Intersection properties of Brownian paths

Mark Kelbert*

Abstract

This review presents a modern approach to intersections of Brownian paths. It exploits the fundamental link between intersection properties and percolation processes on trees. More precisely, a Brownians path is intersect-equivalent to certain fractal percolation. It means that the intersection probabilities of Brownian paths can be estimated up to constant factors by survival probabilities of certain branching processes.

Key words: Brownian motion, stable processes, fractal percolation, intersect-equivalence, potential theory

AMS subject classifications: 60J45, 60G17

Received March 14, 2000
Accepted May 11, 2000

1. Main results

In this review we present a modern proof due to ([13]) of Dvoretzky, Erdös, Kakutani and Taylor' classical results on intersections of Brownian paths ([4], [5], [8]). M. Aizenman ([1]) suggested that intersections of Brownian paths and percolation processes on trees should be closely related. However, he pointed out that attempting to establish a direct probabilistic link between the two settings runs into delicate dependence problems. The potential theory serves as a bridge in latter papers. In particular, the long-range intersection probabilities of Brownian paths can be estimated up to constant factors by survival probabilities of certain branching processes.

Definition 1. Two random (Borel) sets A and B are intersect-equivalent on the open set U, if for any closed set $\Lambda \subset U$, we have

$$
\mathbf{P}(A \cap \Lambda \neq \emptyset) \asymp \mathbf{P}(B \cap \Lambda \neq \emptyset)
$$

i.e. the ratio of both sides is bounded above and below by positive constants which do not depend on Λ.

Fractal percolation. Given $d \geq 3$ and $0<p<1$, consider the natural tiling of the unit cube $[0,1]^{d}$, by 2^{d} closed cubes of side $\frac{1}{2}$. Let Z_{1} be a random subcollection

[^0]of these cubes, where each cube belongs to Z_{1} with probability p and these events are mutually independent. In general, if Z_{k} is a collection of cubes of sides 2^{-k}, tile each cube $Q \in Z_{k}$ by 2^{d} closed cubes of side 2^{-k-1} and include each of these subcubes in Z_{k+1} with probability p (independently). Finally, define
$$
Q_{d}(p)=\bigcap_{k=1}^{\infty} \cup_{Q \in Z_{k}} Q .
$$

Theorem 1. Let $B_{d}(t)$ denote d-dimensional Brownian Motion, started according to any fixed distribution with a bounded density for $B_{d}(0)$.
(i) If $d \geq 3$, then the range $\left[B_{d}\right]=\left(B_{d}(t): t \geq 0\right)$ is intersect-equivalent to $Q_{d}\left(2^{2-d}\right)$ in the unit cube.
(ii) Let $S(t)$ be the symmetric stable process of index α, started according to any distribution with a bounded density. If $\alpha<d$, then the range $[S]$ is intersectequivalent to $Q_{d}\left(2^{\alpha-d}\right)$ in the unit cube.

A proof of Theorem 1 will be presented below. Our present goal is to derive the following famous result.

Theorem 2. (Dvoretzky, Erdös, Kakutani and Taylor [4], [5], [8]) .
(i) For any $d \geq 4$, two independent $B M$ in \mathbf{R}^{d} are disjoint a.s.
(ii) In \mathbf{R}^{3}, two independent BM intersect a.s., but three independent BM have no points of mutual intersection.
(iii) In \mathbf{R}^{2}, any finite number of independent BM have non-empty mutual intersection a.s.

Proof. (i) It sufficies to consider $d=4$ and check, that two independent BM $\left[B_{4}\right]$ and $\left[B_{4}^{\prime}\right]$ a.s. have no points of intersection in the unit cube, since countably many cubes cover \mathbf{R}^{4}. We use the following

Lemma 1. Suppose that $A_{1}, \ldots, A_{k}, F_{1}, \ldots, F_{k}$ are independent random (Borel) sets, with A_{i} intersect-equivalent to F_{i} for all $1 \leq i \leq k$. Then $A_{1} \cap A_{2} \cap \ldots \cap A_{k}$ is intersect-equivalent to $F_{1} \cap F_{2} \cap \ldots \cap F_{k}$.

