Intersection properties of Brownian paths

MARK KELBERT*

Abstract. This review presents a modern approach to intersections of Brownian paths. It exploits the fundamental link between intersection properties and percolation processes on trees. More precisely, a Brownians path is intersect-equivalent to certain fractal percolation. It means that the intersection probabilities of Brownian paths can be estimated up to constant factors by survival probabilities of certain branching processes.

Key words: Brownian motion, stable processes, fractal percolation, intersect-equivalence, potential theory

AMS subject classifications: 60J45, 60G17

Received March 14, 2000 Accepted May 11, 2000

1. Main results

In this review we present a modern proof due to ([13]) of Dvoretzky, Erdös, Kakutani and Taylor' classical results on intersections of Brownian paths ([4], [5], [8]). M. Aizenman ([1]) suggested that intersections of Brownian paths and percolation processes on trees should be closely related. However, he pointed out that attempting to establish a direct probabilistic link between the two settings runs into delicate dependence problems. The potential theory serves as a bridge in latter papers. In particular, the long-range intersection probabilities of Brownian paths can be estimated up to constant factors by survival probabilities of certain branching processes.

Definition 1. Two random (Borel) sets A and B are intersect-equivalent on the open set U, if for any closed set $\Lambda \subset U$, we have

 $\mathbf{P}(A \cap \Lambda \neq \emptyset) \asymp \mathbf{P}(B \cap \Lambda \neq \emptyset),$

i.e. the ratio of both sides is bounded above and below by positive constants which do not depend on Λ .

Fractal percolation. Given $d \ge 3$ and $0 , consider the natural tiling of the unit cube <math>[0, 1]^d$, by 2^d closed cubes of side $\frac{1}{2}$. Let Z_1 be a random subcollection

^{*}European Business Management School, University of Wales - Swansea, Singleton park, Swansea SA2 8PP, United Kingdom, e-mail: M.Kelbert@swansea.ac.uk

of these cubes, where each cube belongs to Z_1 with probability p and these events are mutually independent. In general, if Z_k is a collection of cubes of sides 2^{-k} , tile each cube $Q \in Z_k$ by 2^d closed cubes of side 2^{-k-1} and include each of these subcubes in Z_{k+1} with probability p (independently). Finally, define

$$Q_d(p) = \bigcap_{k=1}^{\infty} \cup_{Q \in Z_k} Q.$$

Theorem 1. Let $B_d(t)$ denote d-dimensional Brownian Motion, started according to any fixed distribution with a bounded density for $B_d(0)$.

- (i) If $d \ge 3$, then the range $[B_d] = (B_d(t) : t \ge 0)$ is intersect-equivalent to $Q_d(2^{2-d})$ in the unit cube.
- (ii) Let S(t) be the symmetric stable process of index α , started according to any distribution with a bounded density. If $\alpha < d$, then the range [S] is intersect-equivalent to $Q_d(2^{\alpha-d})$ in the unit cube.

A proof of *Theorem 1* will be presented below. Our present goal is to derive the following famous result.

Theorem 2. (Dvoretzky, Erdös, Kakutani and Taylor [4], [5], [8]).

- (i) For any $d \ge 4$, two independent BM in \mathbf{R}^d are disjoint a.s.
- (ii) In \mathbb{R}^3 , two independent BM intersect a.s., but three independent BM have no points of mutual intersection.
- (iii) In R², any finite number of independent BM have non-empty mutual intersection a.s.

Proof. (i) It sufficies to consider d = 4 and check, that two independent BM $[B_4]$ and $[B'_4]$ a.s. have no points of intersection in the unit cube, since countably many cubes cover \mathbb{R}^4 . We use the following

Lemma 1. Suppose that $A_1, \ldots, A_k, F_1, \ldots, F_k$ are independent random (Borel) sets, with A_i intersect-equivalent to F_i for all $1 \le i \le k$. Then $A_1 \cap A_2 \cap \ldots \cap A_k$ is intersect-equivalent to $F_1 \cap F_2 \cap \ldots \cap F_k$.

