(m, n)-rings as algebras with only one operation

Janez Ušan* and Radoslav Galić ${ }^{\dagger}$

Abstract

In this paper a class of (m, n)-rings with a left and right zero is described as a variety of algebras of type $\langle 3 m+n-5,0\rangle$.

Key words: n-groupoid, n-semigroup, n-quasigroup, n-group, $\{i, j\}-$ neutral operation, inversing operation, (m, n)-ring

AMS subject classifications: 20N15
Received June 10, 2000
Accepted October 9, 2000

1. Preliminaries

A notion of an n-group was introduced by W. Dörnte in [7] as a generalization of the notion of a group. See, also [3], [1], [10].

Definition 1. Let $n \geq 2$ and let (Q, A) be an n-groupoid. We say that (Q, A) is a Dörnte n-group [briefly: n-group] iff it is an n-semigroup and an n-quasigroup as well.

Proposition 1. (see [15]) Let $n \geq 2$ and let (Q, A) be an n-groupoid. Then the following statements are equivalent:
(i) (Q, A) is an n-group;
(ii) there are mappings ${ }^{-1}$ and \mathbf{e} of the sets Q^{n-1} and Q^{n-2}, respectively, into the set Q such that the following laws hold in the algebra $\left(Q,\left\{A,^{-1}, \mathbf{e}\right\}\right)$ lof the type $<n, n-1, n-2>$]
(a) $A\left(x_{1}^{n-2}, A\left(x_{n-1}^{2 n-2}\right), x_{2 n-1}\right)=A\left(x_{1}^{n-1}, A\left(x_{n}^{2 n-1}\right)\right)$,
(b) $A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, x\right)=x$ and
(c) $A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, a\right)=\mathbf{e}\left(a_{1}^{n-2}\right)$; and
(iii) there are mappings ${ }^{-1}$ and \mathbf{e} of the sets Q^{n-1} and Q^{n-2}, respectively, into the set Q such that the following laws hold in the algebra $\left(Q,\left\{A,^{-1}, \mathbf{e}\right\}\right)$ [of the type $<n, n-1, n-2>$]
*Institute of Mathematics, University of Novi Sad, Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia
${ }^{\dagger}$ Faculty of Electrical Engineering, University of Osijek, Kneza Trpimira 2B, HR-31 000 Osijek, Croatia, e-mail: galic@etfos.hr
($\bar{a}) A\left(A\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=A\left(x_{1}, A\left(x_{2}^{n+1}\right), x_{n+2}^{2 n-1}\right)$,
($\bar{b}) ~ A\left(x, a_{1}^{n-2}, \mathbf{e}\left(a_{1}^{n-2}\right)\right)=x$ and
($\bar{c}) A\left(a, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)=\mathbf{e}\left(a_{1}^{n-2}\right)$.
Remark 1. e is a $\{1, n\}$-neutral operation of an n-grupoid (Q, A) iff algebra $(Q,\{A, \mathbf{e}\})$ of type $<n, n-2>$ satisfies the laws (b) and (\bar{b}) from Proposition 1 (cf. [12]). The notion of $\{i, j\}$-neutral operation $(i, j \in\{1, \ldots, n\}, i<j$) of an n-groupoid is defined in a similar way (cf. [12]). Every n-groupoid has at most one $\{i, j\}$-neutral operation (cf. [12]). In every $n-$ group, $n \geq 2$, there is $a\{1, n\}$-neutral operation (cf. [12]). There are n-groups without $\{i, j\}-$ neutral operations with $\{i, j\} \neq\{1, n\}$ (cf. [14]). In [14], n-groups with $\{i, j\}-$ neutral operations, for $\{i, j\} \neq\{1, n\}$ are described. Operation ${ }^{-1}$ from Proposition 1 is a generalization of the inversing operation in a group. In fact, if (Q, A) is an $n-$ group, $n \geq 2$, then for every $a \in Q$ and for every sequence a_{1}^{n-2} over Q

$$
\left(a_{1}^{n-2}, a\right)^{-1} \stackrel{\text { def }}{=} \mathrm{E}\left(a_{1}^{n-2}, a, a_{1}^{n-2}\right)
$$

where E is $a\{1,2 n-1\}$-neutral operation of the $(2 n-1)-\operatorname{group}(Q, \stackrel{2}{A})$; $\stackrel{2}{A}\left(x_{1}^{2 n-1}\right) \stackrel{\text { def }}{=} A\left(A\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right) \quad$ (cf. [13]). (For $n=2, a^{-1}=\mathrm{E}(a) ; a^{-1}$ is the inverse element of the element a with respect to the neutral element $\mathbf{e}(\emptyset)$ of the group (Q, A).)

