A relation among $D S^{2}, T S^{2}$ and non-cylindrical ruled surfaces

B. KarakaŞ* and H. Gündoğan ${ }^{\dagger}$

Abstract

T S^{2}\) is a differentiable manifold of dimension 4. For every $X \in T S^{2}$, if we set $X=(p, x)$ we have $<\vec{p}, \vec{x}>=0$ since \vec{p} is orthogonal to $T_{p} S^{2}$, therefore $\|\vec{p}\|=1$. Those there could exist a one-to-one correspondence between $T S^{2}$ and $D S^{2}$. In this paper we gave and studied a one-to-one correspondence among $T S^{2}, D S^{2}$ and a non cylindrical ruled surface. We showed that for a restriction of an antisymmetric linear vector field A along a spherical curve $\alpha(t)$ there exists a non-cylindrical ruled surface which corresponds to $\alpha(t)$ and has the following parametrization

$$
\alpha(t, \lambda)=\alpha(\vec{t})+A(\alpha(t))+\lambda \alpha(\vec{t})
$$

So it is possible to study non-cylindrical ruled surfaces as the set of $(\alpha(t), A(\alpha(t)))$, where $\alpha(t) \in S^{2}$ and A is an anti-symmetric linear vector field in \mathcal{R}^{3}.

Key words: dual unit sphere, non-cylindrical ruled surface, spherical curve, anti-symmetric linear vector field, tangent bundle

AMS subject classifications: 53A04, 53A17, 53B30
Received January 7, 2002 Accepted December 23, 2002

1. Anti-symmetric linear vector fields

Let $A=\left[a_{i j}\right]$ be a fixed real $n \times n$ matrix. For each such A we construct a vector field T_{A} on \mathcal{R}^{n} by taking its value at each point $x \in \mathcal{R}^{n}$ to be the negative of the result of applying the matrix A to the vector X, i.e.

$$
\begin{equation*}
T_{A}(X)=-A X \tag{1}
\end{equation*}
$$

Definition 1. A vector field T_{A} is called linear vector field ([3]). If A is an anti-symmetric (symmetric, orthogonal, etc.) matrix then T_{A} is called an antisymmetric (symmetric, orthogonal, etc.) linear vector field.

[^0]In this study we use an anti-symmetric linear vector field and S^{2} as \mathcal{R}^{n}, because;
Theorem 1. Let E^{3} be a three-dimensional Euclidean vector space with the unit sphere S^{2}. Let an orthonormal base $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \overrightarrow{u_{3}}\right\}$ be given in E^{3}. Then a linear vector field determines a vector field of tangent vectors on the sphere S^{2} if and only if the matrix which is associated with the linear mapping A relative to the base $\left\{\overrightarrow{u_{i}}\right\}$ is given by a skew-symmetric matrix ([4]).

2. Skew mappings

Definition 2. Let V be a vector space of dimension n. An endomorphism φ of V is called skew if

$$
\varphi^{*}=-\varphi
$$

where φ^{*} denotes the adjoint of φ ([3]).
The above condition is equivalent to the relation

$$
\begin{equation*}
<\varphi(X), Y>+<X, \varphi(Y)>=0, \quad X, Y \in V \tag{2}
\end{equation*}
$$

It follows from (2) that the matrix of a skew mapping relative to an orthonormal base is skew-symmetric. Substitution of $Y=X$ in (1) yields the equation

$$
\begin{equation*}
<X, \varphi(Y)>=0, \quad X \in V \tag{3}
\end{equation*}
$$

showing that every vector is orthogonal to its image vector. Conversely, an endomorphism φ having this property is skew.

Consider the mapping $\psi=\varphi^{2}$. For this kind of φ there exists an orthonormal basis $\left\{\overrightarrow{u_{i}}\right\}, 1 \leq i \leq n$, such that

$$
\psi\left(u_{i}\right)=\lambda_{i} u_{i}, i=1, \cdots, n
$$

Furthermore, all eigenvalues $\lambda_{i}, 1 \leq i \leq n$, are negative or zero. In fact, the equation $\psi(u)=\lambda u$ implies that

$$
\lambda=<u, \psi(u)>=<u, \varphi^{2}(u)>=-<\varphi(u), \varphi(u)>\leq 0
$$

Since the rank of φ is even and φ^{2} has the same rank as φ, the rank of ψ must be even ([3]). Consequently, the number of negative eigenvalues is even and we can enumerate the vector u_{i} such that

$$
\begin{aligned}
& \lambda_{i}<0 \text { if } i=1, \cdots, 2 p \\
& \lambda_{i}=0 \text { if } i=2 p+1, \cdots, n
\end{aligned}
$$