Proof. By induction reduce to the case k = 2 It clearly suffices to show that $A_1 \cap A_2$ is intersect-equivalent to $F_1 \cap A_2$:

$$\mathbf{P}(A_1 \cap A_2 \cap \Lambda \neq \emptyset) = \mathbf{E}[\mathbf{P}(A_1 \cap A_2 \cap \Lambda \neq \emptyset \mid A_2)] = \mathbf{E}[\mathbf{P}(F_1 \cap A_2 \cap \Lambda \neq \emptyset \mid A_2)]$$
$$= \mathbf{P}(F_1 \cap A_2 \cap \Lambda \neq \emptyset).$$

Now observe that 1) for any 0 < p, q < 1, if $Q_d(p)$ and $Q'_d(q)$ are statistically independent, then their intersection $Q_d(p) \cap Q'_d(q)$ has the same distribution as $Q_d(pq)$; 2) the cardinalities $|Z_k|$ of Z_k form a *Galton-Watson branching process* which extincts a.s. in the critical case $\mathbf{E}|Z_1| = 1$.

For any $\epsilon > 0$ the distribution of $B_4(\epsilon)$ has a bounded density, so by *Theorem 1* and *Lemma 1*

$$\mathbf{P}(B_4(t):t \ge \epsilon) \cap (B'_4(s):s \ge \epsilon) \cap [0,1]^4 \neq \emptyset) \asymp \quad \mathbf{P}(Q_4(1/4) \cap Q'_4(1/4) \neq \emptyset)$$
$$= \quad \mathbf{P}(Q_4(1/16) \neq \emptyset)$$

But $Q_4(1/16) = \emptyset$ a.s. because critical branching processes die out. Similar arguments provide a proof of (ii).

2. Potential theory background

We need some basic facts of the classical potential theory to proceed with the proof of *Theorem 1*.

K-capacity Let Λ - be a metric space with the metric |x - y| and $K : \Lambda \times \Lambda \rightarrow [0, \infty)$ - be a Borel function. Define K-energy of a finite Borel measure μ on Λ by

$$I_K(\mu) = \int_{\Lambda} \int_{\Lambda} K(x, y) d\mu(x) d\mu(y),$$

In the particular case K(x, y) = f(|x - y|), where f is a non-increasing function we use the notation $I_f(\mu)$; if $f = |x - y|^{-\beta}$ then

$$I_{\beta}(\mu) = \int_{\Lambda} \int_{\Lambda} |x - y|^{-\beta} d\mu(x) d\mu(y).$$

Define K-capacity (f-capacity, β -capacity) by

$$Cap_K(\Lambda) = [inf_{\mu}I_K(\mu)]^{-1}, \qquad Cap_{\beta}(\Lambda) = [inf_{\mu}I_{\beta}(\mu)]^{-1}$$

where the infimum is over probability measures μ on Λ .

It is well-known ([6]) that the range of d-dimensional Brownian motion, $d \geq 3$, has Hausdorff dimension 2. This fact admits a nice interpretation in viewpoint of fractal percolation. We slightly generalize the construction as above: let $l \geq 2$ and $(q_k, 0 \leq k \leq l^d)$ be a probabilistic distribution with mean value M. Consider the natural tiling of the unit cube $[0,1]^d$, by l^d closed cubes of side $\frac{1}{l}$. Select k small cubes with probability q_k (their location is not relevant) and iterate this procedure. This recursive construction defines a fractal with Hausdorff dimension $dim_H(\Lambda) = \log_b M$ a.s. ([7]). In the case of Bernoulli percolation (cf. Theorem 1) $M = p2^d, p = 2^{2-d}$ and $dim_H(\Lambda) = \log_2 p2^d = 2$.

The following classical theorem characterizes the Hausdorff dimension as the critical parameter for positivity of Riesz-type capacity.

Theorem 3. (Frostman, 1935) For any Borel set Λ in \mathbb{R}^d , the Hausdorff dimension $\dim_H(\Lambda)$ is exactly $\inf[\beta > 0 : Cap_\beta(\Lambda) = 0]$.

Theorem 4. (Hunt and Doob after Kakutani, 1944) Let (S_t) – be a symmetric stable process of index $\alpha < d$ in \mathbb{R}^d , and the initial distribution π has a bounded density on the unit cube, then

$$\mathbf{P}_{\pi}(\exists t \ge 0 : S_t \in \Lambda) \asymp Cap_{d-\alpha}(\Lambda)$$

Proof. There exists a finite measure ν on Λ , such that $\forall x$

$$\mathbf{P}_x(\exists t \ge 0: S_t \in \Lambda) = \int_{\Lambda} G(x, y) d\nu(y)$$

and

$$\nu(A) = Cap_G(\Lambda) = Cap_{d-\alpha}(\Lambda).$$

In this case $G(x, y) = |x - y|^{\alpha - d}$ and straightforward integration yields

$$C_1 Cap_G(\Lambda) \leq \mathbf{P}_{\pi}(\exists t \geq 0 : S_t \in \Lambda) \leq C_2 Cap_G(\Lambda)$$

3. Independent percolation on trees

The second cornerstone of the proof is a fundamental result of ([11]) concerning percolation on trees.