Proposition 2. (see [14]) Let $n \geq 3$, let (Q, A) be an n-group and \mathbf{e} its $\{1, n\}$ neutral operation. Then the following statements are equivalent:
(i) (Q, A) is a commutative n-group,
(ii) \mathbf{e} is an $\{i, j\}$-neutral operation of the n-group (Q, A) for every $\{i, j\} \subseteq\{1, \ldots, n\}$, $i<j$.

Proposition 3. (see [16]) Let (Q, A) be an m-group, ${ }^{-1}$ its inversing operation, \mathbf{e} its $\{1, m\}$-neutral operation and let $m \geq 2$. Also let
(o) $\quad{ }^{-1} A\left(x, a_{1}^{m-2}, y\right)=z \stackrel{\text { def }}{\Leftrightarrow} A\left(z, a_{1}^{m-2}, y\right)=x$
for $x, y, z \in Q$ and for every sequence a_{1}^{m-2} over Q. Then, for all $x, y, z \in Q$ and for every sequence a_{1}^{m-2} over Q the following equalities hold
(1) $\quad{ }^{-1} A\left(x, a_{1}^{m-2}, y\right)=A\left(x, a_{1}^{m-2},\left(a_{1}^{m-2}, y\right)^{-1}\right)$,
(2) $\mathrm{e}\left(a_{1}^{m-2}\right)={ }^{-1} A\left(z, a_{1}^{m-2}, z\right)$,
(3) $\left(a_{1}^{m-2}, x\right)^{-1}={ }^{-1} A\left({ }^{-1} A\left(z, a_{1}^{m-2}, z\right), a_{1}^{m-2}, x\right)$ and
(4) $A\left(x, a_{1}^{m-2}, y\right)={ }^{-1} A\left(x, a_{1}^{m-2},{ }^{-1} A\left({ }^{-1} A\left(z, a_{1}^{m-2}, z\right), a_{1}^{m-2}, y\right)\right)$.

Proposition 4. (see [16]) Let $n \geq 2$ and let (Q, B) be an n-groupoid. Let also the following laws
$B\left(B\left(x, z, b_{1}^{n-2}\right), B\left(y, a_{1}^{n-2}, z\right), a_{1}^{n-2}\right)=B\left(x, y, b_{1}^{n-2}\right)$ and
$B\left(a, c_{1}^{n-2}, B\left(B\left(B\left(z, c_{1}^{n-2}, z\right), c_{1}^{n-2}, b\right), c_{1}^{n-2}, B\left(B\left(z, c_{1}^{n-2}, z\right), c_{1}^{n-2}, a\right)\right)\right)=b$
hold in the n-groupoid (Q, B). Then, there is an n-group (Q, A) such that the following equality holds ${ }^{-1} A=B$.

Definition 2. (see [2],[5],[8] and [9]) Let (Q, A) be a commutative m-group and let $m \geq 2$. Let also (Q, M) be an n-groupoid (n-semigroup in [2], [4]) and let $n \geq 2$. We say that (Q, A, M) is an (m, n)-ring iff for every $i \in\{1, \ldots, n\}$ and for every $a_{1}^{n-1}, b_{1}^{m} \in Q$ the following equality holds

$$
M\left(a_{1}^{i-1}, A\left(b_{1}^{m}\right), a_{i}^{n-1}\right)=A\left({\left.\left.\overline{M\left(a_{1}^{i-1}, b_{j}, a_{i}^{n-1}\right)}\right|_{j=1} ^{m}\right)}\right.
$$

Proposition 5. Let (Q, A, M) be an (m, n)-ring. Then, there is at most one element $o \in Q$ such that for every $a^{n-1} \in Q$ the following equalities hold

$$
M\left(o, a_{1}^{n-1}\right)=o \quad \text { and } \quad M\left(a_{1}^{n-1}, o\right)=o .
$$

See [4].
Proposition 6. Let (Q, A, M) be an $(m, n)-$ ring and \mathbf{O} the $\{1, m\}$-neutral operation of the m-group (Q, A). Also, let o be the element of the set Q such that

$$
\begin{equation*}
M\left(o, a_{1}^{n-1}\right)=M\left(a_{1}^{n-1}, o\right)=o \tag{o}
\end{equation*}
$$

for all $a_{1}^{n-1} \in Q$. Then the following equality holds

$$
\mathbf{O}\binom{m-2}{o}=o .
$$

See [4] [$\mathbf{O}\binom{m-2}{o}=\bar{o}$ for $m>2 ; \bar{a}$ is skewed to $\left.a[7]\right]$.

