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Fixed points of fuzzy mappings in Hilbert spaces
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Abstract. In this paper we work out two fixed point theorems for
fuzzy mappings on Hilbert spaces. The proofs rely on the paralellogram
law in Hilbert spaces.
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1. Introduction

Heilpern [2] introduced the concept of fuzzy mappings as a mapping from an ar-
bitrary set to one subfamily of fuzzy sets in a metric linear space and proved a
fixed point theorem for fuzzy mappings. Various authors extended and generalised
Heilpern’s result [1], [3], [4], [5], [6] and [7]. In the present paper, we prove fixed
point theorems of fuzzy mappings as introduced by Heilpern applied to Hilbert
spaces.

2. Preliminaries

In the following discussions we mainly follow the definitions and notations due to
Heilpern [2].

Let H be a Hilbert space and F (H) be collection of all fuzzy sets in H . Let
A ∈ F (H) and α ∈ [0, 1]. The α-level set of A, denoted by Aα is defined as

Aα = {x : A(x) ≥ α} if α ∈ (0, 1]

A0 = {x : A(x) > 0},

where B stands for the closure of a set B.
Definition 1. A fuzzy subset A of H is said to be an approximate quantity

iff its α-level set is a nonfuzzy compact convex subset of H for each α ∈ [0, 1] and
supx∈H A(x) = 1.

∗Department of Mathematics, Hooghly Mohsin College, Chinsurah, West Bengal, India, e-mail:
pndut1@cal3.vsnl.net.in

†Department of Mathematics, B.E. College (D.U.), Howrah 711 103, West Bengal, India, e-mail:
bsc@math.becs.ac.in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14375618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


92 P.N.Dutta and B. S. Choudhury

From the collection F (H), the subcollection of all approximate quantities is
denoted by W (H).

Definition 2. Let A, B ∈ W (H) and α ∈ [0, 1], then

(i) Pα(A, B) = inf
x∈Aα,y∈Bα

‖x − y‖

(ii) Dα(A, B) = dist (Aα, Bα), where “dist” denotes the Housdorff metric between
Aα and Bα

(iii) D(A, B) = sup
α

Dα(A, B) and

(iv) P (A, B) = sup
α

Pα(A, B).

It is to be noted that for any ‘α’, Pα is a nondecreasing as well as continuous
function.

Definition 3. Let A, B ∈ W (H). An approximate quantity A is said to be
more accurate than B, denoted by A ⊂ B, iff A(x) < B(x) for each x ∈ H. The
relation ⊂ induces a partial ordering on W (H),

Definition 4. A mapping F from the set H onto W (H) is said to be a fuzzy
mapping. Any x ∈ H is called a fixed point of a mapping F : H → W (H) if

{x} ⊂ Fx

where {x} is the fuzzy set with a membership function equal to the chracteristic
function of the crist set {x}.

We shall use the following lemma due to Heilpern [2].
Lemma 1. Let x ∈ H, A ∈ W (H), then {x} ⊂ A if and only if Pα(x, A) = 0

for each α ∈ [0, 1].
Lemma 2. Pα(x, A) ≤ ‖x − y‖ + Pα(y, A) for any x, y ∈ H.
Lemma 3. If {x0} ⊂ A, then Pα(x0, B) ≤ Dα(A, B) for each B ∈ W (H).

3. Main results

In this section we prove common fixed point theorems for a pair of fuzzy mappings.
Theorem 1. Let H be a Hilbert space, F and G are fuzzy mappings from H

into W (H) satisfying

D2(Fx, Gy) ≤ a‖x − y‖2 + bP 2
α(x, Fx) + cP 2

α(y, Gy)

+
e

2
{
P 2

α(x, Gy) + P 2
α(y, Fx)

}
(1)

for all x, y in H and for all α ∈ [0, 1] and a, b, c, e are nonnegative numbers satisfying

a + b + c + 2e < 1. (2)

Then there exists a point z in H such that

{z} ⊂ Fz ∩ Gz.
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Proof. Let x0 ∈ H . We construct the sequence {{xn}} as follows.

