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On weak convergence of functionals on smooth

random functions∗

Alexander Rusakov† and Oleg Seleznjev‡

Abstract. The numbers of level crossings and extremes for random
processes and fields play an important role in reliability theory and many
engineering applications. In many cases for Gaussian processes the
Poisson approximation for their asymptotic distributions is used. This
paper extends an approach proposed in Rusakov and Seleznjev (1988) for
smooth random processes on a finite interval. It turns out that a number
of functionals (including some integervalued ones) become continuous on
the space of smooth functions and weak convergence results for the se-
quences of such continuous functionals are applicable. Examples of such
functionals for smooth random processes on infinite intervals and for
random fields are studied.
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1. Introduction

The asymptotic behaviour of the number of level crossings or extremes for a se-
quence of random functions has been studied in detail mostly for the Gaussian case,
and is not very much known for non-Gaussian processes. The mainly used approach
exploited Poisson approximation for the corresponding distributions (see for refer-
ences, e.g., Leadbetter, Lindgren, and Rootzén (1983), Piterbarg (1996), Hüsler,
Piterbarg, and Seleznjev (2000)). For such problems, Rusakov and Seleznjev (1988)
proposed an approach based on continuity properties of some functionals of inter-
est for the sequence of vector random processes on a bounded interval. Narrowing
the class of continuous functions C(T ) to the class of continuously differentiable
functions Ck(T ) allows us to investigate the weak convergence of a wider class of
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functionals defined on the space of smooth functions. In particular, some integer
valued functionals are continuous in this case in the corresponding metric and the
standard weak convergence technique (Continuity Theorem) is applicable. The aim
of the present paper is to develop this method for infinite intervals and random
fields, and for some new functionals on random functions.

First we consider some auxiliary results about weak convergence of random el-
ements with realizations in spaces of smooth functions. In short communication
Wilson (1986), weak convergence of probability measures on spaces smooth func-
tions was considered. The weak convergence results in Theorems 1 and 2 were
obtained by authors independently and they generalize the corresponding results
in Rusakov and Seleznjev (1988). These results are of technical character and the
proofs directly follow from the well known results for the space of continuous func-
tions (see e.g., Billingsley (1968), Witt (1970)). We state the following results for
completeness of exposition and convenience of references.

Consider at first the space of continuously differentiable functions with contin-
uous k-th derivative Ck[0,∞) with the norm for x(·) ∈ Ck[0,∞),

||x|| =
k−1∑
i=0

|x(i)(0)|+ ||x(k)||C ,

where for any y(·) ∈ C[0,∞),

||y||C =
∞∑

j=1

2−j||y||j/(1 + ||y||j), ||y||j = sup
[0,j]

|y(t)|, j ≥ 1.

Convergence in the space Ck[0,∞) is equivalent to convergence for every j ≥ 1 in
the space Ck[0, j) of continuously differentiable functions on the interval [0, j] with
continuous k-th derivative in the standard norm || · ||j for the interval [0, j]. For
any set t1, . . . , tp, ti ∈ [0,∞), i = 1, . . . , p, denote by

φk(x, t1, . . . , tp) := (x(0), . . . , x(k−1)(0), x(k)(t1), . . . , x(k)(tp)) .

Denote by “⇒” weak convergence of probability measures or random elements. Let
wj(y, δ) be a modules of continuity for a function y(·) ∈ C[0, j], 0 ≤ δ ≤ j,

wj(y, δ) := sup
|t−s|<δ

{|y(t)− y(s)|, t, s ∈ [0, j]}.

Let X,Xn be Ck[0,∞)-valued random elements defined on the probability spaces
(Ω,F ,P) and (Ωn,Fn,Pn), respectively, n ≥ 1.

Theorem 1. Xn ⇒ X as n → ∞ in Ck[0,∞) iff

(i) for any set {ti ∈ [0,∞), i = 1, . . . , p}, φk(Xn, t1, . . . , tp) ⇒ φk(X, t1, . . . , tp)
and

(ii) for any ε > 0 and for every j ≥ 1, limδ→0 supn Pn{wj(X
(k)
n , δ) > ε} = 0.
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Remark 1. Theorem1 (ii) holds if for every j ≥ 1 there exist αj , βj , Cj > 0
such that

E|X(k)(t)−X(k)(s)|αj ≤ Cj |t− s|βj+1, t, s ∈ [0, j]. (1)

For a Gaussian sequence Xn, n ≥ 1, it is sufficient to verify (1) for αj = 2, βj > 0,
for every j ≥ 1. The assertion follows directly from Theorem 12.3, Billingsley
(1968), in the space C[0, j] for every j ≥ 1.

