplicities of the singular values. If
α < γ/(γ + 3), then

(i) ‖πi(
CS + CS

∗

2
− σsi∆

−1
C )‖F ≤ 1

γi

[
‖πi(CS − CS

∗)‖2
F + 2‖τi(CS)‖2

F +

+2‖τi(CS
∗)‖2

F

]
, 1 ≤ i ≤ p.

(ii) ‖πi(
C + C∗

2
− σsiI)‖F ≤ 1

γi
min

{
‖πi((C − C∗)∆−1/2

C )‖2
F

+2‖τi(C∆−1/2
C )‖2

F + 2‖τi(C∗∆−1/2
C )‖2

F ,
1

2σsi

[
2‖τi(C)‖2

F + 2‖τi(C̃∗)‖2
F + ‖πi(C − C∗)‖2

F

] }
, 1 ≤ i ≤ p.

2.5. Results for an essentially triangular matrix T

If the matrix is triangular, or more generally, essentially triangular, the last theorem
reduces to (cf. [24])
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Corollary 4. Let T be as in Theorem 6. If in addition, T is essentially triangular,
then

(i)
si∑

j=si−1+1

|1 − σsi

bjj
|2 +

‖Ω(πi(TS ))‖2
F

2
≤ 4

γ2
i

[
‖Ω(πi(TS))‖2

F + ‖τi(TS )‖2
F +

‖τi(TS
∗)‖2

F

]2
, 1 ≤ i ≤ p.

(ii)
n∑

j=1

|1 − σj

bjj
|2 +

‖Ω(πi(TS))‖2
F

2
≤ 4‖Ω(TS)‖2

F

γ2

[
‖Ω(TS)‖2

F + ‖τ (TS)‖2
F

]
.

In particular, if T = (tij) is triangular and some singular value σi is simple, the
assertion (i) of Corollary 4 implies the following simple and useful estimate

| 1 − σi

tkk
|≤ 2

γ




k−1∑

j=1

| tjk |2

| tkktjj | +
n∑

j=k+1

| tkj |2

| tkktjj |


 . (2)

Here, we assumed that σi is affiliated with tkk. As has been proved in [24, Corol-
lary 7], in the last estimate the diagonal elements can be complex, and no spe-
cial ordering of diagonals has to be assumed. These and similar results from [24]
have been used in proving the quadratic convergence of scaled iterates by the Kog-
betliantz method for triangular matrices (see [25]).

Example 5. Let

T =




1
√

2 · 10−7 10−8

0 2 · 10−6
√

2 · 10−10

0 0 10−10


 , then TS =




1 10−4 10−5

0 1 10−4

0 0 1


 .

By MATLAB one finds out that

σ1 = 1.000000000000010
σ2 = 2.000000004999980 · 10−6

σ3 = 9.999999975000000 · 10−11





γ1 = 9.999960000079900 · 10−1

γ2 = 9.999000050002500 · 10−1

γ3 = 9.999000050002500 · 10−1
.

The left- and right-hand sides of the inequality (2), as well as the appopriate quo-
tients are displayed in the following table

left right right / left
−1.0214 · 10−14 2.0200 · 10−8 −1.9777 · 106

−2.5000 · 10−09 2.0002 · 10−8 −8.0008 · 100

2.5000 · 10−09 2.0002 · 10−8 8.0008 · 100

.

We see that the the bounds for the smallest singular values overestimate the true
values only by the factor ≈ 8.

The true relative error of tii as an approximation of σi is given by ρi = 1 − |tii|
σi

.
Note that ρi is linked with ri = 1− σi

|tii| by ρi = ri/(1−ri), hence for tiny ri, ρi ≈ ri.
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