Proof. By induction reduce to the case $k=2$ It clearly suffices to show that $A_{1} \cap A_{2}$ is intersect-equivalent to $F_{1} \cap A_{2}$:

$$
\begin{aligned}
\mathbf{P}\left(A_{1} \cap A_{2} \cap \Lambda \neq \emptyset\right) & =\mathbf{E}\left[\mathbf{P}\left(A_{1} \cap A_{2} \cap \Lambda \neq \emptyset \mid A_{2}\right)\right]=\mathbf{E}\left[\mathbf{P}\left(F_{1} \cap A_{2} \cap \Lambda \neq \emptyset \mid A_{2}\right)\right] \\
& =\mathbf{P}\left(F_{1} \cap A_{2} \cap \Lambda \neq \emptyset\right)
\end{aligned}
$$

Now observe that 1) for any $0<p, q<1$, if $Q_{d}(p)$ and $Q_{d}^{\prime}(q)$ are statistically independent, then their intersection $Q_{d}(p) \cap Q_{d}^{\prime}(q)$ has the same distribution as $\left.Q_{d}(p q) ; 2\right)$ the cardinalities $\left|Z_{k}\right|$ of Z_{k} form a Galton-Watson branching process which extincts a.s. in the critical case $\mathbf{E}\left|Z_{1}\right|=1$.

For any $\epsilon>0$ the distribution of $B_{4}(\epsilon)$ has a bounded density, so by Theorem 1 and Lemma 1

$$
\begin{aligned}
\left.\mathbf{P}\left(B_{4}(t): t \geq \epsilon\right) \cap\left(B_{4}^{\prime}(s): s \geq \epsilon\right) \cap[0,1]^{4} \neq \emptyset\right) & \asymp \mathbf{P}\left(Q_{4}(1 / 4) \cap Q_{4}^{\prime}(1 / 4) \neq \emptyset\right) \\
& =\mathbf{P}\left(Q_{4}(1 / 16) \neq \emptyset\right)
\end{aligned}
$$

But $Q_{4}(1 / 16)=\emptyset$ a.s. because critical branching processes die out. Similar arguments provide a proof of (ii).

2. Potential theory background

We need some basic facts of the classical potential theory to proceed with the proof of Theorem 1.
K-capacity Let Λ - be a metric space with the metric $|x-y|$ and $K: \Lambda \times \Lambda \rightarrow$ $[0, \infty)-$ be a Borel function. Define K-energy of a finite Borel measure μ on Λ by

$$
I_{K}(\mu)=\int_{\Lambda} \int_{\Lambda} K(x, y) d \mu(x) d \mu(y)
$$

In the particular case $K(x, y)=f(|x-y|)$, where f is a non-increasing function we use the notation $I_{f}(\mu)$; if $f=|x-y|^{-\beta}$ then

$$
I_{\beta}(\mu)=\int_{\Lambda} \int_{\Lambda}|x-y|^{-\beta} d \mu(x) d \mu(y)
$$

Define K-capacity (f-capacity, β-capacity) by

$$
\operatorname{Cap}_{K}(\Lambda)=\left[i n f_{\mu} I_{K}(\mu)\right]^{-1}, \quad \operatorname{Cap}_{\beta}(\Lambda)=\left[i n f_{\mu} I_{\beta}(\mu)\right]^{-1}
$$

where the infimum is over probability measures μ on Λ.
It is well-known ([6]) that the range of d-dimensional Brownian motion, $d \geq 3$, has Hausdorff dimension 2. This fact admits a nice interpretation in viewpoint of fractal percolation. We slightly generalize the construction as above: let $l \geq 2$ and $\left(q_{k}, 0 \leq k \leq l^{d}\right)$ be a probabilistic distribution with mean value M. Consider the natural tiling of the unit cube $[0,1]^{d}$, by l^{d} closed cubes of side $\frac{1}{l}$. Select k small cubes with probability q_{k} (their location is not relevant) and iterate this procedure. This recursive construction defines a fractal with Hausdorff dimension $\operatorname{dim}_{H}(\Lambda)=\log _{b} M$ a.s. ([7]). In the case of Bernoulli percolation (cf. Theorem 1) $M=p 2^{d}, p=2^{2-d}$ and $\operatorname{dim}_{H}(\Lambda)=\log _{2} p 2^{d}=2$.