Now we consider the space of continuously differentiable functions defined on
an m-dimensional unit cube T = [0, 1]m. Denote this space by Ck(T ), k ≥ 1, with
the norm for any x(·) ∈ Ck(T ),

||x|| =
∑
|l|≤k

sup
T

| x(l)(t) |,

where l = (l1, ...lm), | l |= l1 + · · · + lm, li ≥ 0, i = 1, ...,m. The convergence in
that norm means the uniform convergence of functions and derivatives up to order
k on T and the space Ck(T ) is a complete separable normed space (see Kufner,
John, and Fučik (1977), p. 26, 31). Denote by w(x, δ) the module of continuity of
a continuous function x(·) ∈ C(T ), 0 < δ < m1/2, | t |m= (

∑m
i=1 t

2
i )

1/2,

w(x, δ) = sup
|t−s|m≤δ

{| x(t) − x(s) |, t, s ∈ T }.

We order the vectors l according to some rule. For any function x(·) ∈ Ck(T ) and
set ti ∈ T, i = 1, ..., p, denote the vector of derivatives ordered according to this
rule by

ψk(x, t1, ..., tp) = (x(l)(t1), . . . , x(l)(tp), | l |≤ k).

Let X,Xn be Ck(T )-valued random elements defined on probability spaces
(Ω,F ,P) and (Ωn,Fn,Pn), respectively, n ≥ 1.

Theorem 2. Xn ⇒ X as n → ∞ in Ck(T ) iff

(i) for any set {ti ∈ T, i = 1, ..., p}, ψk(Xn, t1, ..., tp) ⇒ ψk(X, t1, ..., tp) and

(ii) for any ε(l) > 0, | l |≤ k , limδ→0 supn Pn{w(X(l), δ) > ε(l)} = 0.

Remark 2. Theorem2(ii) holds if there exist C,α(l), β(l) > 0, n0 ∈ N, such
that

E{| X(l)
n (t)−X(l)

n (s) |α(l)} ≤ C | t− s |m+β(l)
m

for any n ≥ n0, t, s ∈ T, | t − s |m≤ h0 < m−1/2, | l |≤ k. The assertion follows
directly from Corollary 12.3.1, Billingsley (1968).

Remark 3. The assertions of Theorems 1 and 2 are directly generalized for
vector random processes and fields by using the corresponding arguments in Rusakov
and Seleznjev (1988) and Witt (1970).

This paper is organized as follows. In Section 2, we consider several examples
of continuous functionals on sequences of smooth random processes on an infinite
interval (e.g., the ith crossing moment, the number of crossings) and apply the cor-
responding weak convergence results for investigation of asymptotic distributions.
In Section 3 some examples of weak convergent sequences of smooth random fields
are given. We apply the weak convergence technique in order to study the asymp-
totic distribution of the number of local extremes of sequences of random fields.
Section 4 contains the proofs of the statements from previous sections.
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2. Weak convergence of functionals on a sequence of smooth
random processes on [0,∞)

Consider several examples of continuous functionals in Ck[0,∞), k ≥ 1. Let Ti(x)
be the ith zerocrossing moment of function x(·) ∈ Ck. Let Ti be the set of functions
x(·) ∈ Ck such that Ti(x) < ∞, and in a moment of a zerocrossing τ, x(τ) =
0, x(1)(τ) �= 0. We will call such zerocrossing moments nondegenerate. Denote
also by Nj the set of functions x(·) ∈ Ck with a finite number of nondegenerate
zerocrossings on [0, j], N(x, [0, j]) = Nj(x), j ≥ 1.

Proposition 1. Functionals Ti(x), i = 1, . . . ,m, and Nj(x) are continuous
on sets Tm and Nj, respectively, j ≥ 1. Note that there are simple examples of
functions in C[0,∞) for which these functionals are discontinuous in the space only
continuous functions (see e.g., Rychlik(1987)).

