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On the number of solutions of the Diophantine
equation of Frobenius – General case∗

Takao Komatsu†

Abstract. We determine the number of solutions of the equation
a1x1 +a2x2+ · · ·+amxm = b in non-negative integers x1, x2, . . ., xn. If
m = 2, then the largest b for which no solution exists is a1a2 − a1 − a2,
and an explicit formula for the number of solutions is known. In this
paper we give the method for computing the desired number. The method
is illustrated with several examples.
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1. Introduction

Let a1, a2, . . ., am be positive integers with gcd(a1, a2, . . . , am) = 1. Furthermore,
let N(a1, a2, . . . , am; b) denote the number of solutions of the equation

a1x1 + a2x2 + . . . + amxm = b (1)

in non-negative integers x1, x2, . . ., xm. It is well known that N(1, . . . , 1︸ ︷︷ ︸
m

; b) =

(
b+m−1

m−1

)
for any non-negative integer b (see e.g. Theorem 13.1 in [11]). It is also

well-known that equation (1) has a solution in non-negative integers if b is suffi-
ciently large. Then, what is the generating function

∑∞
b=0 N(a1, a2, . . . , am; b)xb?

How can one determine the constant c as a function of a1, a2, . . ., am such that
N(a1, a2, . . . , am; b) ∼ cbm−1 (Problem 15C, [11])? If m = 2, the generating func-
tion can be expressed and N(a1, a2; b) can be given in an explicit formula (see e.g.
[14], [16], [18]). But, the problem seems to be fairly difficulty if m ≥ 3.

Several authors determined the greatest integer, say, G(a1, a2, . . . , am), such
that equation (1) has no such solution in non-negative integers. For m = 2 a
bound G(a1, a2) = (a1 − 1)(a2 − 1) − 1 was given by Sylvester and this is the best
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possible. For m > 2 the problem has not been solved. Several bounds are given by
many authors (see e.g. [3], [8], [15], [17]) and the good algorithm to calculate it is
known if m = 3 ([6], [13]). There is, however, no good algorithm for its calculation
if m ≥ 4. – The general solution of an equation (1), where each xj can take a
negative integer too, was obtained by Bond [2]. An algorithm by Djawadi and
Hofmeister [7] can calculate some bound under the condition a1 = 1. In fact, if
m ≥ 3, G(a1, a2, . . . , am) cannot be given by closed formulas of a certain type ([5])
and the problem to determine G is NP-hard ([12]).

In this paper we are interested in determining the number of solutions in (1),
when gcd(ah, al) = 1 (h �= l). Sertöz [14] and Tripathi [16] independently obtained
an explicit formula in the case m = 2. Israilov [10] found one in the general m,
but it was too long and complicated. We shall give a general form which is well
computable practically to find the real values of N(a1, . . . , am; b) even if m ≥ 3.

2. Preliminaries

By the counting theorem one has

N (x) :=
∞∑

b=0

N(a1, a2, . . . , am; b)xb =
1

(1− xa1)(1 − xa2) · · · (1− xam)

=
c

(1− x)m
+ O((1 − x)−m+1) .

By Schur’s theorem one has

N(a1, a2, . . . , am; b) ∼ bm−1

(m − 1)!a1a2 · · · am
(b → ∞) .

In particular, there exists an integer N such that every b ≥ N is so representable
in at least one way ([18, pp.93–99]).

Assume that gcd(ah, al) = 1 (h �= l). Then we can write

N (x) =
∞∑

b=0

N(a1, a2, . . . , am; b)xb =
1

(1 − xa1)(1− xa2) · · · (1− xam)
(2)

=
c1

1− x
+ · · ·+ cm

(1− x)m
+

a1−1∑
k=1

Aa1(k)
1− ζ−k

a1 x
+ · · ·+

am−1∑
k=1

Aam(k)
1− ζ−k

am x
,

where ζal
= e2πi/al (l = 1, 2, . . . , m). We have two decompositions. The first

decomposition into ordinary partial fractions is called the first type; the second one
including the periodic sequences is called the second type or Herschellian type [4,
p.109].

Multiplying both sides of (2) by 1 − ζ−k
a1

x and taking limits as x → ζk
a1

entails
that

Aa1(k) = lim
x→ζk

a1

1− ζ−k
a1

x

(1− xa1)(1 − xa2) · · · (1− xam)

= lim
x→ζk

a1

−ζ−k
a1

−a1xa1−1(1− xa2) · · · (1− xam)
=

1
a1

1
(1− ζa2k

a1 ) · · · (1− ζamk
a1 )

.
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In a similar manner we can obtain for l = 1, 2, . . . , m

Aal
(k) =

1
al

1

(1− ζa1k
al ) · · · (1− ζ

al−1k
al )(1− ζ

al+1k
al ) · · · (1− ζamk

al )
.