Sketch of the proof.

a) $M\left(A\binom{m}{o}, a_{1}^{n-1}\right)=A\left(\frac{m}{M\left(o, a_{1}^{n-1} \mid\right.}\right)=A\binom{m}{o}$,
$M\left(a_{1}^{n-1}, A\binom{m}{o}\right)=A\left(\frac{m}{M\left(a_{1}^{n-1}, o \mid\right.}\right)=A(\stackrel{m}{o})[:$ Definition 2., (̂o $\left.)\right]$.
b) By a) and Proposition 5., we conclude that the following equality holds $A\binom{m}{o}=o$.
c) $A\left(\mathbf{O}\left({ }^{m-2} o^{m-2}, o\right)=o, A\left(o,{ }_{o}^{m-2}, o\right)=o[:\right.$ Proposition 1., Remark 1., b)].
d) By c), Definition 1., Proposition 1. and Remark 1., we conclude that the following equality holds $\mathbf{O}\left({ }_{(m-2}^{o}\right)=o$. (For $m=2: \stackrel{m-2}{a}=\emptyset$.)

Remark 2.

(a) Note that element o determined in Proposition 5. (Proposition 6.) is called a left and right zero, respectively, or a two-side zero.
(b) An element $z \in Q$ is called zero of (Q, A, M) iff for each $i \in\{1, \ldots, n\}$ and for every $a_{1}^{n-1} \in Q$ the following equality holds $M\left(a_{1}^{i-1}, z, a_{i}^{n-1}\right)=z$.
(c) Let (Q, A, M) be an (m, n)-ring, o its two-side zero and $m>2$. Then, by Proposition 1., Proposition 6. and Definition 2., we conclude that for each $x \in Q$ and for each $i \in\{1, \ldots, m\}$ the following equality holds $A(\stackrel{i-1}{o}, x, \stackrel{m-i}{o})=x$. Whence, we conclude that there is a group $(Q,+)$ such that for every $x_{1}^{m} \in Q$ the following equality holds $A\left(x_{1}^{m}\right)=x_{1}+\ldots+x_{m}$ (cf. [6]).

2. Results

Theorem 1. Let (Q, T, o) be an algebra of the type $<3 m+n-5,0>$, and let $m, n \geq 2$. Also let
(a) $\boldsymbol{\alpha}\left(x, a_{1,}^{m-2} y\right) \stackrel{\text { def }}{=} T\left(x, T\left(T\left(\stackrel{2 m-1}{o}, a_{1,}^{m-2} \stackrel{n-2}{o}\right), y, \stackrel{2 m-3}{o}, a_{1}^{m-2}, \stackrel{n-2}{o}\right), \stackrel{2 m-3}{o}, a_{1}^{m-2}, \stackrel{n-2}{o}\right)$,
(b) $\boldsymbol{\beta}\left(x, a_{1}^{m-2}, y\right) \stackrel{\text { def }}{=} T\left(x, y,{ }_{2}^{2 m-3}, a_{1}^{m-2},{ }_{o}^{n-2} o^{2}\right)$ and
(c) $\gamma\left(x, b_{1}^{n-2}, y\right) \stackrel{\text { def }}{=} T\left(T\left(x, o, y,{ }_{3}^{3 m-6}, b_{1}^{n-2}\right), x, \stackrel{3 m+n-7}{o}\right)$ for every $x, y, a_{1,}^{m-2} b_{1}^{n-2} \in Q$.

Furthermore, let the following laws
(i) $\boldsymbol{\beta}\left(\boldsymbol{\beta}\left(x, z, b_{1}^{m-2}\right), \boldsymbol{\beta}\left(y, a_{1}^{m-2}, z\right), a_{1}^{m-2}\right)=\boldsymbol{\beta}\left(x, y, b_{1}^{m-2}\right)$,
(ii) $\boldsymbol{\beta}\left(a, c_{1}^{m-2}, \boldsymbol{\beta}\left(\boldsymbol{\beta}\left(\boldsymbol{\beta}\left(z, c_{1}^{m-2}, z\right), c_{1}^{m-2}, b\right), c_{1}^{m-2}, \boldsymbol{\beta}\left(\boldsymbol{\beta}\left(z, c_{1}^{m-2}, z\right), c_{1}^{m-2}, a\right)\right)\right)=b$,
(iii) $\boldsymbol{\alpha}\left(x_{\varphi(1)}, \ldots, x_{\varphi(m)}\right)=\boldsymbol{\alpha}\left(x_{1}^{m}\right)$ for all permutations φ on $\{1, \ldots, m\}$,
(iv) $\gamma\left(x_{1}^{i-1}, \boldsymbol{\beta}\left(y_{1}^{m}\right), x_{i}^{n-1}\right)=\boldsymbol{\beta}\left({\overline{\gamma\left(x_{1}^{i-1}, y_{j}, x_{i}^{n-1}\right)}}_{j=1}^{m}\right)$ for all $i \in\{1, \ldots, n\}$,
(v) $T\left(x, \stackrel{3 m-4}{o}, b_{1}^{n-2}\right)=x$,
(vi) $T\left(o, o, y, \stackrel{3 m-6}{o}, b_{1}^{n-2}\right)=o$ and
(vii) $T\left(x, x,{ }_{o}^{3 m+n-7}\right)=o$
hold in the algebra (Q, T, o) of the type $<3 m+n-5,0>$. Then $(Q, \boldsymbol{\alpha}, \gamma)$ is an (m, n)-ring and o is its two-side zero.