Let X,Xn, n ≥ 1, be Ck-valued random elements such that almost all sample
paths of X(·) belong to Tm ∩ N . For example, if the random process X(t), t ∈
[0,∞), is a Gaussian process or a function of a Gaussian process, or a Slepian
model process, or a Fourier-, Karhunen-Loève expansion, or the sum of a Gaussian
process and any independent continuously differentiable random process, i.e. any
so-called decomposable random process (see Rychlik (1990)), then for finiteness of
the functional N(x) = N(x, [0,∞)) the following condition is sufficient (see Rychlik
(1990)), ∫ ∞

0

∫ ∞

−∞
|z|pt(z, 0)dz dt < ∞, (2)

where pt(z, v) is the joint density of y(1)(0) and y(t). Further, if the conditional
expectation

E{
m∏

i=1

|X(1)(ti)|/X(t1), . . . , X(tm)} < ∞, (3)

then the random variables T1(X), . . . , Tm(X) have the joint density. For non-
degeneracy of zerocrossings, the following condition is sufficient:

For every j ≥ 1, the density of X(t) at the point x,

pt(x) ≤ Cj , t ∈ [0, j], x ∈ R, 0 < Cj < ∞. (4)

Condition (4) is a simple consequence of Bulinskaya’s Theorem (see Bulinskaya
(1961)).

Theorem 3. Let Xn ⇒ X as n → ∞ in Ck[0,∞) for k ≥ 1 and suppose the
random element X satisfies conditions (2)-(4). Then

Ti(Xn) ⇒ Ti(X), i = 1, . . . ,m, and for every j ≥ 1, Nj(Xn) ⇒ Nj(X) as n → ∞.

Example 1. Let X(t), t ∈ [0,∞), be a zero mean stationary ergodic Gaussian
process with continuously differentiable sample paths and a covariance function r(t),
r(0) = 1. Consider the Slepian model process corresponding to the behaviour of the
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process X(t) after a moment of crossing of a level u (see Leadbetter, Lindgren, and
Rootzén (1983), p. 198, Wilson (1988)),

Xu(t) := ur(t)− ζr(1)(t)/λ2 + κ(t),

where κ(t) is a zero mean Gaussian process with the covariance function rκ,

rκ(t.s) := r(t − s)− r(t)r(s) − r(t)(1)r(1)(s)/λ2,

the second spectral moment λ2 = −r(2)(0), and ζ is a random value with Rayleigh
distribution and density

p(z) := z/λ2 exp{−z2/(2λ2)}.

ζ is independent of κ(t). The random process κ(t) has also continuously differen-
tiable realizations, i.e. Xu is a C1-valued random element. Let convergence “as
u → ∞” mean convergence for any countable subsequence un → ∞ as n → ∞.

Proposition 2. Let η(t) := u(Xu(t/u) − u) be the normed model process.
Then ηu ⇒ η as u → ∞ in C1[0,∞), where η(t) := −λ2t

2/2t+ ζt, and moreover,
ηu → η as n → ∞ a.s. in C1[0,∞), for every j ≥ 1,

T2(ηu) ⇒ T2(η) = 2ζ/λ2 and Nj(ηu) ⇒ Nj(η) as u → ∞. (5)

3. Weak convergence of functionals on a sequence of smooth
random fields

Consider first some examples of weakly convergent sequences of random elements
in the space Ck(T ).

Example 2. Let X(t), Xn(t), t ∈ T, be zero mean Gaussian homogeneous fields
with covariance functions r(t), rn(t), respectively, n ∈ N. Let the spectral function
F (λ) of the random field X(t) be such that for some α, 0 < α < 2, and integer
k ≥ 1, ∫

Rm

| λ |2k+α
m dF (λ) < C,

and
rn(t) =

∫
|λ|m≤n

eiλ′tdF (λ).