The following classical theorem characterizes the Hausdorff dimension as the critical parameter for positivity of Riesz-type capacity.
Theorem 3. (Frostman, 1935) For any Borel set Λ in \mathbf{R}^{d}, the Hausdorff dimension $\operatorname{dim}_{H}(\Lambda)$ is exactly inf $\left[\beta>0: \operatorname{Cap}_{\beta}(\Lambda)=0\right]$.
Theorem 4. (Hunt and Doob after Kakutani, 1944) Let $\left(S_{t}\right)$ - be a symmetric stable process of index $\alpha<d$ in \mathbf{R}^{d}, and the initial distribution π has a bounded density on the unit cube, then

$$
\mathbf{P}_{\pi}\left(\exists t \geq 0: S_{t} \in \Lambda\right) \asymp \operatorname{Cap}_{d-\alpha}(\Lambda)
$$

Proof. There exists a finite measure ν on Λ, such that $\forall x$

$$
\mathbf{P}_{x}\left(\exists t \geq 0: S_{t} \in \Lambda\right)=\int_{\Lambda} G(x, y) d \nu(y)
$$

and

$$
\nu(A)=\operatorname{Cap}_{G}(\Lambda)=\operatorname{Cap}_{d-\alpha}(\Lambda) .
$$

In this case $G(x, y)=|x-y|^{\alpha-d}$ and straightforward integration yields

$$
C_{1} \operatorname{Cap}_{G}(\Lambda) \leq \mathbf{P}_{\pi}\left(\exists t \geq 0: S_{t} \in \Lambda\right) \leq C_{2} \operatorname{Cap}_{G}(\Lambda)
$$

3. Independent percolation on trees

The second cornerstone of the proof is a fundamental result of ([11]) concerning percolation on trees.

Let T - be a finite or infinite rooted tree; ∂T be its boundary, i.e. the set of maximal self-avoiding paths emanated from the roof ρ of T and called rays. The distance between two (infinite) rays ξ and η is defined to be $|\xi-\eta|=2^{-\kappa}$ where $\kappa=\kappa(\xi, \eta)=|\xi \wedge \eta|$ is the number of edges that these two rays have in common. Here $\xi \wedge \eta$ is the edge farthest from the root which is common to both ξ and η (or the path from the root to this edge). In analogy with β-capacity we define

$$
\operatorname{Cap}_{\beta}(\partial T)=\left[i n f_{\mu} I_{\beta}(\mu)\right]^{-1}
$$

where

$$
I_{\beta}(\mu)=\iint 2^{\beta \kappa(\xi, \eta)} d \mu(\xi) d \mu(\eta)
$$

Let $0<p<1$. We say that a path ξ survives the percolation with parameter p if all the edges on ξ are retained (each edge of T is retained with probability p and deleted with probability $1-p$ independently). We say that the tree boundary ∂T survives if some ray on T survives the percolation.
Theorem 5. ([11]) Let $\beta>0$. If percolation with parameter $p=2^{-\beta}$ is performed on a rooted tree T, then

$$
C a p_{\beta}(\partial T) \leq \mathbf{P}[\partial T \text { survives the percolation }] \leq 2 C a p_{\beta}(\partial T)
$$

Theorem 5'. ([11]) In the model with different surviving probabilities p_{e} for different edges we define

$$
K(x, y)=\prod p_{e}^{-1}: e \in x \wedge y
$$

Then

$$
\operatorname{Cap}_{F}(\partial T) \leq \mathbf{P}[\partial T \text { survives the percolation }] \leq 2 \operatorname{Cap}_{F}(\partial T)
$$

Sketch of original proof of Theorem 5. The relations between random walks, electrical networks and percolation on trees are well-known ([10]). In particular, the conductance of an edge $\sigma C_{\sigma}=(1-p)^{-1} p^{|\sigma|}$ where $|\sigma|$ is the number of edges
between σ and the root and p is the percolation probability. One can easily check ([11]) that

$$
\operatorname{Cap}_{\beta}(\partial T)=\left[1+\mathcal{G}(0 \rightarrow \partial T)^{-1}\right]^{-1}
$$

where $\mathcal{G}(0 \rightarrow \partial T)$ is the effective conductance of electrical network between the root and ∂T. The proof of Theorem 5 follows from the following estimate.