Proof.

1) By (b), (i), (ii) and Proposition 4., we conclude that there is an m-group (Q, A) such that the following equality holds ${ }^{-1} A=\boldsymbol{\beta}$.
2) $A=\boldsymbol{\alpha}$. The sketch of the proof:

$$
\begin{aligned}
& \boldsymbol{\alpha}\left(x, a_{1}^{m-2}, y\right)=T\left(x, T\left(T\left(\stackrel{2 m-1}{o}, a_{1}^{m-2}, \stackrel{n-2}{o}\right) y,{ }_{o}^{2 m-3}, a_{1}^{m-2},{ }_{o}^{n-2}{ }_{o}\right),{ }_{o}^{2 m-3}, a_{1}^{m-2},{ }^{n-2}{ }_{o}\right) \\
& =T\left(x, T\left(\boldsymbol{\beta}\left(o, a_{1}^{m-2}, o\right), y, \stackrel{2 m-3}{o}, a_{1}^{m-2},{ }_{2}^{n-2}\right), \stackrel{2 m-3}{o}, a_{1}^{m-2},{ }_{o}^{n-2}{ }_{o}\right) \\
& =T\left(x, \boldsymbol{\beta}\left(\boldsymbol{\beta}\left(o, a_{1}^{m-2}, o\right), a_{1}^{m-2}, y\right),{ }_{2}^{2 m-3}, a_{1}^{m-2},{ }_{o}^{n-2}{ }_{o}\right) \\
& =\boldsymbol{\beta}\left(x, a_{1}^{m-2}, \boldsymbol{\beta}\left(\boldsymbol{\beta}\left(o, a_{1}^{m-2}, o\right), a_{1}^{m-2}, y\right)\right) \\
& ={ }^{-1} A\left(x, a_{1}^{m-2},{ }^{-1} A\left({ }^{-1} A\left(o, a_{1}^{m-2}, o\right), a_{1}^{m-2}, y\right)\right)=A\left(x, a_{1}^{m-2}, y\right)
\end{aligned}
$$

[: (a), (b), 1), Proposition 3.].
3) By 1), 2), (iii), (iv) and Definition 2, we conclude that $(Q, \boldsymbol{\alpha}, \gamma)$ is an (m, n)-ring.
4) For all $a_{1}^{n-1} \in Q$ the following equalities hold

$$
\gamma\left(o, a_{1}^{n-1}\right)=o \quad \text { and } \gamma\left(a_{1}^{n-1}, o\right)=o .
$$

The sketch of the proof:

$$
\begin{aligned}
\gamma\left(o, b_{1}^{n-2}, y\right) & =T\left(T\left(o, o, y,{ }_{3}^{3 m-6}{ }_{o}, b_{1}^{n-2}\right), o, \stackrel{3 m+n-7}{o}\right) \\
& =T\left(o, o, \stackrel{3 m+{ }_{o}}{o}\right)=o ; \\
\gamma\left(x, b_{1}^{n-2}, o\right) & =T\left(T\left(x, o, o,{ }_{o}^{3 m-6}, b_{1}^{n-2}\right), x, \stackrel{3 m+n}{o}{ }_{o}\right) \\
& =T\left(x, x,{ }_{o}^{3 m+n-7}\right)=o
\end{aligned}
$$

$$
[:(\mathrm{c}),(\mathrm{v}),(\mathrm{vi}),(\mathrm{vii})]
$$

Theorem 2. Let (Q, A, M) be an (m, n)-ring, \mathbf{O} be the $\{1, m\}$-neutral operation of the m-group (Q, A), and - the inversing operation of the $m-\operatorname{group}(Q, A)$. Also, let o be the element of the set Q such that
(a) $M\left(o, a_{1}^{n-1}\right)=M\left(a_{1}^{n-1}, o\right)=o$ for all $a_{1}^{n-1} \in Q$ (i.e., let o be a two-side zero).
(o) $T\left(x, y, z, a_{1}^{m-2}, b_{1}^{m-2}, c_{1}^{m-2}, d_{1}^{n-2}\right) \stackrel{\text { def }}{=}$

$$
A\left({ }^{-1} A\left(M\left(x, d_{1}^{n-2}, z\right), a_{1}^{m-2}, M\left(y, d_{1}^{n-2}, z\right)\right), b_{1}^{m-2},{ }^{-1} A\left(x, c_{1}^{m-2}, y\right)\right) .^{1}
$$