Then X,Xn are Ck(T )-valued random elements, n ∈ N . We show that Xn ⇒ X

in Ck(T ). In fact, the convergence of finite-dimensional distributions of X
(l)
n (t),

| l |≤ k, follows from the pointwise convergence of the covariance functions and its
derivatives up to the order 2k. Then the weak convergence of the sequence Xn(t), n ∈
N, follows from normality of Xn(t) and Remark2, since for any l, | l |≤ k,

E(X(l)
n (t)−X(l)

n (0))2 ≤ 22−α

∫
|λ|m≤n

| λ |2|l|m | λ′t |α dF (λ) ≤ C1 | t |αm .
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Example 3. Let Xn(t), t ∈ T, be a zero mean Gaussian homogeneous field with
covariance function

rn(t) =
∫

Rm
+

cos(λ′t)fn(λ)dλ, Rm
+ = [0,∞)m, n ∈ N.

Let the following conditions for the spectral density fn(λ), n ∈ N, hold

1. there exists κ ∈ Rm
+ such that for any δ > 0 and Uδ = {λ ∈ Rm

+ : | λ−κ |m< δ}

lim
n→∞

∫
Uδ

fn(λ)dλ = 1; (6)

2. there exists a function f(λ) such that fn(λ) ≤ f(λ) for every λ ∈ Rm
+ \ Uλ0 ,

λ0 > 0 and for some 0 < α < 2, k ∈ N∫
Rm

+

| λ |2k+α
m f(λ)dλ < C. (7)

Then Xn ⇒ X in Ck(T ), where X(t) is a zero mean Gaussian homogeneous field
with the covariance function r(t) = cos(κt). The convergence of finite-dimensional
distributions follows as in Example 2 from the convergence of the corresponding
sequences of the covariance functions and its derivatives up to the order 2k. In fact,
if we write Rδ = Rm

+ \ Uδ, t
l =

∏m
i=1 t

li
i for t ∈ T, then

r(2l)
n (t) = (−1)|l|

∫
Rm

+

λ2l cos(λ′t)fn(λ)dλ, r(2l)(t) = (−1)|l|κ2l cos(κ′t).

So, for any δ > 0 and ε > 0, we have

|
∫

Rδ

λ2l cos(λ′t)fn(λ)dλ |≤
∫

Rm
+

| λ |2|l|m fn(λ)dλ

=
∫

Rδ∩{|λ|m≤λ1}
| λ |2l

m cos(λ′t)fn(λ)dλ +
∫

Rδ∩{|λ|m>λ1}
λ2l cos(λ′t)fn(λ)dλ

≤ λ2l
1 εn +

ε

2
< ε

by (6) and (7) for sufficiently large and λ1. It also follows from (6) that
∫

Uδ

λ2l cos(λ′t)fn(λ)dλ → κ2l cos(κ′t) as n → ∞

and thus, r(2l)
n (t) → r(2l)(t) as n → ∞. Now (2) implies for every l, | l |≤ k, that

E(X(l)
n (t)−X(l)

n (0))2 = 2
∫

Rm
+

λ2l(1− cos(λ′t))fn(λ)dλ

≤ C1λ
2k+2
1 | t |2m +C2 | t |αm≤ C3 | t |αm,
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and as in Example 2 the assertion follows from Remark 2.
Consider now one of the examples of the continuous integer valued functionals

on smooth random fields and apply the weak convergence technique.
Denote by

∇x(t) := (∂x(t)/∂t1, ..., ∂x(t)/∂tm), G(x, t) := det(∂2x(t)/∂ti∂tj)

and define the functional

N(x) := #{t ∈ (0, 1)m : ∇x(t) = 0},

i.e., the number of stationary points of function x(·) ∈ Ck(T ), k ≥ 2. Let
D ⊂ Ck(T ), k ≥ 2 be a set of functions with the finite number of non-degenerate
stationary points τ, i.e. ∇x(t) = 0, G(x, t) �= 0.

Proposition 3. The functional N(x) is continuous on the set of functions
D ⊂ Ck(T ), k ≥ 2.

Let ζ(t), t ∈ T, be a zero mean homogeneous random field with sample paths
from the space Ck(T ), k ≥ 2, 0 < pt(z) < C < ∞, where pt(z) is the density of
distribution for the random vector ∇ζ(t) at the point z, z ∈ Rm, and suggest that

P{G(ζ, t) = 0 | ∇ζ(t) = z} = 0. (8)

Then N(ζ) is a.s. finite for this random field and if τ is a stationary point, then
G(ζ, τ) �= 0 a.s., i.e., τ is non-degenerate (see Belyaev (1967)). For the case of
a Gaussian homogeneous field, (8) holds if e.g., the joint distribution of partial
derivatives ∂2ζ(t)/∂ti∂tj , i, j = 1, ...,m, is non-degenerate (see Belayev (1967)).