{x1} ⊂ Fx0, {x2} ⊂ Gx1, . . . , {x2n+1} ⊂ Fx2n, {x2n+2} ⊂ Gx2n+1

and
‖xi − xi+1‖ ≤ D(Fxi−1, Gxi), i = 1, 2, . . .

Now,

‖x2n − x2n+1‖2 ≤ D2(Fx2n, Gx2n−1)
≤ a‖x2n − x2n−1‖2 + bP 2

α(x2n, Fx2n) + cP 2
α(x2n−1, Gx2n−1)

+
e

2
{P 2

α(x2n, Gx2n−1) + P 2
α(x2n−1, Fx2n)}

≤ a‖x2n − x2n−1‖2 + b‖x2n − x2n+1‖2 + c‖x2n−1 − x2n‖2

+
e

2
{‖x2n − x2n‖2 + ‖x2n−1 − x2n+1‖2}

≤ a‖x2n − x2n−1‖2 + b‖x2n − x2n+1‖2 + c‖x2n−1 − x2n‖2

+
e

2
{‖(x2n−1 − x2n) + (x2n − x2n+1)‖2}

≤ a‖x2n − x2n−1‖2 + b‖x2n − x2n+1‖2 + c‖x2n−1 − x2n‖2

+e{‖x2n−1 − x2n‖2 + ‖x2n − x2n+1‖2}
which gives

‖x2n − x2n+1‖2 ≤ k1‖x2n − x2n−1‖2

where
0 < k1 =

a + c + e

1 − b − e
< 1.

Again,

‖x2n−1 − x2n‖2 ≤ D2(Fx2n−2, Gx2n−1)
≤ a‖x2n−2 − x2n−1‖2 + bP 2

α(x2n−2, Fx2n−2) + cP 2
α(x2n−1, Gx2n−1)

+
e

2
{P 2

α(x2n−2, Gx2n−1) + P 2
α(x2n−1, Fx2n−2)}

≤ a‖x2n−2 − x2n−1‖2 + b‖x2n−2 − x2n−1‖2 + c‖x2n−1 − x2n‖2

+
e

2
{‖x2n−2 − x2n‖2 + ‖x2n−1 − x2n−1‖2}

≤ a‖x2n−2 − x2n−1‖2 + b‖x2n−2 − x2n−1‖2 + c‖x2n−1 − x2n‖2

+e{‖x2n−2 − x2n−1‖2 + ‖x2n−1 − x2n‖2}
which gives

‖x2n−1 − x2n‖2 ≤ k2‖x2n−2 − x2n−1‖2

where
0 < k2 =

a + b + e

1 − c − e
< 1.

Choosing k = max{k1, k2}, it follows that

‖xn+1 − xn‖2 ≤ k‖xn − xn−1‖2

where 0 < k < 1.
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Hence {xn} is a Cauchy sequence in H and therefore it converges to a limit in
H . We assume

lim
n→∞ xn = z.

Again, using Lemma 3 and for all α ∈ [0, 1]

P 2
α(x2n+2, F z) ≤ D2

α(Gx2n+1, F z)
≤ D2(Gx2n+1, F z)
≤ a‖x2n+1 − z‖2 + bP 2

α(x2n+1, Gx2n+1) + cP 2
α(z, Fz)

+
e

2
{P 2

α(z, Gx2n+1) + P 2
α(x2n+1, F z)}

≤ a‖x2n+1 − z‖2 + b‖x2n+1 − x2n+2‖2 + cP 2
α(z, Fz)

+
e

2
{P 2

α(z, x2n+2) + P 2
α(x2n+1, F z)}

Making n → ∞ and using the fact that Pα is continuous,

P 2
α(z, Fz) ≤

(
c +

e

2

)
P 2

α(z, Fz).

As {c + (e/2)} < 1, it follows that P 2
α(z, Fz) = 0, hence by Lemma1, {z} ⊂ Fz.

