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A relation among DS2, TS2 and non-cylindrical

ruled surfaces

B.KarakaŞ
∗
and H.Gündoğan

†

Abstract. TS2 is a differentiable manifold of dimension 4. For
every X ∈ TS2, if we set X = (p, x) we have < �p, �x >= 0 since �p is
orthogonal to TpS

2, therefore ‖ �p ‖= 1. Those there could exist a one-
to-one correspondence between TS2 and DS2. In this paper we gave
and studied a one-to-one correspondence among TS2, DS2 and a non
cylindrical ruled surface. We showed that for a restriction of an anti-
symmetric linear vector field A along a spherical curve α(t) there exists
a non-cylindrical ruled surface which corresponds to α(t) and has the
following parametrization

α(t, λ) = α(�t) +A(α(t)) + λα(�t)

So it is possible to study non-cylindrical ruled surfaces as the set of
(α(t), A(α(t))), where α(t) ∈ S2 and A is an anti-symmetric linear vec-
tor field in R3.

Key words: dual unit sphere, non-cylindrical ruled surface, spher-
ical curve, anti-symmetric linear vector field, tangent bundle

AMS subject classifications: 53A04 , 53A17 , 53B30

Received January 7, 2002 Accepted December 23, 2002

1. Anti-symmetric linear vector fields

Let A = [aij ] be a fixed real n× n matrix. For each such A we construct a vector
field TA on Rn by taking its value at each point x ∈ Rn to be the negative of the
result of applying the matrix A to the vector X , i.e.

TA(X) = −AX (1)

Definition 1. A vector field TA is called linear vector field ([3]). If A is an
anti-symmetric (symmetric, orthogonal, etc.) matrix then TA is called an anti-
symmetric (symmetric, orthogonal, etc.) linear vector field.
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In this study we use an anti-symmetric linear vector field and S2 asRn, because;
Theorem 1. Let E3 be a three-dimensional Euclidean vector space with the

unit sphere S2. Let an orthonormal base { �u1, �u2, �u3} be given in E3. Then a linear
vector field determines a vector field of tangent vectors on the sphere S2 if and only
if the matrix which is associated with the linear mapping A relative to the base {�ui}
is given by a skew-symmetric matrix ([4]).

2. Skew mappings

Definition 2. Let V be a vector space of dimension n. An endomorphism ϕ of V
is called skew if

ϕ∗ = −ϕ ,

where ϕ∗ denotes the adjoint of ϕ ([3]).
The above condition is equivalent to the relation

< ϕ(X), Y > + < X,ϕ(Y ) > = 0, X, Y ∈ V (2)

It follows from (2) that the matrix of a skew mapping relative to an orthonormal
base is skew-symmetric. Substitution of Y = X in (1) yields the equation

< X,ϕ(Y ) >= 0, X ∈ V (3)

showing that every vector is orthogonal to its image vector. Conversely, an endo-
morphism ϕ having this property is skew.

Consider the mapping ψ = ϕ2. For this kind of ϕ there exists an orthonormal
basis {�ui}, 1 ≤ i ≤ n, such that

ψ(ui) = λiui, i = 1, · · · , n
Furthermore, all eigenvalues λi, 1 ≤ i ≤ n, are negative or zero. In fact, the
equation ψ(u) = λu implies that

λ =< u,ψ(u) >=< u,ϕ2(u) > = − < ϕ(u), ϕ(u) > ≤ 0

Since the rank of ϕ is even and ϕ2 has the same rank as ϕ, the rank of ψ must be
even ([3]). Consequently, the number of negative eigenvalues is even and we can
enumerate the vector ui such that

λi < 0 if i = 1, · · · , 2p
λi = 0 if i = 2p+ 1, · · · , n

Define the orthonormal basis ei, i = 1, · · · , n by

e2i−1 = ui,

e2i =
1
ci
ϕ(ui), ci =

√
−λi, i = 1, · · · , p

and
ei = ui, i = 2p+ 1, · · · , n.
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Relative to this basis the matrix of ϕ has the form



0 x1 0 0 · · · · · · 0
−x1 0 0 0 · · · · · · 0
0 0 0 x2 · · · · · · 0
0 0 −x2 0 · · · · · · 0
...

...
...

...
...

...
...

...
...

· · · · · · · 0 xp 0 0
· · · · · · · −xp 0 0 0
· · · · · · · · · · ·
0 0 0 0 · · · 0 0 0 0




(4)

3. Tangent bundle TM

Let M be a differentiable manifold of dimension n. The union of all tangent spaces
of M is called the tangent bundle of M and is denoted by TM . TM admits a
projection π : TM → M , defined by

π(ϑ) = m ⇔ ϑ ∈ TmM

If x is a chart ofM with domain U , any vector ϑ ∈ π−1(U) can be expressed uniquely
as

∑
i ai

∂
∂xi

|m where a = (a1, · · · , an) ∈ Rn. Therefore we have an injection

(ψ̃ϕ) : TM → R2n

defined by ϑ → (x(m), a), whose domain is π−1(U) and whose range is the open set
ψ(U)×Rn.