Define the orthonormal basis $e_{i}, i=1, \cdots, n$ by

$$
\begin{gathered}
e_{2 i-1}=u_{i} \\
e_{2 i}=\frac{1}{c_{i}} \varphi\left(u_{i}\right), \quad c_{i}=\sqrt{-\lambda_{i}}, i=1, \cdots, p
\end{gathered}
$$

and

$$
e_{i}=u_{i}, \quad i=2 p+1, \cdots, n
$$

Relative to this basis the matrix of φ has the form

$$
\left[\begin{array}{ccccccccc}
0 & x_{1} & 0 & 0 & \cdots & . & . & . & 0 \tag{4}\\
-x_{1} & 0 & 0 & 0 & \cdots & . & . & . & 0 \\
0 & 0 & 0 & x_{2} & \cdots & . & . & . & 0 \\
0 & 0 & -x_{2} & 0 & \cdots & . & . & . & 0 \\
\vdots & \vdots \\
. & . & . & . & \cdots & 0 & x_{p} & 0 & 0 \\
. & . & . & . & \cdots & -x_{p} & 0 & 0 & 0 \\
. & . & . & . & \cdots & . & . & . & . \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right]
$$

3. Tangent bundle $T M$

Let M be a differentiable manifold of dimension n. The union of all tangent spaces of M is called the tangent bundle of M and is denoted by $T M$. TM admits a projection $\pi: T M \rightarrow M$, defined by

$$
\pi(\vartheta)=m \Leftrightarrow \vartheta \in T_{m} M
$$

If x is a chart of M with domain U, any vector $\vartheta \in \pi^{-1}(U)$ can be expressed uniquely as $\left.\sum_{i} a_{i} \frac{\partial}{\partial x_{i}}\right|_{m}$ where $a=\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{R}^{n}$. Therefore we have an injection

$$
(\tilde{\psi} \varphi): T M \rightarrow \mathcal{R}^{2 n}
$$

defined by $\vartheta \rightarrow(x(m), a)$, whose domain is $\pi^{-1}(U)$ and whose range is the open set $\psi(U) \times \mathcal{R}^{n}$.

For $M=S^{2}$ we have the tangent bundle $T S^{2}$. Furthermore, for every point $p \in S^{2}, \vec{p}$ is orthogonal to the vector space $T_{p} S^{2}$. So we can take \vec{p} for the normal of $T_{p} S^{2}$. This relation gives us the permission to construct a one-to-one correspondence $D S^{2}$ and $T S^{2}$.

4. The dual unit sphere $D S^{2}$

Let \mathcal{R} be the set of real numbers. We have on $\mathcal{R}^{2}=\mathcal{R} \times \mathcal{R}$, for every

$$
\begin{aligned}
X=\left(x, x^{*}\right), Y & =\left(y, y^{*}\right) \in \mathcal{R}^{2} \quad \text { and } \quad \lambda \in \mathcal{R} \\
X \oplus Y & =\left(x+y, x^{*}+y^{*}\right) \\
\lambda \cdot X & =\left(\lambda x, \lambda x^{*}\right) \\
X \odot Y & =\left(x y, x y^{*}+x^{*} y\right)
\end{aligned}
$$

The mathematical structure $\left(\mathcal{R}^{2}, \oplus, \odot\right)$ is a ring. The ring is denoted by D and called the ring of dual numbers. Every $X \in D$ is called a dual number. The element $(0,1)$ has the property

$$
(0,1) \odot(0,1)=(0,0)
$$

and is denoted by ε. Thus we have $\varepsilon^{2} \cong 0$. Therefore by using the notation ε, we can write

$$
X=x+\varepsilon x^{*}
$$

for every $X=\left(x, x^{*}\right) \in D$, where $x \cong(x, 0), x^{*} \cong\left(0, x^{*}\right)$.
Let D^{3} be $D \times D \times D$. For every $X, Y \in D^{3}$ such that $X\left(a_{1}, a_{2}, a_{3}\right), Y=$ $\left(b_{1}, b_{2}, b_{3}\right), \quad a_{i}=x_{i}+\varepsilon x_{i}^{*}, \quad b_{i}=y_{i}+\varepsilon y_{i}^{*}, i=1,2,3$.

Define

$$
\begin{aligned}
& X+Y=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right) \\
& \quad<X, Y>=\sum_{i=1}^{3} a_{i} \cdot b_{i} \quad \text { (dot product) }
\end{aligned}
$$

Then we can write

$$
<X, Y>=<x, y>+\varepsilon\left(<x, y^{*}>+<x^{*}, y>\right)
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right), x^{*}=\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right), y=\left(y_{1}, y_{2}, y_{3}\right)$ and $y^{*}=\left(y_{1}^{*}, y_{2}^{*}, y_{3}^{*}\right)$. So we have the norm of a vector $X \in D^{3}$ as

$$
\|X\|=\|x\|+\varepsilon \frac{<x, x^{*}>}{\|x\|}
$$

For $X \in D^{3}$ if $\|X\|=(1,0)$ then X is called a dual unit vector. The set

$$
\left\{X \in D^{3}:\|X\|=(1,0) \in D\right\}
$$

is called the dual unit sphere and is denoted by $D S^{2}$. ([5]).
Theorem 2. There exists a one-to-one correspondence between the oriented lines in \mathcal{R}^{3} and the points of the dual unit sphere ([5]).