for each $x, y, z, a_{1}^{m-2}, b_{1}^{m-2}, c_{1}^{m-2}, d_{1}^{n-2} \in Q$
Then, the following identities hold:
(1) $\mathbf{O}\left(b_{1}^{m-2}\right)=T\left(x, x, y, \left.\frac{2}{a_{1}^{m-2}} \right\rvert\,, b_{1}^{m-2}, c_{1}^{n-2}\right)$;
(2) $-\left(b_{1}^{m-2}, x\right)=T\left(T\left(\begin{array}{l}2 \\ u\end{array}, v, \frac{2}{a_{1}^{m-2} \mid}, b_{1}^{m-2}, c_{1}^{n-2}\right), x, o, \overline{d_{1}^{m-2} \mid}, b_{1}^{m-2}, e_{1}^{n-2}\right)$;
(3) ${ }^{-1} A\left(x, b_{1}^{m-2}, y\right)=T\left(x, y, o, \overline{a_{1}^{m-2}}, b_{1}^{m-2}, c_{1}^{n-2}\right)$;
(4) $A\left(x, b_{1,}^{m-2}, y\right)=$

$$
T\left(x, T\left(T\left({ }_{u}^{2}, v, \frac{2}{a_{1}^{m-2} \mid}, b_{1,}^{m-2} c_{1}^{n-2}\right), y, o, \overline{d_{1}^{m-2} \mid}, b_{1,}^{m-2} e_{1}^{n-2}\right), o, \frac{2}{p_{1}^{m-2} \mid}, b_{1,}^{m-2} q_{1}^{n-2}\right)
$$

(5) $M\left(x, b_{1, ~}^{n-2} y\right)=T\left(T\left(x, o, y,{ }_{o}^{m-2}, a_{1,}^{m-2^{m-2}}{ }_{o}, b_{1}^{n-2}\right), x, o, \overline{c_{1}^{m-2}}, a_{1,}^{m-2} d_{1}^{n-2}\right)$;
(6) $T\left(x, \stackrel{2}{o}, \overline{a_{1}^{m-2}} \mid, \stackrel{m-2}{o}, b_{1}^{n-2}\right)=x$;
(7) $T\left({ }_{o}^{2}, x, \frac{2}{a_{1}^{m-2} \mid}, \stackrel{m-2}{o}, b_{1}^{n-2}\right)=o$; and
(8) $T\left(\stackrel{2}{x}, y, \overline{a_{1}^{m-2}},, \stackrel{m-2}{o}, b_{1}^{n-2}\right)=o$.

[^0]
Sketch of the proof.

1) $T\left(x, x, y, \frac{2}{a_{1}^{m-2}}, b_{1}^{m-2}, c_{1}^{n-2}\right)$
$=A\left({ }^{-1} A\left(M\left(x, c_{1}^{n-2}, y\right), a_{1}^{m-2}, M\left(x, c_{1}^{n-2}, y\right)\right), a_{1}^{m-2},{ }^{-1} A\left(x, a_{1}^{m-2}, x\right)\right)$
$\left.=A\left(\mathbf{O}\left(a_{1}^{m-2}\right), a_{1}^{m-2},{ }^{-1} A\left(x, a_{1}^{m-2}, x\right)\right)={ }^{-1} A\left(x, a_{1}^{m-2}, x\right)\right)=\mathbf{O}\left(a_{1}^{m-2}\right)$
[: (o), Proposition 3., Proposition 1., Remark 1.].
2) $T\left(T\left({ }_{u}^{2}, v, \overline{\frac{2}{a_{1}^{m-2}}}, b_{1}^{m-2} c_{1}^{n-2}\right), x, o, \overline{d_{1}^{m-2}} \mid, b_{1,}^{m-2} e_{1}^{n-2}\right)$

$$
\begin{aligned}
& =T\left(\mathbf{O}\left(b_{1}^{m-2}\right), x, o, \overline{d_{1}^{m-2}}, b_{1,}^{m-2} e_{1}^{n-2}\right) \\
& =A\left({ }^{-1} A\left(M\left(\mathbf{O}\left(b_{1}^{m-2}\right), e_{1,}^{n-2} o\right), d_{1,}^{m-2} M\left(x, e_{1,}^{n-2} o\right)\right), d_{1,}^{m-2} A\left(\mathbf{O}\left(b_{1}^{m-2}\right), b_{1,}^{m-2} x\right)\right) \\
& =A\left({ }^{-1} A\left(o, d_{1,}^{m-2}, o\right) d_{1,}^{m-2}, A\left(\mathbf{O}\left(b_{1}^{m-2}\right), b_{1,}^{m-2}-\left(b_{1,}^{m-2} x\right)\right)\right) \\
& =A\left(\mathbf{O}\left(d_{1}^{m-2}\right), d_{1,}^{m-2}-\left(b_{1,}^{m-2} x\right)\right)=-\left(b_{1,}^{m-2} x\right)
\end{aligned}
$$