Lemma 2. For any finite tree T

$$
\frac{\mathcal{G}(0 \rightarrow \partial T)}{1+\mathcal{G}(0 \rightarrow \partial T)} \leq \mathbf{P}[\partial T \text { survives the percolation }] \leq 2 \frac{\mathcal{G}(0 \rightarrow \partial T)}{1+\mathcal{G}(0 \rightarrow \partial T)}
$$

Proof. One can easily deduce these inequalities from the usual series-parallel circuit laws

$$
\mathcal{G}(0 \rightarrow \partial T)=\sum_{|\sigma|=1}\left(C_{\sigma}^{-1}+\mathcal{G}(\sigma \rightarrow \partial T)^{-1}\right)^{-1}
$$

where $\mathcal{G}(\sigma \rightarrow \partial T)$ the effective conductance of electrical network between σ and ∂T.

A general estimate of capacities for a Markov chain on countable state space yields a short proof of Theorem 5 and 5'.

Theorem 6. ([3]) Let X be a transient Markov chain on the countable state space Y with initial state ρ and transitional probabilities $p(x, y)$. Let

$$
G(x, y)=\sum_{n=0}^{\infty} p^{(n)}(x, y)
$$

be the Green function. Define the kernal $F(x, y)=K(x, y)+K(y, x), K(x, y)=$ $\frac{G(x, y)}{G(\rho, y)}$, and the average Green function $G(\rho, y)$ with respect to initial state ρ. Then for any $\Lambda \subset Y$

$$
\operatorname{Cap}_{F}(\Lambda) \leq \mathbf{P}_{\rho}\left(\exists n \geq 0: X_{n} \in \Lambda\right) \leq 2 \operatorname{Cap}_{F}(\Lambda)
$$

Proof of Theorem 5, The result follows from similar estimates on finite trees. We construct a Markov chain on $\partial T \cup \rho, \delta$ where ρ is the root and δ is a formal absorbing cementry. Indeed, enumerate all leaves on T that survive the percolation from left to right as $V_{1}, V_{2}, \ldots, V_{r}$. The key observation is that the random sequence $\rho, V_{1}, V_{2}, \ldots, V_{r}, \delta, \delta, \ldots$ is a Markov chain. Indeed, given that $V_{k}=x$ conditional probabilities that parths on the right of x survive the percolation do not depend on V_{1}, \ldots, V_{k-1}. One can easily check that $G(\rho, y)=\prod_{e \in y} p_{e}$ and, if x is to the left of y, then

$$
G(x, y)=\prod_{e \in y \backslash x} p_{e}
$$

This equality yields that

$$
K(x, y)=\frac{G(x, y)}{G(\rho, y)}=\prod_{e \in y \wedge x} p_{e}^{-1}
$$

Proof of Theorem 6. (i) Let τ be the first hitting time of Λ and $\nu(x)=\mathbf{P}_{\rho}\left[X_{\tau}=\right.$ $x]$. Then

$$
\nu(\Lambda)=\mathbf{P}_{\rho}\left(\exists n \geq 0: X_{n} \in \Lambda\right)
$$

Observe that $\forall y \in \Lambda$

$$
\int G(x, y) d \nu(x)=\sum_{x \in \Lambda} \mathbf{P}_{\rho}\left[X_{\tau}=x\right] G(x, y)=G(\rho, y)
$$

Hence $\int K(x, y) d \nu(x)=1$ and

$$
I_{F}\left(\frac{\nu}{\nu(\Lambda)}\right)=\frac{2}{\nu(\Lambda)}
$$

Consequently $\nu(\Lambda) \leq \operatorname{Cap}_{F}(\Lambda)$, this proves the right-hand side inequality.
(ii) Let μ be a probability measure on Λ. Consider the random variable

$$
Z=\int_{\Lambda} G(\rho, y)^{-1} \sum_{n=0}^{\infty} \mathbf{1}_{X_{n}=y} d \mu(y)
$$