5. $T S^{2}, D S^{2}$ and non-cylindrical ruled surfaces

Let X be an element of $T S^{2}$ where $T S^{2}=\cup_{p} T_{p} S^{2}$. Then $X=\left(x_{1}, x_{2}, x_{3}, x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right)$.
Thus if we set $x=\left(x_{1}, x_{2}, x_{3}\right), x^{*}=\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right)$ then it is clear that

$$
\begin{aligned}
\|x\| & =1 \\
<x, x^{*}> & =0
\end{aligned}
$$

So we can write $X=\left(x, x^{*}\right) \in D S^{2}$, isomorphically. Conversely, for every $X=$ $\left(x, x^{*}\right) \in D S^{2}$ we have

$$
\|x\|=1,<x, x^{*}>=0
$$

So $X=\left(x_{1}, x_{2}, x_{3}, x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right) \in T S^{2}$. Thus we have the following :
Theorem 3. There is a one-to-one correspondence $T S^{2}$ and $D S^{2}$.
We know that every curve on $D S^{2}$ can be associated to a ruled surface in \mathcal{R}^{3} ([1]). Now we will ask how a curve on $T S^{2}$ can be associated to a ruled surface in \mathcal{R}^{3} and answer the question.

Let $P=\left(p, p^{*}\right) \in T S^{2}$, then p is orthogonal p^{*}. It is well known from vector algebra that the equation

$$
p \times x=p^{*}, p, x, p^{*} \in \mathcal{R}^{3}
$$

with $<p, p^{*}>=0$ has the set of solutions

$$
x(\lambda)=-\frac{1}{\|p\|^{2}} p \times p^{*}+\lambda p, \quad \lambda \in \mathcal{R}
$$

The solution $x(\lambda)$ represents a straight line in the direction of the vector \vec{p}. Since || $p \|=1$, so

$$
x(\lambda)=-p \times p^{*}+\lambda p .
$$

Let α be a curve on S^{2} such that $\alpha: I \subseteq \mathcal{R} \longrightarrow S^{2}, t \longrightarrow \alpha(t)$ and A be an antisymmetric vector field. The restriction of A on $\alpha(I)$ will be denoted by A_{α}, $A_{\alpha}=A_{\alpha}(\alpha(I))$. For every $t_{0} \in I$. We have the straight line

$$
x_{t_{0}}(\lambda)=\alpha\left(t_{0}\right) \times A_{\alpha}\left(\alpha\left(t_{0}\right)\right)+\lambda \alpha\left(t_{0}\right) .
$$

So the equation

$$
x_{t}(\lambda)=\alpha(t) \times A_{\alpha}(\alpha(t))+\lambda \alpha(t), \quad t \in I, \lambda \in \mathcal{R}
$$

describes a surface. We set

$$
\begin{equation*}
\varphi(t, \lambda)=\alpha(t) \times A_{\alpha}(\alpha(t))+\lambda \alpha(t), \quad t \in I, \lambda \in \mathcal{R} . \tag{5}
\end{equation*}
$$

Equation (5) defines a non-cylindrical ruled surface.
Conversely, let a non-cylindrical ruled surface in \mathcal{R}^{3} be given by the equation

$$
\sigma(u, \vartheta)=\beta(u)+\vartheta d(u)
$$

The spherical representation of the unit direction vectors $d(u)$ describes a curve on S^{2}.

Suppose that this curve is denoted by $\alpha, \alpha: I \longrightarrow S^{2}$, we can define a mapping A along the curve α by the following equation,

$$
A(\alpha(u))=-\alpha(u) \times \beta(u)
$$

where the $\operatorname{sign} \times$ denotes the wedge product in \mathcal{R}^{3}. It is clear that $A(\alpha(u))$ is an anti-symmetric vector field. Therefore we have

$$
\begin{aligned}
\|\vec{\alpha}(u)\| & =1 \\
<\vec{\alpha}(u), A(\alpha(u))> & =0
\end{aligned}
$$

and so $<\vec{\alpha}(u), A(\alpha(u))>\in D S^{2}$. That is to say $<\vec{\alpha}(u), A(\alpha(u))>$ is an element of $T S^{2}$. So we have

Theorem 4. There exists a one-to-one correspondence between a restriction of an anti-symmetric vector field along a spherical curve and a non-cylindrical ruled surface in \mathcal{R}^{3}.

References

[1] W. Blaschke, Diferensiyel Geometri Dersleri, İstanbul Üniversitesi Yayınlarınlarından, No 433, 1949.
[2] F. Brickell, R. S. Clark, Differentiable Manifolds, Van Nostrand Reinhold Company, London, 1970.
[3] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern Geometry Methods and Applications, Part I, Springer Verlag, New York, 1984.
[4] A. Karger, J. Novak, Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, New York, 1985.
[5] E. Study, Geometrie der Dynamen, Leibzig, Teubner, 1903.

[^0]: *Department of Mathematics, University of Yüzüncü Yıl, Van, 65080, Turkey, e-mail: bulentkarakas@hotmail.com
 ${ }^{\dagger}$ Department of Mathematics, University of Kırıkkale, Kirikkale 71450, Turkey, e-mail: hagundogan@hotmail.com