[: (o), 1), (a), Proposition 3., Proposition 1., Remark 1.].
3) $T\left(x, y, o, \frac{2}{a_{1}^{m-2}}, b_{1}^{m-2}, c_{1}^{n-2}\right)$
$=A\left({ }^{-1} A\left(M\left(x, c_{1}^{n-2}, o\right), a_{1}^{m-2}, M\left(y, c_{1}^{n-2}, o\right)\right), a_{1}^{m-2},{ }^{-1} A\left(x, b_{1}^{m-2}, y\right)\right)$
$=A\left({ }^{-1} A\left(o, a_{1}^{m-2}, o\right), a_{1}^{m-2},{ }^{-1} A\left(x, b_{1}^{m-2}, y\right)\right)$
$=A\left(\mathbf{O}\left(a_{1}^{m-2}\right), a_{1}^{m-2},{ }^{-1} A\left(x, b_{1}^{m-2}, y\right)\right)$
$\left.={ }^{-1} A\left(x, b_{1}^{m-2}, y\right)\right)$
[: (o), (a), Proposition 3., Proposition 1., Remark 1.].
4) $T\left(x, T\left(T\left(u, v, \overline{2}, \frac{2}{a_{1}^{m-2}}, b_{1}^{m-2} c_{1}^{n-2}\right), y, o, \overline{d_{1}^{m-2} \mid}, b_{1}^{m-2} e_{1}^{n-2}\right), o, \frac{2}{p_{1}^{m-2}}, b_{1}^{m-2} q_{1}^{n-2}\right)$
$=T\left(x,-\left(b_{1}^{m-2}, y\right), o, \overline{p_{1}^{m-2}} \mid, b_{1}^{m-2}, q_{1}^{n-2}\right)$
$=A\left({ }^{-1} A\left(M\left(x, q_{1}^{n-2} o\right), p_{1,}^{m-2} M\left(-\left(b_{1,}^{m-2} y\right), q_{1,}^{n-2} o\right)\right), p_{1}^{m-2},{ }^{-1} A\left(x, b_{1,}^{m-2}-\left(b_{1,}^{m-2} y\right)\right)\right)$
$=A\left({ }^{-1} A\left(o, p_{1}^{m-2}, o\right), p_{1}^{m-2},{ }^{-1} A\left(x, b_{1}^{m-2},-\left(b_{1}^{m-2}, y\right)\right)\right)$
$=A\left(\mathbf{O}\left(p_{1}^{m-2}\right), p_{1}^{m-2},{ }^{-1} A\left(x, b_{1}^{m-2},-\left(b_{1}^{m-2}, y\right)\right)\right)$
$={ }^{-1} A\left(x, b_{1}^{m-2},-\left(b_{1}^{m-2}, y\right)\right)=A\left(x, b_{1}^{m-2},-\left(b_{1}^{m-2},-\left(b_{1}^{m-2}, y\right)\right)\right)$
$=A\left(x, b_{1}^{m-2}, y\right)$
[: (o), 2), (a), 3., Definition 1., Remark 1.].
$\left.5_{1}\right) M\left(x, b_{1}^{n-2}, y\right)={ }^{-1} A\left(M\left(x, b_{1}^{n-2}, y\right),{ }_{\mathrm{m}}^{\circ}{ }_{o}^{2}, \mathbf{O}\left({ }_{(m-2}^{o}\right)\right)$
$={ }^{-1} A\left(M\left(x, b_{1}^{n-2}, y\right),{ }_{o}^{m-2}, o\right)={ }^{-1} A\left(M\left(x, b_{1}^{n-2}, y\right),{ }_{o}^{m-2}, M\left(o, b_{1}^{n-2}, y\right)\right)$
$=A\left({ }^{-1} A\left(M\left(x, b_{1}^{n-2}, y\right),{ }_{m}^{m-2}, M\left(o, b_{1}^{n-2}, y\right)\right), a_{1}^{m-2}, \mathbf{O}\left(a_{1}^{m-2}\right)\right)$
$=A\left({ }^{-1} A\left(M\left(x, b_{1}^{n-2}, y\right),{ }_{o}^{m-2}, M\left(o, b_{1}^{n-2}, y\right)\right), a_{1}^{m-2}, A\left(x, a_{1}^{m-2},-\left(a_{1}^{m-2}, x\right)\right)\right)$

