MATHEMATICAL COMMUNICATIONS 8(2003), 9-14

A relation among DS^2 , TS^2 and non-cylindrical ruled surfaces

B. Karaka
Ş* and H. Gündoğan †

Abstract. TS^2 is a differentiable manifold of dimension 4. For every $X \in TS^2$, if we set X = (p, x) we have $\langle \vec{p}, \vec{x} \rangle = 0$ since \vec{p} is orthogonal to T_pS^2 , therefore $|| \vec{p} || = 1$. Those there could exist a oneto-one correspondence between TS^2 and DS^2 . In this paper we gave and studied a one-to-one correspondence among TS^2 , DS^2 and a non cylindrical ruled surface. We showed that for a restriction of an antisymmetric linear vector field A along a spherical curve $\alpha(t)$ there exists a non-cylindrical ruled surface which corresponds to $\alpha(t)$ and has the following parametrization

$$\alpha(t,\lambda) = \alpha(\vec{t}) + A(\alpha(t)) + \lambda\alpha(\vec{t})$$

So it is possible to study non-cylindrical ruled surfaces as the set of $(\alpha(t), A(\alpha(t)))$, where $\alpha(t) \in S^2$ and A is an anti-symmetric linear vector field in \mathcal{R}^3 .

Key words: *dual unit sphere, non-cylindrical ruled surface, spherical curve, anti-symmetric linear vector field, tangent bundle*

AMS subject classifications: 53A04, 53A17, 53B30

Received January 7, 2002 Accepted December 23, 2002

1. Anti-symmetric linear vector fields

Let $A = [a_{ij}]$ be a fixed real $n \times n$ matrix. For each such A we construct a vector field T_A on \mathcal{R}^n by taking its value at each point $x \in \mathcal{R}^n$ to be the negative of the result of applying the matrix A to the vector X, i.e.

$$T_A(X) = -AX \tag{1}$$

Definition 1. A vector field T_A is called linear vector field ([3]). If A is an anti-symmetric (symmetric, orthogonal, etc.) matrix then T_A is called an anti-symmetric (symmetric, orthogonal, etc.) linear vector field.

9

^{*}Department of Mathematics, University of Yüzüncü Yıl, Van, 65080, Turkey, e-mail: bulentkarakas@hotmail.com

 $^{^\}dagger Department$ of Mathematics, University of Kırıkkale, Kirikkale 71450, Turkey, e-mail: hagundogan@hotmail.com

In this study we use an anti-symmetric linear vector field and S^2 as \mathcal{R}^n , because; **Theorem 1.** Let E^3 be a three-dimensional Euclidean vector space with the unit sphere S^2 . Let an orthonormal base $\{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$ be given in E^3 . Then a linear vector field determines a vector field of tangent vectors on the sphere S^2 if and only if the matrix which is associated with the linear mapping A relative to the base $\{\vec{u_i}\}$ is given by a skew-symmetric matrix ([4]).

2. Skew mappings

Definition 2. Let V be a vector space of dimension n. An endomorphism φ of V is called skew if

$$\varphi^* = -\varphi \quad ,$$

where φ^* denotes the adjoint of φ ([3]).

The above condition is equivalent to the relation

$$\langle \varphi(X), Y \rangle + \langle X, \varphi(Y) \rangle = 0, \quad X, Y \in V$$
 (2)

It follows from (2) that the matrix of a skew mapping relative to an orthonormal base is skew-symmetric. Substitution of Y = X in (1) yields the equation

$$\langle X, \varphi(Y) \rangle = 0, \quad X \in V$$
 (3)

showing that every vector is orthogonal to its image vector. Conversely, an endomorphism φ having this property is skew.

Consider the mapping $\psi = \varphi^2$. For this kind of φ there exists an orthonormal basis $\{\vec{u_i}\}, 1 \leq i \leq n$, such that

$$\psi(u_i) = \lambda_i u_i, \ i = 1, \cdots, n$$

Furthermore, all eigenvalues λ_i , $1 \leq i \leq n$, are negative or zero. In fact, the equation $\psi(u) = \lambda u$ implies that

$$\lambda = < u, \psi(u) > = < u, \varphi^2(u) > = - < \varphi(u), \varphi(u) > \le 0$$