Let T- be a finite or infinite rooted tree; ∂T be its **boundary**, i.e. the set of maximal self-avoiding paths emanated from the roof ρ of T and called **rays**. The distance between two (infinite) rays ξ and η is defined to be $|\xi - \eta| = 2^{-\kappa}$ where $\kappa = \kappa(\xi, \eta) = |\xi \wedge \eta|$ is the number of edges that these two rays have in common. Here $\xi \wedge \eta$ is the edge farthest from the root which is common to both ξ and η (or the path from the root to this edge). In analogy with β -capacity we define

$$Cap_{\beta}(\partial T) = [inf_{\mu}I_{\beta}(\mu)]^{-1}$$

where

$$I_{\beta}(\mu) = \int \int 2^{\beta \kappa(\xi,\eta)} d\mu(\xi) d\mu(\eta).$$

Let $0 . We say that a path <math>\xi$ survives the percolation with parameter p if all the edges on ξ are retained (each edge of T is retained with probability p and deleted with probability 1 - p independently). We say that the tree boundary ∂T survives if some ray on T survives the percolation.

Theorem 5. ([11]) Let $\beta > 0$. If percolation with parameter $p = 2^{-\beta}$ is performed on a rooted tree T, then

 $Cap_{\beta}(\partial T) \leq \mathbf{P}[\partial T \text{ survives the percolation}] \leq 2Cap_{\beta}(\partial T)$

Theorem 5'. ([11]) In the model with different surviving probabilities p_e for different edges we define

$$K(x,y) = \prod p_e^{-1} : e \in x \land y.$$

Then

 $Cap_F(\partial T) \leq \mathbf{P}[\partial T \text{ survives the percolation}] \leq 2Cap_F(\partial T)$

Sketch of original proof of Theorem 5. The relations between random walks, electrical networks and percolation on trees are well-known ([10]). In particular, the conductance of an edge $\sigma C_{\sigma} = (1-p)^{-1}p^{|\sigma|}$ where $|\sigma|$ is the number of edges

between σ and the root and p is the percolation probability. One can easily check ([11]) that

$$Cap_{\beta}(\partial T) = [1 + \mathcal{G}(0 \to \partial T)^{-1}]^{-1},$$

where $\mathcal{G}(0 \to \partial T)$ is the effective conductance of electrical network between the root and ∂T . The proof of *Theorem 5* follows from the following estimate.

Lemma 2. For any finite tree T

$$\frac{\mathcal{G}(0 \to \partial T)}{1 + \mathcal{G}(0 \to \partial T)} \leq \mathbf{P}[\partial T \text{ survives the percolation}] \leq 2 \frac{\mathcal{G}(0 \to \partial T)}{1 + \mathcal{G}(0 \to \partial T)}$$

Proof. One can easily deduce these inequalities from the usual series-parallel circuit laws

$$\mathcal{G}(0 \to \partial T) = \sum_{|\sigma|=1} (C_{\sigma}^{-1} + \mathcal{G}(\sigma \to \partial T)^{-1})^{-1}$$

where $\mathcal{G}(\sigma \to \partial T)$ the effective conductance of electrical network between σ and ∂T .

A general estimate of capacities for a Markov chain on countable state space yields a short proof of *Theorem 5* and 5'.

