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Abstract. It is well known that there are no perfectly good gen-
erators of random number sequences, implying the need of testing the
randomness of the sequences produced by such generators. There are
many tests for measuring the uniformity of random sequences, and here
we propose a few new ones, designed by random walks. The experiments
we have made show that our tests discover some discrepancies of random
sequences passing many other tests.
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1. Introduction

A pseudo-random number generator (PRNG) is a device producing a sequence of
numbers s1s2 . . . with a given distribution which is supposed to be uniform, where
s1, s2, . . . are elements of a given set of numbers. In fact, in practice, we cannot
design a perfect PRNG, since the way we build the device is not a random one, which
affects the uniformity of the produced sequences. That is why the word “pseudo”
is used and we have to measure the randomness of the obtained sequences. There
are a lot of tests for such measurements and all of them measure the difference
between the generated pseudo-random sequences and the theoretically supposed
ideal random sequence. We say that a PRNG passes a test if the random sequences
produced by that PRNG passes the test with a probability near to 1. We can
classify PRNGs depending on the tests they have passed. So, for obtaining a better
classification we should have many different tests. Here we propose several new
tests based on the random walk in a discrete coordinate plane.
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Given a (pseudo) random sequence, a random walk can be defined in many
different ways. If the random sequence has elements from the set {0, 1, 2, 3}, then
we can use four one-step directions left (0), right (1), up (2) and down (3). But,
if the random generator produces real numbers from the interval [0, 1), then the
directions can be chosen depending on their belonging to the intervals [0, 0.25),
[0.25, 0.5), [0.5, 0.75), [0.75, 1). Of course, for arbitrary number sets, walking can
be defined in many other ways, and in what follows we suppose that the considered
sequences have members from the set {0, 1, 2, 3}.

The random walk paradigm can be used for designing many suitable tests for
PRNGs. We suppose that in all cases which under consideration each point (x, y)
of the discrete plane has weight 0 at the beginning, and we will increase the weights
of the points by using suitable definitions of the walk. We consider two kinds of
walking described in Section 2. According to the type of walk, the tests may be
designed differently, depending on the way of dividing the plane in regions. We
consider three ways of dividing the plane by using:

1) the coordinate axis - the plane is divided into four quadrants: {(x, y)|x ≥
0, y > 0}, {(x, y)|x < 0, y ≥ 0}, {(x, y)|x ≤ 0, y < 0}, {(x, y)|x > 0, y ≤ 0};

2) circles - the plane is divided into rings {(x, y) | (2i)2 ≤ x2 + y2 < (2i+ 2)2}
for i = 0, 1, 2 . . .;

3) squares - the plane is divided into bands {(x, y) | 2i ≤ |x|+ |y| < 2i+ 2} for
i = 0, 1, 2, . . . .

In Section 3 we will present in more detail how the tests are designed according
to the division of the plane.

In Section 4 we present several experiments obtained by the tests given here and
in [4], and a comparative analysis for six PRNGs is made as well.

2. Types of walk

We will consider the following two types of walk in the discrete plane:

2.1. Walking with a fixed number of steps (chess-walk)

Let k be a fixed positive integer. For a given sequence α = s1s2 . . . sd, beginning
from the coordinate centre (0, 0) we make k steps according to the values of the first
k elements s1s2 . . . sk and we add 1 to the weight of the coordinate (m,n) where the
walk stops. After that, beginning again from (0, 0), we continue to walk following
the next k elements sk+1 . . . s2k and we increase by 1 the weight of the point where
the walk stops, and so on.

For a given pseudo-random sequence, we can count the weights of the points of
the plane. Note that the weight of a point is, in fact, the frequency of arrivals at
that point. On the other hand, assuming that we have a perfectly uniform random
sequence, we can count the weights as a product of the probability of the arrival at
the point (m,n) and the number of trials, obtaining in such a way the theoretical
frequency of arrivals. Since the walk is in accordance with a random sequence, the
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points of stops can be described by a random vector (X,Y ) and its probability
distribution can be determined by the following proposition.