$$
\begin{aligned}
= & A\left(A\left({ }^{-1} A\left(M\left(x, b_{1}^{n-2}, y\right),{ }_{o}^{m-2}, M\left(o, b_{1}^{n-2}, y\right)\right), a_{1}^{m-2}, x\right), a_{1}^{m-2},-\left(a_{1}^{m-2}, x\right)\right) \\
= & A\left(A\left({ }^{-1} A\left(M\left(x, b_{1,}^{n-2}\right),,{ }_{o}^{m-2} M\left(o, b_{1,}^{n-2} y\right)\right), a_{1}^{m-2-1} A\left(x,{ }_{o}^{m-2}, o\right)\right), a_{1,}^{m-2}-\left(a_{1}^{m-2} x\right)\right) \\
= & { }^{-1} A\left(A\left({ }^{-1} A\left(M\left(x, b_{1}^{n-2}, y\right),{ }_{o}^{m-2}, M\left(o, b_{1}^{n-2}, y\right)\right), a_{1}^{m-2},{ }^{-1} A\left(x,{ }_{o}^{m-2}, o\right)\right), a_{1}^{m-2}, x\right) \\
= & { }^{-1} A\left(T\left(x, o, y,{ }_{o}^{m-2}, a_{1}^{m-2},{ }_{o}^{m-2}, b_{1}^{n-2}\right), a_{1}^{m-2}, x\right) \\
& {[\text { Proposition 1., Remark 1., Proposition 6., (a), (o) }] . }
\end{aligned}
$$

$\left.5_{2}\right) X \stackrel{\text { def }}{=} T\left(x, o, y,{ }_{o}^{m-2}, a_{1}^{m-2},{ }_{o}^{m-2}, b_{1}^{n-2}\right)$.
53) $M\left(x, b_{1}^{n-2}, y\right)={ }^{-1} A\left(X, a_{1}^{m-2}, x\right)=A\left(\mathbf{O}\left(c_{1}^{m-2}\right), c_{1}^{m-2},{ }^{-1} A\left(X, a_{1}^{m-2}, x\right)\right)$
$=A\left({ }^{-1} A\left(o, c_{1}^{m-2}, o\right), c_{1}^{m-2},{ }^{-1} A\left(X, a_{1}^{m-2}, x\right)\right)$
$=A\left({ }^{-1} A\left(M\left(X, d_{1}^{n-2}, o\right), c_{1}^{m-2}, M\left(x, d_{1}^{n-2}, o\right)\right), c_{1}^{m-2},{ }^{-1} A\left(X, a_{1}^{m-2}, x\right)\right)$
$=T\left(X, x, o, \frac{2}{c_{1}^{m-2}}, a_{1}^{m-2}, d_{1}^{n-2}\right)$
$=T\left(T\left(x, o, y,{ }_{o}^{m-2}, a_{1}^{m-2},{ }_{o}^{m-2}, b_{1}^{n-2}\right), x, o, \overline{c_{1}^{m-2}} \mid, a_{1}^{m-2}, d_{1}^{n-2}\right)$
[:51), 5_{2}), Proposition 1., Remark 1., Proposition 3., (a), (o)].
6) $T\left(x, \frac{2}{o}, \frac{2}{a_{1}^{m-2}},,_{o}^{o-2}, b_{1}^{n-2}\right)$
$=A\left({ }^{-1} A\left(M\left(x, b_{1}^{n-2}, o\right), a_{1}^{m-2}, M\left(o, b_{1}^{n-2}, o\right)\right), a_{1}^{m-2},{ }^{-1} A\left(x, \stackrel{,}{o}^{m-2}, o\right)\right)$
$=A\left({ }^{-1} A\left(o, a_{1}^{m-2}, o\right), a_{1}^{m-2},{ }^{-1} A\left(x,{ }^{m-2}{ }_{o}, o\right)\right)$
$=A\left(\mathbf{O}\left(a_{1}^{m-2}\right), a_{1}^{m-2},-1 A\left(x,{ }^{m-2}, o\right)\right)={ }^{-1} A\left(x,{ }^{m-2}{ }_{o}, o\right)$
$={ }^{-1} A\left(x,{ }^{m-2}, \mathbf{O}\left({ }^{m-2}{ }_{o}\right)\right)=x ; ;^{-1} A\left(x,{ }^{m-2}{ }_{o}, \mathbf{O}\left({ }^{m-2}{ }_{o}\right)\right)=z \Leftrightarrow$
$A\left(z, \stackrel{m-2}{o}, \mathbf{O}\left({ }^{m-2}{ }_{o}\right)\right)=x \Leftrightarrow z=x$
[: (o), (a), Proposition 3., Proposition 1., Remark 1., Proposition 6.].
7) $T\left(\begin{array}{c}2 \\ o\end{array}, \frac{2}{a_{1}^{m-2}},,{ }_{o}^{o-2}, b_{1}^{n-2}\right)$
$=A\left({ }^{-1} A\left(M\left(o, b_{1}^{n-2}, x\right), a_{1}^{m-2}, M\left(o, b_{1}^{n-2}, x\right)\right), a_{1}^{m-2},{ }^{-1} A\left(o,{ }^{m-2}{ }_{o}, o\right)\right)$
$=A\left(\mathbf{O}\left(a_{1}^{m-2}\right), a_{1}^{m-2},-1 A\left(o,{ }^{m-2}{ }^{2}, o\right)\right)={ }^{-1} A\left(o,{ }^{m-2}{ }_{o}, o\right)=\mathbf{O}\left({ }^{m-2}{ }_{o}\right)=o$
[: (o), Proposition 3., Proposition 1., Remark 1., Proposition 6.].
8) $T\left(\frac{2}{x}, y, \left.\frac{2}{a_{1}^{m-2}} \right\rvert\,,{ }_{o}^{m-2}, b_{1}^{n-2}\right)$
$=A\left({ }^{-1} A\left(M\left(x, b_{1}^{n-2}, y\right), a_{1}^{m-2}, M\left(x, b_{1}^{n-2}, y\right)\right), a_{1}^{m-2},{ }^{-1} A\left(x, \stackrel{M}{o}^{m-2}, x\right)\right)$
$=A\left(\mathbf{O}\left(a_{1}^{m-2}\right), a_{1}^{m-2},{ }^{-1} A\left(x,{ }^{m-2}{ }^{2}, x\right)\right)={ }^{-1} A\left(x,{ }^{m-2}{ }_{o}, x\right)=\mathbf{O}\left({ }^{m-2}{ }^{2}\right)=o$
[: (o), Proposition 3., Proposition 1., Remark 1., Proposition 6.].