Multiplying both sides of (2) by (1 − x)m and letting x → 1 entails that cm =
1/(a1 · · · am). To calculate cl (l = m − 1, m − 2, . . . , 1), we multiply both sides of
(2) by (1 − x)m, differentiate m − l times and take limits as x → 1. Namely, we
have

(−1)m−l(m − l)!cl =
∂m−l

∂xm−l

(
(1− x)m

(1− xa1) · · · (1− xam)

)∣∣∣∣
x=1

=
∂m−l

∂xm−l

(
1

(1 + x + · · · + xa1−1) · · · (1 + x + · · ·+ xam−1)

)∣∣∣∣
x=1

.

Then one can obtain cm−1 = (a1 + · · ·+am−m)/(2a1 · · · am). We should be able to
obtain cm−2, cm−3, . . . in a similar manner, but it seems that it becomes extremely
difficult to calculate them practically. The details are given in the next section.

Notice that for l = 1, 2, . . . , m

1
(1− x)l

=
∞∑

n=0

(
n + l − 1

n

)
xn .

Hence,

N(a1, a2, . . . , am; b) =
m∑

l=1

(
cl

(
b + l − 1

b

)
+

al−1∑
k=1

Aal
(k)ζ−bk

al

)

=
m−1∑
j=0

djb
j +

m∑
l=1

al−1∑
k=1

Aal
(k)ζ−bk

al
.

This form has been already known (see e.g. [4], [14], [18]).

3. The calculation of dj

We consider the terms derived from the first type of two decompositions. First of
all, notice that

(
b + l − 1

b

)
=

1
(l − 1)!


bl−1 + bl−2

l−1∑
j=1

j + bl−3
∑

1≤j1<j2<l

j1j2 + · · ·

+b
∑

1≤j1<···<jl−2<l

j1 · · · jl−2 + (l − 1)!


 .

Denote P = a1a2 · · · am and Sj = aj
1 + aj

2 + · · ·+ aj
m (j = 1, 2, . . .). By obtaining

cm =
1
P

, cm−1 =
S1 − m

2P
,
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cm−2 =
3S2

1 − S2 − 6(m − 1)(S1 − m) − m(3m − 1)
24P

and

cm−3 =
1

48P
(
S3

1 − S1S2 − (m − 2)(3S2
1 − S2)

+(m − 1)(3m − 8)(S1 − m) + 2m(m2 − 3m + 1)
)

,

one can find that (Cf. [4, p.113])

dm−1 =
cm

(m − 1)!
=

1
(m − 1)!P

,

dm−2 =
cm

(m − 1)!

m−1∑
j=1

j +
cm−1

(m − 2)!

=
cm

(m − 1)!
m(m − 1)

2
+

cm−1

(m − 2)!
=

S1

2(m − 2)!P
,

dm−3 =
cm

(m − 1)!

∑
1≤j1<j2≤m−1

j1j2 +
cm−1

(m − 2)!

m−2∑
j=1

j +
cm−2

(m − 3)!

=
cm

(m − 1)!
(m − 2)(m − 1)m(3m − 1)

24

+
cm−1

(m − 2)!
(m − 1)(m − 2)

2
+

cm−2

(m − 3)!

=
3S2

1 − S2

24(m − 3)!P
,

dm−4 =
cm

(m − 1)!

∑
1≤j1<j2<j3≤m−1

j1j2j3 +
cm−1

(m − 2)!

∑
1≤j1<j2≤m−2

j1j2

+
cm−2

(m − 3)!

m−3∑
j=1

j +
cm−3

(m − 4)!

=
cm

(m − 1)!
m2(m − 1)2(m − 2)(m − 3)

48

+
cm−1

(m − 2)!
(m − 3)(m − 2)(m − 1)(3m − 4)

24

+
cm−2

(m − 3)!
(m − 2)(m − 3)

2
+

cm−3

(m − 4)!

=
S1(S2

1 − S2)
48(m− 4)!P

.

In a similar manner, one can find

dm−5 =
2S4 + 5S2

2 − 30S2
1S2 + 15S4

1

240 · 4!(m − 5)!P
,
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dm−6 =
S1(2S4 + 5S2

2 − 10S2
1S2 + 3S4

1)
96 · 5!(m − 6)!P

,

dm−7 =
−16S6 − 42S2S4 + 126S2

1S4 − 35S3
2 + 315S2

1S
2
2 − 315S4

1S2 + 63S6
1

4032 · 6!(m − 7)!P
,

dm−8 =
S1(−16S6 − 42S2S4 + 42S2

1S4 − 35S3
2 + 105S2

1S
2
2 − 63S4

1S2 + 9S6
1)

1152 · 7!(m − 8)!P
,

. . . .