Proposition 1. Let (m,n) be a point of the discrete plane and let k be a positive
integer. Then the probability Pk(m,n) = P{X = m,Y = n} that a walk beginning
from the coordinate centre (0, 0) will stop at the point (m,n) after k steps is equal
to 0 in the case when |m|+ |n| > k or the number |m|+ |n|+ k is odd, and in the
opposite case it is equal to

Pk(m,n) =
1
4k

k−|m|−|n|
2∑

q=0

(
k

|m|+ q

)(
k − |m| − q

q

)(
k − |m| − 2q
k−|m|−|n|−2q

2

)
. (1)

Proof. Let m > 0, n > 0. (The other cases can be treated in the same manner.)
If k and m + n have different parity, then it is not possible to arrive at the point
(m,n) beginning from the coordinate centre, and the same is true if k < m+ n. In
the opposite case, for reaching the point (m,n) we need to make at least m steps
to the right and at least n steps up. So, if we have m+ q (q ≥ 0) steps to the right,

we have to have q steps to the left and that can be made by
(

k

m+ q

)(
k −m− q

q

)
ways. The remaining k −m− 2q steps have to be made up or down and if n+ r of
them are made up, then r steps have to be made down, where n+2r = k−m− 2q,

which can be realized by
(
k −m− 2q

r

)
ways.

Finally, since there are 4 possible walking directions, the number of all possible
ways with the length k starting from (0, 0) is 4k. ✷

By Proposition 1 we have that the density plot of the probability distribution
looks like a chess table (see Figure 1).

Note that

Pk(m,n) = Pk(n,m) = Pk(|m|, |n|) (2)

since equality (1) can be transformed in a form symmetrical in m and n. For
instance, when k−m−n

2 is an odd number, we have

Pk(m,n) =
1
4k

[ k−|m|−|n|
4 ]∑

q=0

(
k

k−|m|−|n|
2

)(k−|m|−|n|
2

q

)((k+|m|+|n|
2

|m|+ q

)
+
(k+|m|+|n|

2

|n|+ q

))

where [a] denotes the integer part of a. A similar formula can be derived for the
even case.

From the joint distribution of (X,Y ), we determine marginal distributions of X
and Y , particulary. Using the symmetry of m and n in the equation (2), we can
conclude that the random variables (r.v.) X and Y are distributed identically. By
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the total probability theorem, we have

P{X = m} =
k−|m|∑

n=−(k−|m|)
P{X = m,Y = n}

=
1

2m+k

[ k−|m|
2 ]∑

p=0

(
k

|m|+ p

)(
k − |m| − p

p

)
1
4p

,

where m ∈ {−k,−k + 2, . . . , k − 2, k}.

Figure 1. Density plot of chess-movement. Brighter parts have a higher probability
to be visited, whereas the darker ones have less. The black ones are not visited at

all.

The r.v. X (or Y ) can be presented as a sum X =
k∑

i=1

Xi, where Xi is a r.v.

denoting the walking in the i-th step and

Xi :
( −1 0 1

1/4 1/2 1/4

)
. (3)

Namely, Xi = −1 if the step is to the left, Xi = 1 if the step is to the right and
Xi = 0 if the step is up or down. The mean and the variance of Xi are EXi = 0
and DXi = 1/2 which implies that EX = 0 and DX = k/2. By the central limit
theorem we have:

Proposition 2. The distribution of the random variable X converges to the
normal N(0, k/2) distribution for large enough k.
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2.2. Walking with a random number of steps (sun-walk)

