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On a sequential linear programming approach to

finding the smallest circumscribed, largest
inscribed, and minimum zone circle or sphere

Helmuth Späth
∗
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Abstract. Sequential linear programming methods have been suc-
cessfully used to solve some sphere and circle problems. Indeed, em-
pirical evidence shows that these frequently find the required solutions
in one step. An analysis is presented here which attempts to give an
explanation of this phenomemon.
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1. Introduction

Let xi, i = 1, . . . , m be given points in 3 dimensional space. Then of interest here
is a sequential linear programming approach to the problems of determining (i) the
smallest circumscribed sphere, (ii) the largest inscribed sphere and (iii) the pair
of concentric spheres respectively circumscribing and inscribing the points with
the smallest difference of radii; such problems arise for example in computational
metrology [10]. The last of these problems is often referred to as a minimum zone
problem [3], [6], [10], although this terminology is also used for the problem of find-
ing a single approximating sphere [2]. All these problems also arise in 2 dimensions,
where circles replace spheres.

For convenience denote the components of xi by (xi, yi, zi). Then in mathemat-
ical terms, we have to solve the following problems:

Problem MCS
minimize R subject to

(x − xi)2 + (y − yi)2 + (z − zi)2 ≤ R2, i = 1, . . . , m.
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30 H.Späth and G.A.Watson

Problem MIS
maximize r subject to

(x − xi)2 + (y − yi)2 + (z − zi)2 ≥ r2, i = 1, . . . , m,

(x, y, z) ∈ conv{(xi, yi, zi), i = 1, . . . , m}, (1)

where “conv” denotes the convex hull.

Problem MZS
minimize R − r subject to

r2 ≤ (x − xi)2 + (y − yi)2 + (z − zi)2 ≤ R2, i = 1, . . . , m.

The optimization problems are all performed with respect to the variables (x, y, z)
(the unknown centres), and R and/or r (the unknown radii). If the problems in-
volve circles in a plane, then obviously all that changes is that the terms involving
z are deleted.

The problem (MIS) needs a constraint like (1) (although there are other possi-
bilities), as otherwise the solution is unbounded. However, the underlying problem
involves finding an appropriate local maximum of the problem without (1), and if
such a point is sought, then (1) may be ignored. In that case, all the above prob-
lems have linear objective functions and quadratic constraints and clearly general
nonlinear optimization techniques can be applied. The problems can also be defined
in higher dimensions, although computational complexity issues would become in-
creasingly important. Because (MCS) is a convex problem, the global solution will
be obtained by any reasonable method for constrained optimization, and for a large
value of m, primal-dual interior point methods might be appropriate. Although this
problem can be solved in polynomial time, the other problems are not convex, and
could have many local solutions. In particular, problem (MIS) is NP-hard. Radius
computations of the kind considered here have been studied in some detail; see [4]
and the references given there.

The possibility of solving these problems by sequential linear programming tech-
niques has been raised in [7], [8], [9], where it is argued that there are advantages to
scientists or engineers who may wish to solve such problems if well known and freely
available linear programming routines can be used. Some numerical experiments
have shown that this can be effective, with solutions obtained in often just one step.
It is the purpose of this note to investigate this phenomenon.

2. Using sequential linear programming

The application of a linearization technique is required to generate an approximate
linear programming problem from each of the above 3 problems. Consider first
(MCS). Let

bi = −1
2
(x2

i + y2
i + z2

i ), i = 1, . . . , m.

Then the constraints of (MCS) may be expressed as

(
x

2
− xi)x + (

y

2
− yi)y + (

z

2
− zi)z − 1

2
R2 ≤ bi, i = 1, . . . , m.
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Let approximations x(t), y(t), z(t) be given to the coordinates of the centre of the
required circle. Then an appropriate linearization is

Problem MCS(t)
minimize R subject to

(
x(t)

2
− xi)x + (

y(t)

2
− yi)y + (

z(t)

2
− zi)z − 1

2
R(t)R ≤ bi, i = 1, . . . , m.

Provided that a solution (x, y, z, R) exists, the (t + 1)st approximation is given by
setting

x(t+1) = x; y(t+1) = y; z(t+1) = z,

and defining the new approximation to R by

R(t+1) =
√

max
i

{(x(t+1) − xi)2 + (y(t+1) − yi)2 + (z(t+1) − zi)2}.

With the assumption that (1) can be ignored, a similar linearization of the
problem (MIS) can be obtained. However, an alternative in both cases then arises
from a reformulation of the problems as quadratic programming problems. Let

u =
1
2
(R2 − (x2 + y2 + z2)).

Then (MCS) can be rewritten as the quadratic programming problem

Problem MCS′

minimize
1
2
(x2 + y2 + z2) + u subject to

−xix − yiy − ziz − u ≤ bi, i = 1, . . . , m.