Since the rank of φ is even and φ^2 has the same rank as φ , the rank of ψ must be even ([3]). Consequently, the number of negative eigenvalues is even and we can enumerate the vector u_i such that

$$\lambda_i < 0 \text{ if } i = 1, \cdots, 2p$$

$$\lambda_i = 0 \text{ if } i = 2p + 1, \cdots, n$$

Define the orthonormal basis $e_i, i = 1, \cdots, n$ by

$$e_{2i-1} = u_i,$$
$$e_{2i} = \frac{1}{c_i}\varphi(u_i), \quad c_i = \sqrt{-\lambda_i}, \quad i = 1, \cdots, p$$

and

$$e_i = u_i, \quad i = 2p + 1, \cdots, n.$$

Relative to this basis the matrix of φ has the form

Γ	0	x_1	0	0				•	0		
	$-x_1$	0	0	0	•••	•	•		0		
	0	0	0	x_2	•••	•	•		0		
	0	0	$-x_2$	0		•	•	•	0		
	÷	÷	:	÷	÷	÷	÷	÷	:	(4)
	•		•			0	x_p	0	0		
	•	•	•	•		$-x_p$	Ô	0	0		
	•	•	•	•	• • •	•	•	•	•		
L	0	0	0	0	•••	0	0	0	0		

3. Tangent bundle *TM*

Let M be a differentiable manifold of dimension n. The union of all tangent spaces of M is called the tangent bundle of M and is denoted by TM. TM admits a projection $\pi: TM \to M$, defined by

$$\pi(\vartheta) = m \Leftrightarrow \vartheta \in T_m M$$

If x is a chart of M with domain U, any vector $\vartheta \in \pi^{-1}(U)$ can be expressed uniquely as $\sum_{i} a_i \frac{\partial}{\partial x_i}|_m$ where $a = (a_1, \dots, a_n) \in \mathcal{R}^n$. Therefore we have an injection

$$(\tilde{\psi}\varphi):TM\to\mathcal{R}^{2n}$$

defined by $\vartheta \to (x(m), a)$, whose domain is $\pi^{-1}(U)$ and whose range is the open set $\psi(U) \times \mathcal{R}^n$.

For $M = S^2$ we have the tangent bundle TS^2 . Furthermore, for every point $p \in S^2$, \vec{p} is orthogonal to the vector space T_pS^2 . So we can take \vec{p} for the normal of T_pS^2 . This relation gives us the permission to construct a one-to-one correspondence DS^2 and TS^2 .

4. The dual unit sphere DS^2

Let \mathcal{R} be the set of real numbers. We have on $\mathcal{R}^2 = \mathcal{R} \times \mathcal{R}$, for every

$$X = (x, x^*), Y = (y, y^*) \in \mathcal{R}^2 \text{ and } \lambda \in \mathcal{R}$$
$$X \oplus Y = (x + y, x^* + y^*)$$
$$\lambda.X = (\lambda x, \lambda x^*)$$
$$X \odot Y = (xy, xy^* + x^*y).$$

The mathematical structure $(\mathcal{R}^2, \oplus, \odot)$ is a ring. The ring is denoted by D and called the ring of dual numbers. Every $X \in D$ is called a dual number. The element (0, 1) has the property

$$(0,1) \odot (0,1) = (0,0)$$

and is denoted by ε . Thus we have $\varepsilon^2 \cong 0$. Therefore by using the notation ε , we can write

$$X = x + \varepsilon x^*$$

for every $X=(x,x^*)\in D,$ where $x\cong (x,0)$, $x^*\cong (0,x^*).$

Let D^3 be $D \times D \times D$. For every $X, Y \in D^3$ such that $X(a_1, a_2, a_3), Y = (b_1, b_2, b_3), a_i = x_i + \varepsilon x_i^*, b_i = y_i + \varepsilon y_i^*, i = 1, 2, 3.$

Define

$$X + Y = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$
(sum)

$$\langle X, Y \rangle = \sum_{i=1}^{3} a_i \cdot b_i$$
 (dot product).

Then we can write

$$< X, Y > = < x, y > + \varepsilon (< x, y^* > + < x^*, y >),$$

where $x = (x_1, x_2, x_3)$, $x^* = (x_1^*, x_2^*, x_3^*)$, $y = (y_1, y_2, y_3)$ and $y^* = (y_1^*, y_2^*, y_3^*)$. So we have the norm of a vector $X \in D^3$ as

$$\parallel X \parallel = \parallel x \parallel + \varepsilon \frac{\langle x, x^* \rangle}{\parallel x \parallel}$$

For $X \in D^3$ if ||X|| = (1,0) then X is called a dual unit vector. The set

$$\{X \in D^3 : \|X\| = (1,0) \in D\}$$

is called the dual unit sphere and is denoted by DS^2 . ([5]).

Theorem 2. There exists a one-to-one correspondence between the oriented lines in \mathbb{R}^3 and the points of the dual unit sphere ([5]).