Remark 3. The operation \mathbf{O} has been described in Theorem 2. by using only the operation T. Bearing in mind Proposition 6., (1) from Theorem 2., as well as the convention that $a_{1}^{\circ}=\emptyset$, we find that for each $x, y, c_{1}^{n-2} \in Q$, (1) reduces to the following equality

$$
(m) \quad o=T\left(x, x, y, c_{1}^{n-2}\right)
$$

Hence, bearing in mind Theorem 2., we find out that in $(2, n)$-rings the operations $A,{ }^{-1} A,-$ and M can also be described by using just one $(n+1)-$ ary operation. In addition, in the case $m=2$, the constant $o \in Q$ can be eliminated from equalities (6)-(8) in Theorem 2. by using (m).

In [11] rings [(2,2)-rings] have been described as 3-groupoids with one law.

References

[1] V. D. Belousov, n-ary Quasigroups, Stiinca, Kishinev 1972 (in Russian).
[2] D. Boccioni, Caratterizzazione di una classe di anelli generalizzati, Rend. Sem. Mat. Univ. Padova 35(1965), 116-127.
[3] R. H. Bruck, A Survey of Binary Systems, Springer - Verlag, Berlin - Heidelberg - New York, 1971.
[4] G. Crombez, On (n, m)-rings, Abh. Math. Sem. Univ. Hamburg 37(1972), 180-199.
[5] G. Čupona, On $[m, n]-$ rings, Bull. Soc. Math. Phys. R. S. Macedonie 16(1965), 5-10. (in Macedonian).
[6] G. Čupona, B. Trpenovski, Finitary associative operations with neutral elements, Bilt. Društ. Mat. Fiz. Maked. 12(1961), 15-24.
[7] W.DÖRNTE, Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29(1928), 1-19.
[8] W. A. Dudek, Autodistributive n-groups, Commentationes Math. Annales Soc. Math. Polonae, Prace Matematyczne 23(1989), 1-11.
[9] L. Iancu, Contributions to the theory of (m, n)-rings and n-modules, PhD Thesis, University "Babes-Bolyai" of Cluj-Napoca, 1999.
[10] A. G. Kurosh, General algebra (lectures 1969-1970), Nauka, Moscow 1974 (in Russian).
[11] Yu. I. Sorkin, Rings as 3-groupoids with one law, Uspehi Mat. nauk 12(1957), 357-362 (in Russian).
[12] J. Ušan, Neutral operations of n-groupoids, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 18(1988), 117-126 (in Russian).
[13] J. Ušan, A comment on n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 24(1994), 281-288.
[14] J. Ušan, On n-groups with $\{i, j\}$-neutral operation for $\{i, j\} \neq\{1, n\}$, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25(1995), 167-178.
[15] J. UšAN, n-groups, $n \geq 2$, as varieties of type $\langle n, n-1, n-2\rangle$, Algebra and Model Theory, Collection of papers edited by A. G. Pinus and K. N. Ponomaryov, Novosibirsk 1997, 182-208.
[16] J. Ušan, n-groups as n-groupoids with laws, Quasigroups and Related Systems 4(1997), 69-78.

[^0]: ${ }^{1}$ cf. [11]/(7) or [10]/10/(11)