By Cauchy-Schwartz inequality

$$
\mathbf{P}_{\rho}\left(\exists n \geq 0: X_{n} \in \Lambda\right) \geq \mathbf{P}_{\rho}(Z>0) \geq \frac{\left(\mathbf{E}_{\rho} Z\right)^{2}}{\mathbf{E}_{\rho} Z^{2}}
$$

One can easily check that $\mathbf{E}_{\rho} Z=1$, hence the left-hand side inequality follows from the following estimate $\mathbf{E}_{\rho} Z^{2} \leq I_{F}(\mu)$. Let us check that

$$
\begin{aligned}
& \mathbf{E}_{\rho} Z^{2} \leq 2 \int_{\Lambda} \int_{\Lambda} G(\rho, y)^{-1} G(\rho, x)^{-1} \Sigma_{\rho} d \mu(x) d \mu(y) \\
& \Sigma_{\rho}=\sum_{m} \mathbf{E}_{\rho}\left[\sum_{n=m}^{\infty} \mathbf{1}_{X_{m}=x, X_{n}=y}\right]=G(\rho, x) G(x, y)
\end{aligned}
$$

Hence

$$
\mathbf{E}_{\rho} Z^{2} \leq 2 \int_{\Lambda} \int_{\Lambda} G(\rho, y)^{-1} G(x, y) d \mu(x) d \mu(y)=I_{F}(\mu)
$$

Next we define a canonical map \mathcal{R} from the boundary of 2^{d}-ary (each vertex has 2^{d} children) tree \mathcal{T}^{d} to the cube $[0,1]^{d}$. Formally, label the edges from each vertex to its children with the vectors in $\Omega^{\mathbf{Z}_{+}}=(0,1)^{d}$. Then define

$$
\mathcal{R}\left(\omega_{1}, \omega_{2}, \ldots\right)=\sum_{i=1}^{\infty} 2^{-n} \omega_{n}
$$

Similarly, a vertex $\sigma \in \mathcal{T}^{d},|\sigma|=k$ is identified with a finite sequence $\Omega_{k}=$ $\left(\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right)$. Let $\mathcal{R}(\sigma)$ be the cube with the side 2^{-k} containing the images under the mapping \mathcal{R} of all sequences with the prefix Ω_{k}.

Theorem 7. ([2],[14]) Let T be a subtree of the regular 2^{d}-ary tree \mathcal{T}^{d}. Then

$$
\operatorname{Cap}_{\beta}(\partial T) \asymp \operatorname{Cap}_{\beta}(\mathcal{R}(\partial T))
$$

Proof. We shall check that for $f(n)=g\left(2^{-n}\right)$ and any probability measure μ on ∂T

$$
I_{f}(\mu) \asymp I_{g}\left(\mu \mathcal{R}^{-1}\right)
$$

Step 1. Computation of energy

$$
\begin{aligned}
I_{f}(\mu) & =\iint f(|x \wedge y|) d \mu(x) d \mu(y)=\iint \sum_{\sigma \leq x \wedge y}[f(|\sigma|)-f(|\sigma|-1)] d \mu(x) d \mu(y) \\
& =\sum_{\sigma \in T}[f(|\sigma|)-f(|\sigma|-1)] \iint \mathbf{1}_{x, y \geq \sigma} d \mu(x) d \mu(y) \\
& =\sum_{\sigma \in T}[f(|\sigma|)-f(|\sigma|-1)] \mu(\sigma)^{2} \\
& =\sum_{k=1}^{\infty} h(k) S_{k}(\mu)
\end{aligned}
$$

Here $\mu(\sigma)=\mu y \in \partial T: \sigma \in y, h(k)=f(k)-f(k-1), f(-1)=0, \quad S_{k}(\mu)=$ $\sum_{|\sigma|=k} \mu(\sigma)^{2}$.