Let approximations x(t), y(t), z(t) be given to the coordinates of the centre of
the required circle, and consider the linear programming problem for unknowns
(x, y, z, u):

Problem MCS′(t)

minimize
1
2
(x(t)x + y(t)y + z(t)z) + u

subject to − xix − yiy − ziz − u ≤ bi, i = 1, . . . , m.

Provided that a solution (x, y, z, u) exists, the (t + 1)st approximation is obtained
as for MCS(t).

Similarly defining

v =
1
2
(r2 − (x2 + y2 + z2)),

the problem (MIS) (ignoring (1)) can be rewritten
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Problem MIS′

maximize
1
2
(x2 + y2 + z2) + v subject to

xix + yiy + ziz + v ≤ −bi, i = 1, . . . , m.

The corresponding linearised problem is

Problem MIS′(t)

maximize
1
2
(x(t)x + y(t)y + z(t)z) + v

subject to xix + yiy + ziz + v ≤ −bi, i = 1, . . . , m.

Provided that a solution (x, y, z, v) exists, the next approximation is given by setting

x(t+1) = x; y(t+1) = y; z(t+1) = z,

and defining the new approximation to r by

r(t+1) =
√

min
i
{(x(t+1) − xi)2 + (y(t+1) − yi)2 + (z(t+1) − zi)2}.

Finally, consider (MZS). With bi, i = 1, . . . , m defined as before, a suitable
linearization is

Problem MZS(t)

minimize R − r subject to

(
x(t)

2
− xi)x + (

y(t)

2
− yi)y + (

z(t)

2
− zi)z − 1

2
R(t)R ≤ bi, i = 1, . . . , m,

−(
x(t)

2
− xi)x − (

y(t)

2
− yi)y − (

z(t)

2
− zi)z +

1
2
r(t)r ≤ −bi, i = 1, . . . , m.

Provided a solution (x, y, z, R, r) exists, the next approximation is given by

x(t+1) = x; y(t+1) = y; z(t+1) = z,

with the new approximations to R and r given by

R(t+1) =
√

max
i

{(x(t+1) − xi)2 + (y(t+1) − yi)2 + (z(t+1) − zi)2},

r(t+1) =
√

min
i
{(x(t+1) − xi)2 + (y(t+1) − yi)2 + (z(t+1) − zi)2}.

Sequential linear programming is a longstanding technique in nonlinear opti-
mization [5], [11], and a particular form has been used before for (MIS) [1]. As
here, the additional constraint (1) is formally included, although it is assumed that
it is automatically satisfied at points of interest. The underlying problem is essen-
tially a combinatorial one of identifying the correct or optimal “active set” where
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equality holds in the constraints. Note that the solution to each linearized subprob-
lem will, because of the way R(t+1) and/or r(t+1) is defined, also define an active
set for the original problems.

We do not address convergence properties of the sequence here, although some
attention is given to this aspect in [1] and [11]. We start from the empirical fact [7]
[8], [9] that in all the above cases, when the starting point is given by taking the
average values of the data points,

(x(0), y(0), z(0)) = (
∑m

i=1 xi

m
,

∑m
i=1 yi

m
,

∑m
i=1 zi

m
),

only one iteration is often required to get the desired solution; in other words, only
one linear programming solution is actually needed. We consider in the next section
the circumstances under which this can happen.

3. Finding Kuhn-Tucker points in one step

Consider first the problem (MCS). Because this is a convex problem, the Kuhn-
Tucker conditions are necessary and sufficient for a solution. Let (x, y, z) be a
solution with I the set of indices where equality holds in the constraints, ie.

(x − xi)2 + (y − yi)2 + (z − zi)2 = R2, i ∈ I.

Then the Kuhn-Tucker conditions tell us that there exist λi ≥ 0, i ∈ I such that

2R
∑
i∈I

λi = 1,

∑
i∈I

λi(x − xi) = 0,

∑
i∈I

λi(y − yi) = 0,

∑
i∈I

λi(z − zi) = 0.

Thus
∑

i∈I λi = 1
2R , or ∑

i∈I

λ′
i = 1,

where
λ′

i = 2Rλi, i ∈ I.