5. TS^2 , DS^2 and non-cylindrical ruled surfaces

Let X be an element of TS^2 where $TS^2 = \bigcup_p T_p S^2$. Then $X = (x_1, x_2, x_3, x_1^*, x_2^*, x_3^*)$. Thus if we set $x = (x_1, x_2, x_3), x^* = (x_1^*, x_2^*, x_3^*)$ then it is clear that

$$||x|| = 1$$

 $\langle x, x^* \rangle = 0$

So we can write $X = (x, x^*) \in DS^2$, isomorphically. Conversely, for every $X = (x, x^*) \in DS^2$ we have

$$||x|| = 1, < x, x^* > = 0.$$

So $X = (x_1, x_2, x_3, x_1^*, x_2^*, x_3^*) \in TS^2$. Thus we have the following :

Theorem 3. There is a one-to-one correspondence TS^2 and DS^2 .

We know that every curve on DS^2 can be associated to a ruled surface in \mathcal{R}^3 ([1]). Now we will ask how a curve on TS^2 can be associated to a ruled surface in \mathcal{R}^3 and answer the question.

Let $P = (p, p^*) \in TS^2$, then p is orthogonal p^* . It is well known from vector algebra that the equation

$$p \times x = p^*, p, x, p^* \in \mathcal{R}^3$$

with $< p, p^* >= 0$ has the set of solutions

$$x(\lambda) = -\frac{1}{\parallel p \parallel^2} p \times p^* + \lambda p, \qquad \lambda \in \mathcal{R}.$$

The solution $x(\lambda)$ represents a straight line in the direction of the vector \vec{p} . Since ||p||=1, so

$$x(\lambda) = -p \times p^* + \lambda p \ .$$

Let α be a curve on S^2 such that $\alpha : I \subseteq \mathcal{R} \longrightarrow S^2$, $t \longrightarrow \alpha(t)$ and A be an antisymmetric vector field. The restriction of A on $\alpha(I)$ will be denoted by A_{α} , $A_{\alpha} = A_{\alpha}(\alpha(I))$. For every $t_0 \in I$. We have the straight line

$$x_{t_0}(\lambda) = \alpha(t_0) \times A_\alpha(\alpha(t_0)) + \lambda \alpha(t_0).$$

So the equation

$$x_t(\lambda) = \alpha(t) \times A_\alpha(\alpha(t)) + \lambda \alpha(t), \qquad t \in I, \lambda \in \mathcal{R}$$

describes a surface. We set

$$\varphi(t,\lambda) = \alpha(t) \times A_{\alpha}(\alpha(t)) + \lambda \alpha(t), \quad t \in I, \lambda \in \mathcal{R}.$$
 (5)

Equation (5) defines a non-cylindrical ruled surface.

Conversely, let a non-cylindrical ruled surface in \mathcal{R}^3 be given by the equation

$$\sigma(u,\vartheta) = \beta(u) + \vartheta d(u).$$

The spherical representation of the unit direction vectors d(u) describes a curve on S^2 .

Suppose that this curve is denoted by α , $\alpha : I \longrightarrow S^2$, we can define a mapping A along the curve α by the following equation,

$$A(\alpha(u)) = -\alpha(u) \times \beta(u),$$

where the sign \times denotes the wedge product in \mathcal{R}^3 . It is clear that $A(\alpha(u))$ is an anti-symmetric vector field. Therefore we have

$$\| \vec{\alpha}(u) \| = 1,$$

 $< \vec{\alpha}(u), A(\alpha(u)) > = 0$

and so $\langle \vec{\alpha}(u), A(\alpha(u)) \rangle \in DS^2$. That is to say $\langle \vec{\alpha}(u), A(\alpha(u)) \rangle$ is an element of TS^2 . So we have

Theorem 4. There exists a one-to-one correspondence between a restriction of an anti-symmetric vector field along a spherical curve and a non-cylindrical ruled surface in \mathbb{R}^3 .

References

- [1] W. BLASCHKE, *Diferensiyel Geometri Dersleri*, İstanbul Üniversitesi Yayınlarınlarından, No 433, 1949.
- [2] F. BRICKELL, R. S. CLARK, *Differentiable Manifolds*, Van Nostrand Reinhold Company, London, 1970.
- [3] B. A. DUBROVIN, A. T. FOMENKO, S. P. NOVIKOV, Modern Geometry Methods and Applications, Part I, Springer Verlag, New York, 1984.
- [4] A. KARGER, J. NOVAK, Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, New York, 1985.
- [5] E. STUDY, Geometrie der Dynamen, Leibzig, Teubner, 1903.