Theorem 4. Let X(t), Xn(t) be zero mean homogeneous random fields with
sample paths from the space Ck(T ), k ≥ 2, satisfying regularity condition (8),
n ∈ N. Let Xn ⇒ X in Ck(T ). Then N(Xn) ⇒ N(X) as n → ∞.

In particular, Theorem 4 is valid for the corresponding sequences of Gaussian
homogeneous fields considered in Examples 2 and 3.

4. Proofs

A) Introduction

Proof of Theorem1. Let Sk[0,∞) be the spaceRk×C[0,∞) with the topology
of direct product, Sk = Sk[0,∞). Then the mapping

f : Ck → Sk, x(·) ∈ Ck, f(x) := (x(0), . . . , x(k−1)(0), x(k)(·)),

is a homeomorphism of the spaces Ck and Sk and furthermore, the space Ck[0,∞)
is a complete separable normed function space. The following argument is similar
to that in Rusakov and Seleznjev (1988) for the space Ck[0, 1]. Let Ck and Sk be the
Borel σ-algebras on the spaces Ck and Sk, respectively, P, Pn, n ≥ 1, probability
measures on (Ck, Ck) (or equivalently, defined on (Sk,Sk) by using the homeomor-
phism f for the spaces Ck[0,∞) and Sk[0,∞)). Since probability measures coincide
on C[0,∞) if their finite dimensional distributions coincide (see Witt (1970)), the
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probability measures P and Q on (Ck, Ck) coincide if P (A) = Q(A) for every set A
such that

A = {x(·) ∈ Ck : φk(x, t1, . . . , tp) ∈ H},

where

φk(x, t1, . . . , tp) := (x(0), . . . , x(k−1)(0), x(k)(t1), . . . , x(k)(tp)),

and a set H ∈ Rk+p, Rk+p is the Borel σ-algebra for the space Rk+p. Denote the
class of such sets A by M. Then M is a determining class (see Billingsley (1968),
p. 15) for probability measures defined on (Ck, Ck). ✷

Proposition 4. Pn ⇒ P as n → ∞ in Ck[0,∞) iff

(i) for any A ∈ M, Pn(A) → P (A) as n → ∞ and

(ii) the family of measures {Pn, n ≥ 1} is tight in Ck[0,∞).

Proof. The proof is straightforward. One can apply the argument used for
C[0,∞) (see Witt (1970)) due to the beforehand given remark and the structure of
the space Ck[0,∞). ✷

Let P, Pn be probability measures induced by random elements X,Xn, respec-
tively, n ≥ 1. Then Theorem 1 (i) is equivalent to Proposition 4 (i). The tightness of
the family {Pn} in Ck[0,∞) is equivalent to the tightness of the families of marginal
distributions on Rk and C[0,∞), respectively ( cf., Rusakov and Seleznjev (1988)).
The necessity of (ii) follows as in Theorem 6, Witt (1970). Using (i) together with
(ii) we also obtain that the family {Pn} is tight. Now the assertion of Theorem 1
follows by Proposition 4.

Proof of Theorem 2. The following arguments are analogous to the corre-
sponding results in Rusakov and Seleznjev (1988). We formulate the following
proposition which corresponds to the Arzela-Ascoli theorem for the space Ck(T ),
(cf., Theorem 1.5.4, Kufner, John, and Fučik (1977), and Billingsley (1968), p. 221).

Proposition 5. A set K ⊂ Ck(T ) is relatively compact iff

(i) supx∈K{| x(l)(0) |, | l |≤ k, } < ∞ and

(ii) for any l | l |≤ k, limδ→0 supx∈K w(x(l), δ) = 0.