The difference between chess-walk and sun-walk is only in choosing a different num-
ber of steps before stopping. Namely, now at first we fix an integer l > 1. Then
we read numbers s1, s2, . . . , sl of the sequence α = s1s2 . . . sd and after that be-
ginning from (0, 0) we make k1 steps following the sequence sl+1 . . . sl+k1 , where
the number k1 = 4l−1 · s1 + 4l−2 · s2 + . . . + 4 · sl−1 + sl (i.e. we consider that
the sequence (s1s2 . . . sl)4 is the notation of k1 in the 4-base system). We increase
by 1 the weight of the point (m,n) where the walk stops. After that we choose
the next l members sk1+l+1, . . . , sk1+2l and beginning again from (0, 0) we make
k2 = (sk1+l+1 . . . sk1+2l)4 steps following the sequence sk1+2l+1 . . . sk1+2l+k2 , and so
on. Note that 0 ≤ ki ≤ 4l − 1 for each i = 1, 2, . . . So, the number of steps ki can
be considered as a random variable K with a set of values {0, 1, . . .4l − 1}.

Consider the case of a perfectly uniform random sequence. Then using the total
probability theorem, the probability P (m,n) = P{X = m,Y = n} that a walk
beginning from the coordinate centre (0, 0) will stop at the point (m,n) is given by
P (m,n) =

∑4l−1
k=0 Pk(m,n)P{K = k}, where Pk(m,n) is defined as for chess-walk.

Also, in this case, K has the uniform distribution on the set {0, 1, . . .4l − 1} and so

P{K = k} =
1
4l
. Thus, we have proved

Proposition 3.

P (m,n) =
1
4l

4l−1∑
k=0

Pk(m,n). (4)

By Proposition 3 we have that the density plot of the probability distribution
looks like a sun (see Figure 2).

Figure 2. Density plot of sun-movement. Brighter parts have a higher probability to
be visited, whereas the darker ones have less.
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The same arguments as for chess-walk can be used for the description of the

r.v. X =
K∑

i=1

Xi, where Xi are defined as in (3). From EXj = E(E(Xj |K)), j =

1, 2, . . ., we can determine that:

EX = 0, DX = EX2 =
4l − 1

4
.

Proposition 4. The distribution of the random variable X can be approximated

by the normal N
(
0,

4l − 1
4

)
distribution.

Proof. The characteristic function of the r.v. X is ϕX(t) =
1
4l

4l−1∑
j=0

(
cos

t

2

)2j

and its Maclaurin’s serie is ϕX(t) = 1 − 4l − 1
8

t2 + O(t4). On the other hand,

the characteristic function of the normal N

(
0,

4l − 1
4

)
distribution is ϕ(t) =

exp
(
−4l − 1

8
t2
)

and both functions have the same first three members of their

Maclaurin’s series. ✷

3. Tests

Using the three ways of dividing the discrete plane in regions (described in Section 1)
and the two types of walking (Section 2), we will design six tests as well. In each of
them, we will compare random sequences obtained by PRNGs with the supposed
theoretical ones by using the Pearson χ2-test, where the test statistics is given by

χ2 =
h−1∑
i=0

(Oi − Ei)2

Ei
, and it has χ2 distribution with h − 1 degrees of freedom. In

this formula h denotes the number of classes (regions of division of the plane), Oi

denotes the number of arrivals at the i-th class from a random sequence obtained by
a PRNG and Ei is the theoretically obtained (expected) frequency. We accept the
assumption that the random sequence generated by PRNG is uniformly distributed
if χ2 ≤ χ2

h−1,p, where χ2
h−1,p is a number which satisfies the condition P{χ2 >

χ2
h−1,p} = p, for given p. (In our experiments, we take p = 0.05.) In the opposite

case, we reject the assumption of uniformity. Note that the statistics will be relevant
only if we have enough large sequences.