Step 2. Estimate from above

$$
I_{g}\left(\mu \mathcal{R}^{-1}\right) \leq \sum_{k=1}^{\infty} h(k) \mathcal{V}(k),
$$

here

$$
\left.\mathcal{V}(k)=\left(\mu \mathcal{R}^{-1}\right) \times \mu \mathcal{R}^{-1}\right)\left[(x, y):|x-y| \leq 2^{1-k}\right]
$$

Next we check that $\mathcal{V}(k) \leq 6^{d} S(k)$. Indeed, let

$$
\left.\mathbf{I}=\mathbf{I}_{\mathcal{R}(\sigma) \cap \mathcal{R}(\tau) \neq \emptyset}, A(k-1)=(\sigma, \tau):|\sigma|=|\tau|=k-1, \mathbf{I}>0 .\right)
$$

If $|x-y| \leq 2^{1-k}, x, y \in \mathcal{R}(\partial T)$, then

$$
\exists(\sigma, \tau) \in A(k-1): x \in \mathcal{R}(\sigma), y \in \mathcal{R}(\tau)
$$

Therefore

$$
\mathcal{V}(k) \leq \sum_{A(k-1)} \theta(\sigma) \theta(\tau)
$$

Using the estimate

$$
\theta(\sigma) \theta(\tau) \leq \frac{\theta(\sigma)^{2}+\theta(\tau)^{2}}{2}
$$

and observing that the number of σ for any fixed τ (and the number of τ for any fixed σ) in $A(k-1)$ is bounded from above by 3^{d}, we get $\mathcal{V}(k) \leq 3^{d} S_{k-1}$. Finally, we can easily check that $S_{k-1} \leq 2^{d} S_{k}: \forall|\sigma|=k-1$

$$
\theta(\sigma)^{2}=\left(\sum_{\tau \geq \sigma,|\tau|=k} \theta(\tau)\right)^{2} \leq 2^{d} \sum_{\tau \geq \sigma,|\tau|=k} \theta(\tau)^{2}
$$

Step 3. Estimate from below

$$
I_{g}\left(\mu \mathcal{R}^{-1}\right) \geq \sum_{k=1}^{\infty} h(k) S_{k+l}(\mu)
$$

where $2^{l} \geq d^{\frac{1}{2}}$. Therefore

$$
\left(x, y:|x-y| \leq 2^{-n}\right) \supseteq \cup_{|\sigma|=n+l}[\mathcal{R}(\sigma) \times \mathcal{R}(\sigma)] .
$$

Finally, observe that $S_{k} \geq 2^{-d} S_{k-1}$, yields the inequality

$$
I_{g}\left(\mu \mathcal{R}^{-1}\right) \geq 2^{-d l} I_{f}(\mu)
$$

Corollary 1. For any closed set Λ in the cube $[0,1]^{d}$

$$
\mathbf{P}\left(Q_{d}\left(2^{-\beta}\right) \cap \Lambda \neq \emptyset\right) \asymp \operatorname{Cap}_{\beta}(\Lambda) .
$$

Proof. Any closed set Λ is the image of the boundary $\mathcal{R}(\partial T)$ of a subtree imbedded into the regular 2^{d}-ary tree \mathcal{T}^{d}. Consider a percolation with parameter $p=2^{-\beta}$. Then
$\mathbf{P}\left[Q_{d}(p)\right.$ intersect $\left.\Lambda\right]=\mathbf{P}[\partial T$ survives the percolation $] \asymp \operatorname{Cap}_{\beta}(\partial T) \asymp \operatorname{Cap}_{\beta}(\Lambda)$.

Corollary 2. ([7],[10]) Let $p=2^{-\beta}$. For any (Borel) set $\Lambda \subset[0,1]^{d}$
(i) If $\operatorname{dim}_{H}(\Lambda)<\beta$, then the intersection $Q_{d}(p) \cap \Lambda$ is a.s. empty.
(ii) If $\operatorname{dim}_{H}(\Lambda)>\beta$, then Λ intersects $Q_{d}(p)$ with positive probability.

Proof. It follows immediately from Corollary 1 and Theorem 3 connecting Haudorff dimension and capacity.