Denote by q = #{l : | l |≤ k} = (m+ k)!/(m!k!). Let for any set ti ∈ T, i =
1, ..., p,Rpq and Ck be the Borel σ-algebras of the spaceRpq and Ck(T ), respectively.
Then, considering any sets {ti ∈ T, i = 1, ...p}, and sets H ∈ Rpq we obtain the
class of sets M = {A},

A = {x(·) : φk(x, t1, ..., tp) ∈ H} ∈ Ck.

A ball in the space Ck(T ) is a limit of a sequence of sets of the class M and
consequently, the class M is a determining class (see Billingsley (1968), p. 15) for
probability measures on (Ck(T ), Ck).

Proposition 6. Let P, Pn, n ∈ N , be probability measures on the space Ck(T ).
Then the family {Pn} is tight and Pn(A) → P (A) as n → ∞ for any set A ∈ M iff
Pn ⇒ P as n → ∞.
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Proof. The assertion follows from the Prohorov’s theorem for a complete sep-
arable metric space (see Billingsley (1968), p. 37). ✷

Thus for investigation of weak convergence of a sequence of probability measures
{Pn} we need a criterion of tightness of the family {Pn} in the space Ck(T ).

Proposition 7. A family of probability measures {Pn} is tight in the space
Ck(T ) iff

(i) for any η > 0 there exists a(l) > 0 such that Pn{x(·) : | x(l)(0) |> a(l)} < η,
| l |≤ k and

(ii) for any ε(l), η(l) > 0, there exist n0 ∈ N, δ(l) > 0 such that

Pn{x(·) : w(x(l), δ(l)) |> ε(l)} < η(l), | l |≤ k, n ≥ n0 .

Proof. One can apply arguments used for C[0, 1] with Proposition 5 instead of
the Arzela-Ascoli Theorem (cf., Theorem 8.2. Billingsley (1968)). ✷

Let P, Pn be probability measures on the space (Ck(T ), Ck) induced by the
random elements X,Xn, n ∈ N . Now we return to the proof of Theorem 2. We
have, if Xn ⇒ X then by Proposition 6, Pn → P (A) as n → ∞ for any A ∈ M, i.e.,
Theorem 2 (i) holds. Further, Theorem 2 (ii) follows from the tightness of {Pn} and
Proposition 7 (ii). Conversely, Theorem 2(i) and (ii) together imply that {Pn} is
tight and Pn(A) → P (A) as n → ∞ for any A ∈ M, i.e., Xn ⇒ X by Proposition 6.

B) Weak convergence of functionals on smooth random processes on [0,∞).

Proof of Proposition1. Consider the mapping F : Ck × [0,∞)→ R, F (y, t) :=
y(t), in some neighbourhood U = Ux × Uτ of a point of zerocrossing (x, τ) in the
topology of direct product. By nondegeneracy of the point τ we can always find a
neighbourhood Uτ such that there are no other zerocrossings in Uτ . Then, for the
mapping F , the conditions of the Implicit Function Theorem (see e.g., Lusternik
and Sobolev (1961), p. 194) hold: F (x, τ) = 0, F (1)(y, t) = y(1)(t) is continuous in
the neighbourhood U , F (1)(x, τ) �= 0. Consequently, for any ε > 0 there exist δ > 0
and a function g(·),

g(y) = t = τy, (9)

which is defined in the δ-neighbourhood of ||y − x|| < δ and such that if (9) holds
for a pair (y, τy) then it satisfies the relation

F (y, τy) = 0. (10)

Conversely, if (10) holds for some pair (y, τy) and ||y − x|| < δ, |τy − τ | < ε, then
for this pair (9) holds and the function g(y) is continuous in some neighbourhood
of x(·). Thus, there is only one point τy in some ε-neighbourhood of the point τ
for every function y(·) belonging to the δ-neighbourhood of the function x(·). Now,
for the function x(·) ∈ Tm, let Vi(x) be a corresponding neighbourhood of the point
Ti(x), i = 1, . . . ,m, δ = min(δi, i = l, . . . ,m). Let T ′ := [0, Tm(x)] \ ∪m

i=1Vi(x).
Then

min
T ′ |y(t)| ≥ min

T ′ |x(t)| −min
T ′ |x(t)− y(t)| > 0
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for sufficiently small δ, i.e., there exist no other zerocrossings for the function y(·)
and we obtain the continuity of the functionals Ti(x), i = 1, . . . ,m. For the func-
tional Nj(x), j ≥ 1, x(·) ∈ Nj , the argument is analogous and we can find such a
δ-neighbourhood Vj(x) that for any function y(·) ∈ Vj(x), Nj(y) = Nj(x), i.e. Nj(·)
is continuous. ✷