Theorem 6. ([3]) Let X be a transient Markov chain on the countable state space Y with initial state ρ and transitional probabilities p(x, y). Let

$$G(x,y) = \sum_{n=0}^{\infty} p^{(n)}(x,y)$$

be the Green function. Define the kernal $F(x,y) = K(x,y) + K(y,x), K(x,y) = \frac{G(x,y)}{G(\rho,y)}$, and the average Green function $G(\rho, y)$ with respect to initial state ρ . Then for any $\Lambda \subset Y$

$$Cap_F(\Lambda) \leq \mathbf{P}_{\rho}(\exists n \geq 0 : X_n \in \Lambda) \leq 2Cap_F(\Lambda).$$

Proof of Theorem 5'. The result follows from similar estimates on finite trees. We construct a Markov chain on $\partial T \cup \rho$, δ where ρ is the root and δ is a formal absorbing cementry. Indeed, enumerate all leaves on T that survive the percolation from left to right as V_1, V_2, \ldots, V_r . The key observation is that the random sequence $\rho, V_1, V_2, \ldots, V_r, \delta, \delta, \ldots$ is a Markov chain. Indeed, given that $V_k = x$ conditional probabilities that parths on the right of x survive the percolation do not depend on V_1, \ldots, V_{k-1} . One can easily check that $G(\rho, y) = \prod_{e \in y} p_e$ and, if x is to the left of y, then

$$G(x,y) = \prod_{e \in y \setminus x} p_e.$$

This equality yields that

$$K(x,y) = \frac{G(x,y)}{G(\rho,y)} = \prod_{e \in y \land x} p_e^{-1}.$$

Proof of Theorem 6. (i) Let τ be the first hitting time of Λ and $\nu(x) = \mathbf{P}_{\rho}[X_{\tau} = x]$. Then

$$\nu(\Lambda) = \mathbf{P}_{\rho}(\exists n \ge 0 : X_n \in \Lambda).$$

Observe that $\forall y \in \Lambda$

$$\int G(x,y)d\nu(x) = \sum_{x \in \Lambda} \mathbf{P}_{\rho}[X_{\tau} = x]G(x,y) = G(\rho,y).$$

Hence $\int K(x, y) d\nu(x) = 1$ and

$$I_F(\frac{\nu}{\nu(\Lambda)}) = \frac{2}{\nu(\Lambda)}.$$

Consequently $\nu(\Lambda) \leq Cap_F(\Lambda)$, this proves the right-hand side inequality. (ii) Let μ be a probability measure on Λ . Consider the random variable

$$Z = \int_{\Lambda} G(\rho, y)^{-1} \sum_{n=0}^{\infty} \mathbf{1}_{X_n = y} d\mu(y).$$

By Cauchy-Schwartz inequality

$$\mathbf{P}_{\rho}(\exists n \ge 0 : X_n \in \Lambda) \ge \mathbf{P}_{\rho}(Z > 0) \ge \frac{(\mathbf{E}_{\rho}Z)^2}{\mathbf{E}_{\rho}Z^2}.$$

One can easily check that $\mathbf{E}_{\rho}Z = 1$, hence the left-hand side inequality follows from the following estimate $\mathbf{E}_{\rho}Z^2 \leq I_F(\mu)$. Let us check that

$$\mathbf{E}_{\rho}Z^{2} \leq 2 \int_{\Lambda} \int_{\Lambda} G(\rho, y)^{-1} G(\rho, x)^{-1} \Sigma_{\rho} d\mu(x) d\mu(y),$$
$$\Sigma_{\rho} = \sum_{m} \mathbf{E}_{\rho} [\sum_{n=m}^{\infty} \mathbf{1}_{X_{m}=x, X_{n}=y}] = G(\rho, x) G(x, y).$$

Hence

$$\mathbf{E}_{\rho}Z^{2} \leq 2\int_{\Lambda}\int_{\Lambda}G(\rho,y)^{-1}G(x,y)d\mu(x)d\mu(y) = I_{F}(\mu).$$

Next we define a canonical map \mathcal{R} from the boundary of 2^d -ary (each vertex has 2^d children) tree \mathcal{T}^d to the cube $[0,1]^d$. Formally, label the edges from each vertex to its children with the vectors in $\Omega^{\mathbf{Z}_+} = (0,1)^d$. Then define

$$\mathcal{R}(\omega_1,\omega_2,\ldots) = \sum_{i=1}^{\infty} 2^{-n} \omega_n.$$

Similarly, a vertex $\sigma \in \mathcal{T}^d, |\sigma| = k$ is identified with a finite sequence $\Omega_k = (\omega_1, \omega_2, \ldots, \omega_k)$. Let $\mathcal{R}(\sigma)$ be the cube with the side 2^{-k} containing the images under the mapping \mathcal{R} of all sequences with the prefix Ω_k .