Proof of Theorem 1. We check (ii) because (i) is its special case $\alpha=2$. Theorem 4 and Corollary 1 imply that for $p=2^{\alpha-d}$

$$
\mathbf{P}_{\pi}\left(\exists t \geq 0: S_{t} \in \Lambda\right) \asymp C a p_{d-\alpha}(\Lambda) \asymp \mathbf{P}\left[Q_{d}(p) \text { intersect } \Lambda\right] .
$$

4. Capacity of Brownian paths

We have mentioned in Section 2 that the image of d-dimensional Brownian motion, $d \geq 3$, has Hausdorff dimension 2. A more precise version of this result was recently proved ([15]).

Theorem 8. For $d \geq 3$, the Brownian trace $B[0,1]$ is a.s. capacity-equivalent $[0,1]^{2}$, i.e. with probability $1 \exists$ random constants $C_{1}, C_{2}>0$ such that

$$
C_{1} \operatorname{Cap}_{f}\left([0,1]^{2}\right) \leq \operatorname{Cap}_{f}(B[0,1]) \leq C_{2} \operatorname{Cap}_{f}\left([0,1]^{2}\right)
$$

for all non-increasing functions f simultaneously.

Proof. Let \mathcal{D}_{n} be a partition of $[0,1]^{2}$ on dyadic cubes with a side 2^{-n} and $N_{n}(\Lambda)$ - be a number of dyadic cubes $Q \in \mathcal{D}_{n}$ that intersect a random (Borel) set Λ. We use the strong law of large numbers ([9])

$$
C_{1} \leq \frac{N_{n}(B[0,1])}{4^{n}} \leq C_{2}, C_{1}, C_{2}>0
$$

Using the expression for $I_{f}(\mu)$ (cf. Step 1 in the proof of Theorem 6) one can easily check that for any measure μ supported by the random set Λ

$$
\begin{aligned}
I_{f}(\mu) & \asymp \sum_{n=0}^{\infty}\left(f\left(2^{-n}\right)-f\left(2^{1-n}\right)\right) \sum Q \in \mathcal{D}_{n} \mu(Q)^{2} \\
& \geq c \sum_{n=0}^{\infty}\left(f\left(2^{-n}\right)-f\left(2^{1-n}\right)\right) N_{n}(\Lambda)^{-1},
\end{aligned}
$$

i.e.

$$
\operatorname{Cap}_{f}(B[0,1]) \leq c^{-1}\left[\sum_{n=0}^{\infty}\left(f\left(2^{-n}\right)-f\left(2^{1-n}\right)\right) N_{n}(\Lambda)^{-1}\right]^{-1}
$$

Moreover, this estimate is sharp (up to a constant factor independent of f) if the set Λ carries a positive measure μ such that $\mu(Q) \leq c N_{n}(\Lambda)^{-1}$. Finally, we use the strong law of large numbers cited above and observe that

$$
\operatorname{Cap}_{f}\left([0,1]^{2}\right) \asymp\left[\int_{0}^{1} f(r) r d r\right]^{-1}
$$

Finally, we present estimates of hitting probabilities for Brownian motion (cf. Theorem 6).

Theorem 9. (([3])) Let $B_{d}(t), d \geq 3$, denote standard Brownian motion with $B_{d}(0)=$ 0 and $\Lambda \subset \mathbf{R}^{d}$ is a closed set. Then

$$
\operatorname{Cap}_{F}(\Lambda) \leq \mathbf{P}\left(\exists t>0: B_{d}(t) \in \Lambda\right) \leq 2 \operatorname{Cap}_{F}(\Lambda)
$$

where $F(x, y)=\frac{|y|^{d-2}}{|x-y|^{d-2}}+\frac{|x|^{d-2}}{|x-y|^{d-2}}$ and $|x-y|$ is the Euclidean distance.
Proof. Proof follows the scheme of that for Theorem 6. Let $\tau=\min [t>0$: $\left.B_{d}(t) \in \Lambda\right]$ and

$$
\nu(\Lambda)=\mathbf{P}(\tau<\infty)=\mathbf{P}\left(\exists t \geq 0: B_{d}(t) \in \Lambda\right)
$$

Now recall the standard formula, valid when $0<\epsilon<|y|$:

$$
\mathbf{P}\left[\left|B_{d}(t)-y\right|<\epsilon\right]=\frac{\epsilon^{d-2}}{|y|^{d-2}}
$$