Proof of Theorem 3. Let P be the measure induced by the random element
X in Ck[0,∞). If conditions (2)-(4) hold, then P (Tm ∩Nj) = 1 for every j ≥ 1. So
the assertion follows by the Continuity Theorem (Theorem 5.1, Billingsley (1968))
and Proposition 1. ✷

Proof of Proposition 2. There is no need to use Theorem 1 since weak con-
vergence η ⇒ η follows from the evident convergence of almost all sample paths of
ηu(t) in C1[0,∞). In fact, ηu(0) = η(0) = 0, η

(1)
u (0) = η(1)(0) = ζ and

η(1)
u (t)− η(1)(t) = ur(1)(t/u)− ζr(2)(t/u)/λ2 + κ(1)(t/u) + tλ2 − ζ

= −tλ2 + ζ + o(1) + tλ2 − ζ = o(1) as u → ∞

uniformly in t ∈ [0, j] for every j ≥ 1, κ(0) = κ(1)(0) = 0. Now (5) follows directly
from Propositions 3 and 2. ✷

C) Weak convergence of functionals on a sequence of smooth random fields.

Proof of Proposition3. For any given function x(·) ∈ D we shall find a
δ-neighborhood such that for any function y(·), with ‖ x− y ‖< δ, N(y) = N(x).

Let τ be a nongenerate stationary point of the function x(t). We shall find δ < 0
such that every function y(·) from the δ-neighborhood of x(·) will have in some
ε-neighborhood of the point τ , the nondegenerate stationary point τy and only one
such point.

Consider the mapping F (y, t) = ∇y(t), F : Ck(T )× T → R, in some neighbor-
hood U of the point (x, t) in the space Ck(T )×T (in the topology of direct product)
such that there no other stationary points of the function x(·) in U. This neighbor-
hood exists since the point τ is nondegenerate. Then the Implicit Function Theorem
is valid for the mapping F (see e.g. Lusternik and Sobolev (1961), p. 194). In fact,
the function F (y, t) is continuous at the point (x, τ) by definition, F (x, τ) = 0, the
partial derivative operator, F (1)

t (y, t) = (∂2y(t)/∂ti∂tj) exists and is continuous in
U and the operator F (1)

t (y, t) is invertible since the point τ is nondegenerate. Then
there exist ε, δ > 0 and a mapping f(·),

t = f(y), f : Ck(T )→ T, (11)

defined for ‖ y − x ‖< δ, such that f(y) is continuous at the point x, and

F (y, t) = ∇y(t) = 0, (12)

and conversely, every pair (y, t), for which relation (12) and the conditions ‖ y−x ‖<
δ, | t− τ |< ε hold, satisfies relation (7), i.e. t = τy and whence τy is nondegenerate
also for sufficiently small δ and ε by continuity of functions ∂2y(t)/∂ti∂tj.

Thus, in some neighbourhood of every nondegenerate stationary point τ , every
function y(·), ‖ y − x ‖< δ, has a nondegenerate stationary point τy . We shall
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show that there are no other stationary points for the function y(·). Really, for
the remaining part of the set T, Tε = T \ ∪q

i=1Oεi(τi), where τi, i = 1, ..., q, are
stationary points for the function x(·),

| ∇y(t) |m=| ∇x(t) + (∇y(t)−∇x(t)) |m> min
Tε

| ∇x(t) |m −δ > 0

for sufficiently small δ, i.e. for this δ we have N(y) = N(x). ✷

Proof of Theorem 4. It follows by (8) for X and Xn that the conditions of
Proposition 3 hold. Therefore, we obtain that the functional N(·) is continuous on
the set D, P (D) = Pn(D) = 1, where P, Pn are probability measures induced by
the random elements X,Xn on Ck(T ), respectively. So the assertion of Theorem 4
follows directly from the Continuity Theorem (Theorem 5.1, Billingsley (1968)). ✷
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