80

Theorem 7. ([2],[14]) Let T be a subtree of the regular 2^d -ary tree \mathcal{T}^d . Then $Cap_\beta(\partial T) \simeq Cap_\beta(\mathcal{R}(\partial T))$

Proof. We shall check that for $f(n) = g(2^{-n})$ and any probability measure μ on ∂T

$$I_f(\mu) \asymp I_g(\mu \mathcal{R}^{-1}).$$

Step 1. Computation of energy

$$\begin{split} I_f(\mu) &= \int \int f(|x \wedge y|) d\mu(x) d\mu(y) = \int \int \sum_{\sigma \leq x \wedge y} [f(|\sigma|) - f(|\sigma| - 1)] d\mu(x) d\mu(y) \\ &= \sum_{\sigma \in T} [f(|\sigma|) - f(|\sigma| - 1)] \int \int \mathbf{1}_{x,y \geq \sigma} d\mu(x) d\mu(y) \\ &= \sum_{\sigma \in T} [f(|\sigma|) - f(|\sigma| - 1)] \mu(\sigma)^2 \\ &= \sum_{k=1}^{\infty} h(k) S_k(\mu). \end{split}$$

Here $\mu(\sigma) = \mu y \in \partial T$: $\sigma \in y$, h(k) = f(k) - f(k-1), f(-1) = 0, $S_k(\mu) = \sum_{|\sigma|=k} \mu(\sigma)^2$.

Step 2. Estimate from above

$$I_g(\mu \mathcal{R}^{-1}) \le \sum_{k=1}^{\infty} h(k) \mathcal{V}(k),$$

here

$$\mathcal{V}(k) = (\mu \mathcal{R}^{-1}) \times \mu \mathcal{R}^{-1})[(x,y) : |x-y| \le 2^{1-k}].$$

Next we check that $\mathcal{V}(k) \leq 6^d S(k)$. Indeed, let

$$\mathbf{I} = \mathbf{I}_{\mathcal{R}(\sigma) \cap \mathcal{R}(\tau) \neq \emptyset}, A(k-1) = (\sigma, \tau) : |\sigma| = |\tau| = k - 1, \mathbf{I} > 0.)$$

If $|x - y| \le 2^{1-k}, x, y \in \mathcal{R}(\partial T)$, then

$$\exists (\sigma, \tau) \in A(k-1) : x \in \mathcal{R}(\sigma), y \in \mathcal{R}(\tau).$$

Therefore

$$\mathcal{V}(k) \leq \sum_{A(k-1)} \theta(\sigma) \theta(\tau).$$

Using the estimate

$$\theta(\sigma)\theta(\tau) \le \frac{\theta(\sigma)^2 + \theta(\tau)^2}{2}$$

and observing that the number of σ for any fixed τ (and the number of τ for any fixed σ) in A(k-1) is bounded from above by 3^d , we get $\mathcal{V}(k) \leq 3^d S_{k-1}$. Finally, we can easily check that $S_{k-1} \leq 2^d S_k : \forall |\sigma| = k-1$

$$\theta(\sigma)^2 = \left(\sum_{\tau \ge \sigma, |\tau| = k} \theta(\tau)\right)^2 \le 2^d \sum_{\tau \ge \sigma, |\tau| = k} \theta(\tau)^2.$$

Step 3. Estimate from below

$$I_g(\mu \mathcal{R}^{-1}) \ge \sum_{k=1}^{\infty} h(k) S_{k+l}(\mu),$$

where $2^l \ge d^{\frac{1}{2}}$. Therefore

$$(x,y:|x-y| \le 2^{-n}) \supseteq \cup_{|\sigma|=n+l} [\mathcal{R}(\sigma) \times \mathcal{R}(\sigma)].$$

Finally, observe that $S_k \ge 2^{-d}S_{k-1}$, yields the inequality

$$I_g(\mu \mathcal{R}^{-1}) \ge 2^{-dl} I_f(\mu).$$

Corollary 1. For any closed set Λ in the cube $[0,1]^d$

$$\mathbf{P}(Q_d(2^{-\beta}) \cap \Lambda \neq \emptyset) \asymp Cap_\beta(\Lambda).$$

Proof. Any closed set Λ is the image of the boundary $\mathcal{R}(\partial T)$ of a subtree imbedded into the regular 2^d -ary tree \mathcal{T}^d . Consider a percolation with parameter $p = 2^{-\beta}$. Then

 $\mathbf{P}[Q_d(p) \text{ intersect } \Lambda] = \mathbf{P}[\partial T \text{ survives the percolation }] \asymp Cap_\beta(\partial T) \asymp Cap_\beta(\Lambda).$

Corollary 2. ([7],[10]) Let $p = 2^{-\beta}$. For any (Borel) set $\Lambda \subset [0,1]^d$

(i) If $\dim_H(\Lambda) < \beta$, then the intersection $Q_d(p) \cap \Lambda$ is a.s. empty.