Chess-Quadrant Test (CQT) [3]. For this test we use the chess-walk. The
discrete plane is divided by the coordinate axis in four regions (quadrants) and for a
given pseudo-random sequence α = s1s2 . . . sd let O0, O1, O2, O3 be the numbers
of arrivals in the corresponding regions. The weight of the origin (0, 0) is divided
by 4 and then added to each of the regions. Theoretically, if α is really a random
sequence, and if we want to have altogether r stops i.e. the sum of the weights of
all points in the plane to be r, we should have E0 = E1 = E2 = E3 =

r

4
. (Clearly,

r = [ dk ].)
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Sun-Quadrant Test (SQT). This test is of the same kind as the CQT, but
here we consider sun-walk instead of chess-walk and we have again E0 = E1 =
E2 = E3 =

r

4
. Since we have r stops, we should test sequences with an average of

d = r(l + EK) members, where k = EK = (4l − 1)/2 is the mean of the r.v. K.
Chess-Circle Test (CCT). Here we consider the chess-walk and we divide the

plane in rings Ri = {(x, y) | (2i)2 ≤ x2 + y2 < (2i + 2)2} for i = 0, 1, 2 . . .. We
should consider only a finite number of rings. Namely, for a given number of steps
k before stop, the points in the rings Ri, for 2i > k, have a weight equal to 0. But,
since the probability of a stop in a ring Ri is decreasing when i is increasing, it is
enough to consider only the rings R0, R1 . . . , Rh−2 for some h much smaller than
k and the region Rh−1 = {(x, y) | x2 + y2 ≥ (2h − 2)2}. For a theoretical case,
according to (1), we can count the frequency of arriving at the region Ri by

Ei = r
∑

(m,n)∈Ri

Pk(m,n), i = 0, . . . , h− 2, Eh−1 = r −
h−2∑
i=0

Ei (5)

where r denotes the number of stops.
Sun-Circle Test (SCT). This test is similar to the CCT, but here we consider

sun-walk instead of chess-walk. Consequently, the difference between the CCT and
the SCT appears only in (5) where the probabilities Pk(m,n) should be replaced by
P (m,n) (given in (4)), in order to obtain the SCT. Also, we should test sequences
with an average of d members, as in the SQT.

Chess-Square Test (CST). There is no big difference between the CCT and
the CST except for the division of the plane. We consider the chess-walk and we
divide the plane in bands Bi = {(x, y) | 2i ≤ |x|+|y| < 2i+2} for i = 0, 1, 2, . . . , h−2
and the region Bh−1 = {(x, y) | |x| + |y| ≥ 2h − 2}, where h can be chosen much
smaller than k. The values Ei are obtained as in (5) by replacing Bi instead of Ri.

Sun-Square Test (SST). The SST is obtained in the same manner as the
CST where chess-walk is replaced by sun-walk. Everything else is the same as in
the SCT.

Remark 1. We have divided the discrete plane in circles because of the normal
distribution (Propositions 2 and 4). On the other hand, the limitations |m|+ |n| ≤ k
in Proposition1 suggested the division of the discrete plane by squares.

4. Experiments

We have checked several PRNGs presented in [4] by using our tests. The obtained
results are given in Table 1 below. In our experiments we wanted to have about
r = 106 stops, i.e. the weight of the plane to be about 106. We took k = 256 (and
then d is about 256×106) when chess-walk was used, and l = 4 for the sun-walk (in
which case the number of steps before stops is between 0 and 255, and the average
value of d is about 130× 106).

For the CQT and the SQT we used the whole discrete plane and we took (fol-
lowing [3]) that a pseudo-random sequence passed the χ2-test if χ2 < 7.815262 with
significance level p = 0.05 and three degrees of freedom.
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For making computer programs for the tests CCT, SCT, CST and SST we
considered only a part of the discrete plane, i.e. the square limited by |x| ≤ 50, |y| ≤
50. (We should note that in all experiments, the stops were in the defined square
with probability near to 1.)

In such a way for the CCT and the SCT we took h = 26 and divided the plane in
26 regions consisting of the rings R0, . . . , R24 and of the region R25 = {(x, y) | x2 +
y2 ≥ 2500}. A pseudo-random sequence passes the χ2-test if χ2 < 37.658 with
significance level p = 0.05 and 25 degrees of freedom.