Similarly, {z} ⊂ Gz. Hence, {z} ⊂ Fz ∩ Gz. ✷

Theorem 2. Let H be a Hilbert space and F and G fuzzy mappings from H
into W (H) satisfying

D2(Fx, Gy) ≤ q max
{‖x − y‖2, P 2

α(x, Fx), P 2
α(y, Gy),

1/2{P 2
α(x, Gy) + P 2

α(y, Fx))
}

(3)

for all x, y in H and for all α ∈ [0, 1] and q ∈ (0, 1/2). Then there exists a point z
in H such that {z} ⊂ Fz ∩ Gz.

Proof. Let x0 ∈ H , we construct the sequence {xn} as in Theorem 1 and corre-
spondingly

‖x2n − x2n+1‖2 ≤ D2(Fx2n, Gx2n−1)
≤ q max

[‖x2n − x2n−1‖2, P 2
α(x2n, Fx2n), P 2

α(x2n−1, Gx2n−1),
1
2

{
P 2

α(x2n, Gx2n−1) + P 2
α(x2n−1, Fx2n)

}]

≤ q max
[‖x2n − x2n−1‖2, ‖x2n − x2n+1‖2, ‖x2n − x2n−1‖2,

1
2
‖x2n−1 − x2n+1‖2

]

≤ q max
[
‖x2n − x2n−1‖2,

1
2
‖x2n−1 − x2n+1‖2

]

≤ q max
[‖x2n − x2n−1‖2, ‖x2n − x2n−1‖2 + ‖x2n − x2n+1‖2

]
≤ q max

[‖x2n − x2n−1‖2 + ‖x2n − x2n+1‖2
]

which yields

‖x2n − x2n+1‖2 ≤ q

q − 1
‖x2n − x2n−1‖2. (4)
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Again,

‖x2n − x2n−1‖2 ≤ D2(Fx2n−2, Gx2n−1)
≤ q max

[‖x2n−2 − x2n−1‖2, P 2
α(x2n−2, Fx2n−2), P 2

α(x2n−1, Gx2n−1),
1
2

{
P 2

α(x2n−2, Gx2n−1) + P 2
α(x2n−1, Fx2n−2)

}]

≤ q max
[‖x2n−2 − x2n−1‖2, ‖x2n−2 − x2n−1‖2, ‖x2n−1 − x2n‖2,

1
2
‖x2n−2 − x2n‖2

]

≤ q max
[
‖x2n−2 − x2n−1‖2,

1
2
‖x2n−2 − x2n‖2

]

≤ q max
[‖x2n−2 − x2n−1‖2, ‖x2n−2 − x2n−1‖2 + ‖x2n−1 − x2n‖2

]
≤ q max

[‖x2n−2 − x2n−1‖2 + ‖x2n−1 − x2n‖2
]

which yields
‖x2n − x2n−1‖2 ≤ q

1 − q
‖x2n−2 − x2n−1‖2 (5)

From (4) and (5) it follows that

‖xn+1 − xn‖2 ≤ k1‖xn − xn−1‖2

where
0 < k1 =

q

1 − q
< 1.

Hence, {xn} is a Cauchy sequence in H and therefore it converges to a limit in H .
We assume

lim
n→∞ xn = z.

Again, using Lemma 3,

P 2
α(x2n+2, F z) ≤ D2

α(Gx2n+1Fz)
≤ D2(Gx2n+1, F z)
≤ q max

[‖z − x2n+1‖2, P 2
α(z, Fz), P 2

α(x2n+1, Gx2n+1),
1
2

{
P 2

α(z, Gx2n+1) + P 2
α(x2n+1, F z)

}]

≤ q max
[‖z − x2n+1‖2, P 2

α(z, Fz), ‖x2n+1 − x2n+2‖,
1
2

{‖z − x2n+2‖2 + P 2
α(x2n+1, F z)

}]
.

Making n → ∞ and using the fact that Pα is continuous,

P 2
α(z, Fz) ≤ q max{P 2

α(z, Fz),
1
2
P 2

α(z, Fz)}
≤ qP 2

α(z, Fz)

As q ∈ (0, 1/2), it follows that P 2
α(z, Fz) = 0. Hence, by Lemma1 {z} ⊂ Fz.

Similarly, {z} ⊂ Gz. Hence, {z} ⊂ Fz ∩ Gz. ✷
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