Thus
(x, y, z) ∈ conv{(xi, yi, zi), i ∈ I}. (2)

Now consider the problem (MCS(t)). Necessary and sufficient conditions for a
solution (x, y, z) are that this is feasible and there exists an index set I(t) such that
constraint equality holds and λi ≥ 0, i ∈ I(t) with

∑
i∈I(t)

λi =
2

R(t)
,
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x(t)

2

∑
i∈I(t)

λi =
∑

i∈I(t)

λixi,

y(t)

2

∑
i∈I(t)

λi =
∑

i∈I(t)

λiyi,

z(t)

2

∑

i∈I(t)

λi =
∑

i∈I(t)

λizi,

or equivalently such that

1
2
(x(t), y(t), z(t)) ∈ conv{(xi, yi, zi), i ∈ I(t)}. (3)

Note that if
1
2
(x(t), y(t), z(t)) /∈ conv{(xi, yi, zi), i = 1, . . . , m},

then there is no solution to (MCS(t)), in fact the solution is unbounded.
Theorem 1. Let (x, y, z) solve (MCS), with I the set of constraint indices

where equality is attained, and let

1
2
(x(t), y(t), z(t)) ∈ conv{(xi, yi, zi). i ∈ I}. (4)

Then (x, y, z) solves (MCS(t)).
Proof. By definition

(x − xi)2 + (y − yi)2 + (z − zi)2 ≤ R2, i = 1, . . . , m.

Thus for all i,

(x(t)x − 2xix + x2
i ) + (y(t)y − 2yiy + y2

i ) + (z(t)z − 2ziz + z2
i )

≤ R2 + x(x(t) − x) + y(y(t) − y) + z(z(t) − z),

with equality for i ∈ I, where we have used the fact that for every i,

(x(t)x − 2xix + x2
i ) + (y(t)y − 2yiy + y2

i ) + (z(t)z − 2ziz + z2
i )

= (x − xi)2 + (y − yi)2 + (z − zi)2 + x(x(t) − x) + y(y(t) − y) + z(z(t) − z). (5)

Define R′ by

R′ = max
i

1
R(t)

{(x(t)x − 2xix + x2
i ) + (y(t)y − 2yiy + y2

i ) + (z(t)z − 2ziz + z2
i )}

=
1

R(t)
{R2 + x(x(t) − x) + y(y(t) − y) + z(z(t) − z)}, i ∈ I.

Therefore (x, y, z, R′) is feasible for (MCS(t)) and also

(x(t)x − 2xix + x2
i ) + (y(t)y − 2yiy + y2

i ) + (z(t)z − 2ziz + z2
i ) = R(t)R′, i ∈ I.
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In other words, (MCS) and MCS(t) have the same active sets I at (x, y, z), and so
(4) implies (3) and the result follows. ✷

Corollary 1. If (4) is satisfied, and if (MCS(t)) has a unique solution, then
(MSC) is solved in one linear programming step.

Now consider (MCS) in the form (MCS′). The Kuhn-Tucker conditions are
again necessary and sufficient for a solution. Let (x, y, z) be a solution with I the
set of indices where equality holds in the constraints, ie.

−xix − yiy − ziz − u = bi, i ∈ I.

Then the Kuhn-Tucker conditions are again given by (2). Now consider the prob-
lem (MCS′(t)). Arguing exactly as before, necessary and sufficient conditions for
(x, y, z) to be a solution are that there exists a set of constraint indices I(t) with
equality holding and feasibility with respect to the other constraints such that

1
2
(x(t), y(t), z(t)) ∈ conv{(xi, yi, zi), i ∈ I(t)}. (6)

Theorem 2. Let (x, y, z) solve (MCS′), with I the set of constraint indices
where equality is attained and let

1
2
(x(t), y(t), z(t)) ∈ conv{(xi, yi, zi), i ∈ I}. (7)

Then (x, y, z) solves (MCS′(t)).
Proof. Since the constraints for both problems are identical, obviously (x, y, z)

is feasible in (MCS′(t)). Further we can choose I(t) = I. Thus (7) implies (6) and
so (x, y, z) solves (MCS′(t)). ✷

Corollary 2. If (7) is satisfied, and if (MCS′(t)) has a unique solution, then
(MSC′) is solved in one linear programming step.

Exactly the same analysis can be carried out for (MIS) and (MIS′) except that
the conditions (2) are only necessary for a solution. The results are stated only
for (MIS).

Theorem 3. Let (x, y, z) solve (MIS), with I the set of constraint indices where
equality is attained and let (7) hold. Then (x, y, z) solves (MIS(t)).

Corollary 3. If (7) is satisfied, and if (MIS(t)) has a unique solution, then
(MIS) is solved in one linear programming step.

Corollary 4. If (7) is satisfied for any index set I defined by a Kuhn-Tucker
point of (MIS), and if (MIS(t)) has a unique solution, then Kuhn-Tucker conditions
for (MIS) are satisfied in one linear programming step.

We turn next to the problem (MZS). Assume that the solution is non-degenerate,
in the sense that at the solution R > r > 0. Then if equality holds in one of the
first set of constraints, it cannot hold in the corresponding constraint of the other.
Thus for a solution, in addition to feasibility, from the Kuhn-Tucker conditions
there are two sets where equality holds, say IR and Ir, mutually exclusive, and
non-negative multipliers λi, i ∈ IR, and γi, i ∈ Ir such that

∑
i∈IR

λi(x − xi) =
∑
i∈Ir

γi(x − xi),
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∑
i∈IR

λi(y − yi) =
∑
i∈Ir

γi(y − yi),

∑
i∈IR

λi(z − zi) =
∑
i∈Ir

γi(z − zi),

1− 2R
∑
i∈IR

λi = 0,

−1 + 2r
∑
i∈Ir

γi = 0.