(ii) If $\dim_H(\Lambda) > \beta$, then Λ intersects $Q_d(p)$ with positive probability.

Proof. It follows immediately from *Corollary 1* and *Theorem 3* connecting Haudorff dimension and capacity. \Box

Proof of *Theorem 1.* We check (ii) because (i) is its special case $\alpha = 2$. *Theorem 4* and *Corollary 1* imply that for $p = 2^{\alpha-d}$

$$\mathbf{P}_{\pi}(\exists t \geq 0 : S_t \in \Lambda) \asymp Cap_{d-\alpha}(\Lambda) \asymp \mathbf{P}[Q_d(p) \text{ intersect } \Lambda].$$

4. Capacity of Brownian paths

We have mentioned in Section 2 that the image of d-dimensional Brownian motion, $d \ge 3$, has Hausdorff dimension 2. A more precise version of this result was recently proved ([15]).

Theorem 8. For $d \ge 3$, the Brownian trace B[0,1] is a.s. capacity-equivalent $[0,1]^2$, i.e. with probability $1 \exists$ random constants $C_1, C_2 > 0$ such that

$$C_1Cap_f([0,1]^2) \le Cap_f(B[0,1]) \le C_2Cap_f([0,1]^2)$$

for all non-increasing functions f simultaneously.

Proof. Let \mathcal{D}_n be a partition of $[0,1]^2$ on dyadic cubes with a side 2^{-n} and $N_n(\Lambda)$ be a number of dyadic cubes $Q \in \mathcal{D}_n$ that intersect a random (Borel) set Λ . We use the strong law of large numbers ([9])

$$C_1 \le \frac{N_n(B[0,1])}{4^n} \le C_2, C_1, C_2 > 0.$$

Using the expression for $I_f(\mu)$ (cf. Step 1 in the proof of *Theorem 6*) one can easily check that for any measure μ supported by the random set Λ

$$I_f(\mu) \asymp \sum_{n=0}^{\infty} (f(2^{-n}) - f(2^{1-n})) \sum Q \in \mathcal{D}_n \mu(Q)^2$$

$$\geq c \sum_{n=0}^{\infty} (f(2^{-n}) - f(2^{1-n})) N_n(\Lambda)^{-1},$$

i.e.

$$Cap_f(B[0,1]) \le c^{-1} [\sum_{n=0}^{\infty} (f(2^{-n}) - f(2^{1-n})) N_n(\Lambda)^{-1}]^{-1},$$

Moreover, this estimate is sharp (up to a constant factor independent of f) if the set Λ carries a positive measure μ such that $\mu(Q) \leq cN_n(\Lambda)^{-1}$. Finally, we use the strong law of large numbers cited above and observe that

$$Cap_f([0,1]^2) \asymp [\int_0^1 f(r)rdr]^{-1}.$$

Finally, we present estimates of hitting probabilities for Brownian motion (cf. *Theorem 6*).

Theorem 9. (([3])) Let $B_d(t), d \ge 3$, denote standard Brownian motion with $B_d(0) = 0$ and $\Lambda \subset \mathbf{R}^d$ is a closed set. Then

$$Cap_F(\Lambda) \leq \mathbf{P}(\exists t > 0 : B_d(t) \in \Lambda) \leq 2Cap_F(\Lambda),$$

where $F(x,y) = \frac{|y|^{d-2}}{|x-y|^{d-2}} + \frac{|x|^{d-2}}{|x-y|^{d-2}}$ and |x-y| is the Euclidean distance.