This probability is bounded from below by

$$
\mathbf{P}\left[\left|B_{d}(\tau)-y\right|>\epsilon \operatorname{and} \exists t>\tau: B_{d}(t)-y \mid<\epsilon\right]=\int_{x:|x-y| \geq \epsilon} \frac{\epsilon^{d-2}}{|y|^{d-2}} d \nu(x)
$$

This inequality implies

$$
\int_{\Lambda} \frac{d \nu(x)}{|x-y|^{d-2}} \leq \frac{1}{|y|^{d-2}}
$$

and an upper bound (cf. Theorem 6)

$$
2 C a p_{F}(\Lambda) \geq \nu(\Lambda)
$$

To prove a lower bound, a second order estimate is used. Given a probability measure μ on Λ and $\epsilon>0$, consider the random variable

$$
Z_{\epsilon}=\int_{\Lambda} \mathbf{1}_{\exists t \geq 0: B_{d}(t) \in D(y, \epsilon)} h_{\epsilon}(|y|)^{-1} d \nu(x) d \mu(y)
$$

Here $D(y, \epsilon)$ is the Euclidean ball of radius ϵ and $h_{\epsilon}(r)=\left(\frac{\epsilon}{r}\right)^{d-2}$ if $r>\epsilon$ and 1 otherwise. Clearly, $\mathbf{E} Z_{\epsilon}=1$ and the result follows (cf. Theorem 6) from the estimate

$$
\lim _{\epsilon \rightarrow 0} \mathbf{E} Z_{\epsilon} \leq I_{F}(\mu)
$$

This is a straightforward calculation which we omit for the sake of brevity.

References

[1] M. Aizenman, The intersection of Brownian paths as a case study of renonormalization method for quantum field theory, Commun. Math. Phys. 97(1985), 91-110.
[2] I. Benjamini, Y. Peres, Random walks on a tree and capacity in the interval, Ann. Inst. Henri Poincaré 28(1992), 557-592.
[3] I. Benjamini, R. Pemantle, Y. Peres, Martin capacity for Markov chains, Ann.Probab. 23(1995), 1332-1346.
[4] A. Dvoretsky,, P. Erdös, S. Kakutani, Double points of paths of Brownian motion in n-space, Acta Sci. Math. Szeged 12(1950), 75-81.
[5] A. Dvoretsky,, P. Erdös, S. Kakutani, J. Taylor, Triple points in the paths of Brownian motion in 3-space, Proc. Cambridge Phil. Soc. 53(1957), 856-862.
[6] J. Hawkes, On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set, Zeits. Wahr. Verw. Geb. 19(1971), 90-102.
[7] J. Hawkes, Trees generated by a simple branching process, J. London Math. Soc. 24(1981), 373-384.
[8] S. Kakutani, On Brownian motion in n-space, Proc. Imp. Acad. Tokyo 20(1944), 648-652.
[9] J. Le Gall, Some properties of planar Brownian motion, in: Ecole d'ete de probabilities de St.-Flour, XX 1990 (J.F.Le Gall and M.I. Freidlin, Eds.) Berlin, Springer, 1992.
[10] R. Lyons, Random walks and percolation on trees, Ann. Probab. 18(1990), 931-958.
[11] R. Lyons, Random walks, capacity and percolation on trees, Ann. Probab. 20(1992), 2043-2088.
[12] R. Lyons, R. Pemantle, Y. Peres, Unsolved problems concerning random walks on trees in: Classical and Modern Branching Processes (K.B. Athreya, P. Jagers, Eds.), Berlin, Springer, 1997.
[13] Y. Peres, Intersection-equivalence of Brownian paths and certain branching processes, Commun. Math. Phys. 177(1996), 417-434.
[14] R. Pemantle, Y. Peres, Galton-Watson trees with the same mean have the same polar sets, Ann.Probab. 23(1995), 1102-1124.
[15] R. Pemantle, Y. Peres, J. Shapiro, The trace of spatial Brownian motion is capacity-equivalent to the unit square, Probab. Theory Relat. Fields 106(1996), 379-399.

[^0]: *European Business Management School, University of Wales - Swansea, Singleton park, Swansea SA2 8PP, United Kingdom, e-mail: M.Kelbert@swansea.ac.uk