Thus ∑
i∈IR

λi +
∑
i∈Ir

γi =
1
2R

+
1
2r

, or
∑
i∈IR

λ′
i +

∑
i∈Ir

γ′
i = 1,

where

λ′
i = λi(

1
2R

+
1
2r

)−1, i ∈ IR and γ′
i = γi(

1
2R

+
1
2r

)−1, i ∈ Ir.

Further,

x(
1

2R
− 1

2r
) =

∑
i∈IR

λixi −
∑
i∈Ir

γixi,

and similarly for y, z, so that

x(
1
2R

− 1
2r

) = (
1
2R

+
1
2r

)(
∑
i∈IR

λ′
ixi −

∑
i∈Ir

γ′
ixi),

and similarly for y, z. Thus

r − R

r + R
(x, y, z) ∈ conv{(xi, yi, zi), i ∈ IR, (−xi,−yi,−zi), i ∈ Ir}. (8)

Now consider problem (MZS(t)). Arguing in the same way shows that necessary
(and sufficient) conditions for a solution are feasibility and (mutually exclusive) sets
IRt, Irt such that

r(t) − R(t)

2(r(t) + R(t))
(x(t), y(t), z(t)) ∈ conv{(xi, yi, zi), i ∈ IRt, (−xi−yi,−zi) ∈ Irt}. (9)

Theorem 4. Let (x, y, z, R, r) solve (MZS), with R and r attained at i ∈ IR

and i ∈ Ir, respectively. Let

r(t) − R(t)

2(r(t) + R(t))
(x(t), y(t), z(t)) ∈ conv{(xi, yi, zi), i ∈ IR, (−xi −yi,−zi) ∈ Ir}. (10)

Then x, y, z solves (MZS(t)).
Proof. By definition

r2 ≤ (x − xi)2 + (y − yi)2 + (z − zi)2 ≤ R2, i = 1, . . . , m.
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Thus for all i,

r2 + x(x(t) − x) + y(y(t) − y) + z(z(t) − z)
≤ (x(t)x − 2xix + x2

i ) + (y(t)y − 2yiy + y2
i ) + (z(t)z − 2ziz + z2

i )
≤ R2 + x(x(t) − x) + y(y(t) − y) + z(z(t) − z),

where we have used (5). Define R′, r′ by

R′ = max
i

1
R(t)

{(x(t)x − 2xix + x2
i ) + (y(t)y − 2yiy + y2

i ) + (z(t)z − 2ziz + z2
i )}

=
1

R(t)
{R2 + x(x(t) − x) + y(y(t) − y) + z(z(t) − z)}, i ∈ IR,

r′ = min
i

1
r(t)

{(x(t)x − 2xix + x2
i ) + (y(t)y − 2yiy + y2

i ) + (z(t)z − 2ziz + z2
i )}

=
1

r(t)
{r2 + x(x(t) − x) + y(y(t) − y) + z(z(t) − z)}, i ∈ Ir.

Therefore (x, y, z, R′, r′) is feasible for (MZS(t)), and also

(x(t)x − 2xix + x2
i ) + (y(t)y − 2yiy + y2

i ) + (z(t)z − 2ziz + z2
i ) = R(t)R′, i ∈ IR,

(x(t)x − 2xix + x2
i ) + (y(t)y − 2yiy + y2

i ) + (z(t)z − 2ziz + z2
i ) = r(t)r′, i ∈ Ir.

In other words, (MZS) and (MZS(t)) have the same “active sets” IR ∪ Ir, and
so (10) implies (9) and therefore (x, y, z) solves (MZS(t)). ✷

Corollary 5. If (10) holds and if the solution to (MZS(t)) is unique, then
(MZS) is solved in one linear programming step.

Corollary 6. If (10) is satisfied for any index sets IR and Ir defined by a Kuhn-
Tucker point of (MZS), and if (MZS(t)) has a unique solution, then Kuhn-Tucker
conditions for (MZS) are satisfied in one linear programming step.

4. Concluding remarks

Experiments have been carried out running the sequential linear programming al-
gorithms on the problems considered here for a fixed number of iterations and
accepting as solution that which gives the best objective function value, and this
can be effective. The process acts as a search procedure over different active sets,
and this is a type of strategy which is likely to be particularly useful for non-convex
problems.

Of primary interest here, however, has been the fact that such an approach
frequently gives a solution (or possibly a Kuhn-Tucker point) in one step. We have
given an analysis of the situation which identifies the circumstances under which
this happens.
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