The situation with the CST and the SST is a little bit more complicated.
Namely, because of our limitation |x| ≤ 50, |y| ≤ 50, we divide the plane in 36
regions, i.e. in 25 bands Bi = {(x, y) | 2i ≤ |x|+ |y| < 2i+2} for i = 0, 1, 2, . . . , 24,
10 ”semi-bands” Bi = {(x, y) | 2i ≤ |x| + |y| < 2i + 2, |x| ≤ 50, |y| ≤ 50} for
i = 25, . . . , 34 and the rest B35 = {(x, y) | |x|+ |y| ≥ 70}. In this case we took that
a pseudo-random sequence passes the χ2-test if χ2 < 49.8102 with significance level
p = 0.05 and 35 degrees of freedom.

Finally, we present a few PRNGs we were checking by our tests, all of them
from [4]:

- MWC (multiply-with-carry) generator xn = a · xn−1 + carry mod 232 where
the multiplier a is chosen from a predefined list.

- KISS is defined by

xn = axn−1 + 1 mod 232,
yn = yn−1(I + L13)(I + R17)(I + L5),
zn = 2zn−1 + zn−2 + carry mod 232

where the y’s are a shift register sequence and the z’s are a simple multiply-
with-carry sequence.

- ULTRA combines a Fibonacci generator xn = xn−99xn−33 mod 232, x’s odd,
with the multiply-with-carry generator yn = 30903yn−1 + carry mod 216, re-
turning xn + yn mod 232.

- CG (congruential generator) is defined by xn = axn−1 + b mod m, where a, b
and m are positive integers.

- RAN2 is from Numerical Recipes [2].

- MSRAN is the system generator in Microsoft Fortran. It is the congruential
generator xn = 48271xn−1 mod (231 − 1).

The values of χ2-test statistics for the above PRNGs are presented in Table 1.
For each PRNG we have made two experiments, and the bold numbers denote the
cases when the PRNG did not pass the corresponding test.
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CQT SQT CCT SCT CST SST
MWC 3.6507 1.1157 28.2029 31.0619 30.1743 51.8553

1.9320 5.2171 29.1727 15.4776 28.3449 27.2860
KISS 7.6002 0.4745 39.5095 16.6549 50.3437 26.7905

5.1371 4.4888 41.9264 17.6388 64.0689 23.4839
ULTRA 7.4117 2.9033 17.3133 20.9626 34.0260 25.2775

1.8869 10.2128 24.4770 18.8330 34.1187 25.2625
CG 42.0610 11.8853 596.0693 161.7642 536.1579 156.8406

646.3155 389.4645 26.2560 35.5271 41.2609 28.1710
RAN2 16.5810 31.7990 25.5687 517.5578 29.4951 554.2418

11.3912 13.3155 27.8888 551.4363 28.9031 606.0271
MSRAN 5.0328 9.9846 19.7406 444.5602 31.1509 508.2729

4.4327 8.3007 32.1389 447.7816 43.5622 521.6509

Table 1. The values of χ2-test statistics

It can be seen from Table 1 that we can classify different PRNGs. So, MWC
and ULTRA passed the tests quite well, KISS passed the tests relatively well, while
RAN2 and MSRAN did not pass the tests designed by sun-walk (and it seems
that MSRAN is better than RAN2 according to these tests). Depending on the
parameters of CG, we obtained quite different values of χ2-statistics, i.e. we can
conclude that CG is a kind of an unstable PRNG.

5. Conclusion

We have defined six different tests for measuring the uniformity of the random se-
quences generated by PRNGs by using the idea of random walks. The experiments
we have made showed that they can separate the PRNGs in different classes, so
they can be used for checking the usefulness of PRNGs. The results we have ob-
tained correspond to those obtained by other tests, but not completely. Since it is
important to know if a PRNG produces really good random sequences, one has to
test it with as many different tests as possible. The tests we have proposed here
can be used for that task.
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