For M = S2 we have the tangent bundle TS2. Furthermore, for every point
p ∈ S2, �p is orthogonal to the vector space TpS

2. So we can take �p for the normal
of TpS

2. This relation gives us the permission to construct a one-to-one correspon-
dence DS2 and TS2.

4. The dual unit sphere DS2

Let R be the set of real numbers. We have on R2 = R×R, for every

X = (x, x∗), Y = (y, y∗) ∈ R2 and λ ∈ R

X ⊕ Y = (x + y, x∗ + y∗)
λ.X = (λx, λx∗)

X � Y = (xy, xy∗ + x∗y).

The mathematical structure (R2,⊕,�) is a ring. The ring is denoted by D and
called the ring of dual numbers. EveryX ∈ D is called a dual number. The element
(0, 1) has the property

(0, 1)� (0, 1) = (0, 0)
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and is denoted by ε. Thus we have ε2 ∼= 0. Therefore by using the notation ε, we
can write

X = x+ εx∗

for every X = (x, x∗) ∈ D, where x ∼= (x, 0) , x∗ ∼= (0, x∗).
Let D3 be D × D × D. For every X,Y ∈ D3 such that X(a1, a2, a3), Y =

(b1, b2, b3), ai = xi + εx∗
i , bi = yi + εy∗i , i = 1, 2, 3.

Define
X + Y = (a1 + b1, a2 + b2, a3 + b3) (sum)

< X,Y >=
3∑

i=1

ai · bi (dot product).

Then we can write

< X,Y >=< x, y > +ε(< x, y∗ > + < x∗, y >),

where x = (x1, x2, x3), x∗ = (x∗
1, x

∗
2, x

∗
3), y = (y1, y2, y3) and y∗ = (y∗1 , y

∗
2 , y

∗
3). So

we have the norm of a vector X ∈ D3 as

‖ X ‖=‖ x ‖ +ε
< x, x∗ >

‖ x ‖

For X ∈ D3 if ‖ X ‖= (1, 0) then X is called a dual unit vector. The set

{X ∈ D3 :‖ X ‖= (1, 0) ∈ D}

is called the dual unit sphere and is denoted by DS2. ([5]).
Theorem 2. There exists a one-to-one correspondence between the oriented

lines in R3 and the points of the dual unit sphere ([5]).

5. TS2, DS2 and non-cylindrical ruled surfaces

LetX be an element of TS2 where TS2 = ∪pTpS
2. ThenX = (x1, x2, x3, x

∗
1, x

∗
2, x

∗
3).

Thus if we set x = (x1, x2, x3), x∗ = (x∗
1, x

∗
2, x

∗
3) then it is clear that

‖ x ‖ = 1
< x, x∗ > = 0

So we can write X = (x, x∗) ∈ DS2, isomorphically. Conversely, for every X =
(x, x∗) ∈ DS2 we have

‖ x ‖= 1, < x, x∗ >= 0.

So X = (x1, x2, x3, x
∗
1, x

∗
2, x

∗
3) ∈ TS2. Thus we have the following :

Theorem 3. There is a one-to-one correspondence TS2 and DS2.
We know that every curve on DS2 can be associated to a ruled surface in R3

([1]). Now we will ask how a curve on TS2 can be associated to a ruled surface in
R3 and answer the question.
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Let P = (p, p∗) ∈ TS2, then p is orthogonal p∗. It is well known from vector
algebra that the equation

p× x = p∗, p, x, p∗ ∈ R3

with < p, p∗ >= 0 has the set of solutions

x(λ) = − 1
‖ p ‖2

p× p∗ + λp, λ ∈ R.

The solution x(λ) represents a straight line in the direction of the vector �p. Since
‖ p ‖= 1, so

x(λ) = −p× p∗ + λp .

Let α be a curve on S2 such that α : I ⊆ R −→ S2, t −→ α(t) and A be an
antisymmetric vector field. The restriction of A on α(I) will be denoted by Aα,
Aα = Aα(α(I)). For every t0 ∈ I. We have the straight line

xt0(λ) = α(t0)×Aα(α(t0)) + λα(t0).

So the equation

xt(λ) = α(t)×Aα(α(t)) + λα(t), t ∈ I, λ ∈ R
describes a surface. We set

ϕ(t, λ) = α(t)×Aα(α(t)) + λα(t), t ∈ I, λ ∈ R. (5)

Equation (5) defines a non-cylindrical ruled surface.
Conversely, let a non-cylindrical ruled surface in R3 be given by the equation

σ(u, ϑ) = β(u) + ϑd(u).

The spherical representation of the unit direction vectors d(u) describes a curve on
S2.

Suppose that this curve is denoted by α, α : I −→ S2, we can define a mapping
A along the curve α by the following equation,

A(α(u)) = −α(u)× β(u),

where the sign × denotes the wedge product in R3. It is clear that A(α(u)) is an
anti-symmetric vector field. Therefore we have

‖ �α(u) ‖ = 1 ,

< �α(u), A(α(u)) > = 0

and so < �α(u), A(α(u)) > ∈ DS2. That is to say < �α(u), A(α(u)) > is an element
of TS2. So we have

Theorem 4. There exists a one-to-one correspondence between a restriction of
an anti-symmetric vector field along a spherical curve and a non-cylindrical ruled
surface in R3.
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