Proof. Proof follows the scheme of that for Theorem 6. Let $\tau = \min[t > 0 : B_d(t) \in \Lambda]$ and

$$\nu(\Lambda) = \mathbf{P}(\tau < \infty) = \mathbf{P}(\exists t \ge 0 : B_d(t) \in \Lambda).$$

Now recall the standard formula, valid when $0 < \epsilon < |y|$:

$$\mathbf{P}[|B_d(t) - y| < \epsilon] = \frac{\epsilon^{d-2}}{|y|^{d-2}}.$$

This probability is bounded from below by

ı

$$\mathbf{P}[|B_d(\tau) - y| > \epsilon \text{and} \exists t > \tau : B_d(t) - y| < \epsilon] = \int_{x:|x-y| \ge \epsilon} \frac{\epsilon^{d-2}}{|y|^{d-2}} d\nu(x).$$

This inequality implies

$$\int_{\Lambda} \frac{d\nu(x)}{|x - y|^{d - 2}} \le \frac{1}{|y|^{d - 2}}$$

and an upper bound (cf. Theorem 6)

 $2Cap_F(\Lambda) \ge \nu(\Lambda).$

To prove a lower bound, a second order estimate is used. Given a probability measure μ on Λ and $\epsilon > 0$, consider the random variable

$$Z_{\epsilon} = \int_{\Lambda} \mathbf{1}_{\exists t \ge 0: B_d(t) \in D(y,\epsilon)} h_{\epsilon}(|y|)^{-1} d\nu(x) d\mu(y).$$

Here $D(y,\epsilon)$ is the Euclidean ball of radius ϵ and $h_{\epsilon}(r) = (\frac{\epsilon}{r})^{d-2}$ if $r > \epsilon$ and 1 otherwise. Clearly, $\mathbf{E}Z_{\epsilon} = 1$ and the result follows (cf. *Theorem 6*) from the estimate

$$\lim_{\epsilon \to 0} \mathbf{E} Z_{\epsilon} \le I_F(\mu).$$

This is a straightforward calculation which we omit for the sake of brevity. \Box

References

- M. AIZENMAN, The intersection of Brownian paths as a case study of renonormalization method for quantum field theory, Commun. Math. Phys. 97(1985), 91–110.
- [2] I. BENJAMINI, Y. PERES, Random walks on a tree and capacity in the interval, Ann. Inst. Henri Poincaré 28(1992), 557–592.
- [3] I. BENJAMINI, R. PEMANTLE, Y. PERES, Martin capacity for Markov chains, Ann.Probab. 23(1995), 1332–1346.
- [4] A. DVORETSKY,, P. ERDÖS, S. KAKUTANI, Double points of paths of Brownian motion in n-space, Acta Sci. Math. Szeged 12(1950), 75–81.
- [5] A. DVORETSKY,, P. ERDÖS, S. KAKUTANI, J. TAYLOR, Triple points in the paths of Brownian motion in 3-space, Proc. Cambridge Phil. Soc. 53(1957), 856–862.
- [6] J. HAWKES, On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set, Zeits. Wahr. Verw. Geb. 19(1971), 90–102.
- [7] J. HAWKES, Trees generated by a simple branching process, J. London Math. Soc. 24(1981), 373–384.
- [8] S. KAKUTANI, On Brownian motion in n-space, Proc. Imp. Acad. Tokyo 20(1944), 648–652.
- [9] J. LE GALL, Some properties of planar Brownian motion, in: Ecole d'ete de probabilities de St.-Flour, XX 1990 (J.F.Le Gall and M.I. Freidlin, Eds.) Berlin, Springer, 1992.

- [10] R. LYONS, Random walks and percolation on trees, Ann. Probab. 18(1990), 931–958.
- [11] R. LYONS, Random walks, capacity and percolation on trees, Ann. Probab. 20(1992), 2043–2088.
- [12] R. LYONS, R. PEMANTLE, Y. PERES, Unsolved problems concerning random walks on trees in: Classical and Modern Branching Processes (K.B. Athreya, P. Jagers, Eds.), Berlin, Springer, 1997.
- [13] Y. PERES, Intersection-equivalence of Brownian paths and certain branching processes, Commun. Math. Phys. 177(1996), 417–434.
- [14] R. PEMANTLE, Y. PERES, Galton-Watson trees with the same mean have the same polar sets, Ann.Probab. 23(1995), 1102–1124.
- [15] R. PEMANTLE, Y. PERES, J. SHAPIRO, The trace of spatial Brownian motion is capacity-equivalent to the unit square, Probab. Theory Relat. Fields 106(1996), 379–399.