After obtaining cm, cm−1, . . ., cm−l+1, one can find dm−l as

dm−l =
cm

(m − 1)!

∑
1≤j1<···<jl−1≤m−1

j1 · · · jl−1

+
cm−1

(m − 2)!

∑
1≤j1<···<jl−2≤m−2

j1 · · · jl−2 + · · ·

+
cm−l+2

(m − l + 1)!

m−l+1∑
j=1

j +
cm−l+1

(m − l)!
.

Finally, d0 = cm + cm−1 + · · · + c1.
But it was very hard to find an explicit form of the general dj . One nice-

looking form can be derived from the main result in [1]. Define Bell polynomials
Yn(y1, y2, . . . , yn) by

exp

( ∞∑
k=1

yk
xk

k!

)
=

∞∑
n=0

Yn(y1, y2, . . . , yn)
xn

n!

where Y0 = 1 and

Yn(y1, y2, . . . , yn) =
∑

k1+2k2+···+nkn=n
k1,k2,...,kn≥0

n∏
i=1

n!yki

i

ki!(i!)ki
.

We have the following identity.
Proposition 1. For l = 0, 1, 2, . . . we have

dm−l−1 =
(−1)l

(m − l − 1)!l!P
Yl(B1S1,−B2S2

2
, . . . ,−BlSl

l
) ,

where P =
∏m

j=1 aj, Sn =
∑m

j=1 an
j and Bn is the n-th Bernoulli number (n =

1, 2, . . .).
Proposition 2. For l = 1, 2, . . . we have

dm−l =
2

m − l

∂

∂S1
dm−l−1 .
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4. The calculation of
∑

Aal
(k)ζ−bk

al

We consider the terms derived from the Herschellian type of two decompositions.
We assume that gcd(ah, al) = 1 (h �= l). Put Aal

=
∑al−1

k=1 Aal
(k)ζ−bk

al
(l =

1, 2, . . . , m) for convenience. Without loss of generality, set a = a1. When a = 1,
this term does not exist. When a = 2, by the assumption all of a2, a3, . . ., am are
odd. From ζ2 = −1 we have

A2 =
1∑

k=1

A2(k)ζ−bk
2 =

1
2

ζ−b
2

(1− ζa2
2 )(1 − ζa3

2 ) · · · (1 − ζam
2 )

=
(−1)b

2m
.

Let a1 be odd with a1 ≥ 3. Denote sl (l = 1, 2, . . . , a − 1) by

sl := #{aj |2 ≤ j ≤ m, aj ≡ l (mod a)} ,

satisfying
∑a−1

l=1 sl = m − 1. By the assumption, aj �≡ 0 (mod a) for any j with
2 ≤ j ≤ m. Put ζ = ζa for simplicity.

With these notations we can write

Aa =
1
a

a−1∑
k=1

ζ−bk

(1− ζk)s1 (1− ζ2k)s2 · · · (1− ζ(a−1)k)sa−1
.

Lemma 1. For any integer k we have

1− ζk
a = 2 sin

k

a
π · e−a−2k

2a iπ .

Proof. Put 1− ζk
a = reiθ . Then

r =

√(
1− cos

2k
a

π

)2

+
(
sin

2k
a

π

)2

= 2 sin
k

a
π .

By

sin(−θ) =
1
r
sin

2k
a

π = cos
k

a
π ,

we have
−θ =

π

2
− k

a
π =

a − 2k
2a

π .

✷

By this lemma together with the facts

sin
l(a − k)

a
π = (−1)l sin

lk

a
π

and
e(a−2l(a−k))(sl−sa−l)iπ/(2a) = (−1)l−1e−(a−2lk)(sl−sa−l)iπ/(2a) ,

we obtain

(1− ζlk)sl(1 − ζ(a−l)k)sa−l =
(
2 sin

lk

a
π

)sa+sa−l

e−(a−2lk)(sl−sa−l)iπ/(2a) .
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From ζ−b(a−k) = ζbk, if a is odd, then

Aa =
1
a

a−1∑
k=1

ζ−bk
∏(a−1)/2

l=1 e(a−2lk)(sl−sa−l)iπ/(2a)∏(a−1)/2
l=1

(
2 sin lk

a π
)sl+sa−l

=
2
a

(a−1)/2∑
k=1

cos
(∑(a−1)/2

l=1 (a−2lk)(sl−sa−l)−4bk

2a π

)
∏(a−1)/2

l=1

(
2 sin lk

a π
)sl+sa−l

.

We can interchange a1 and any ah (2 ≤ h ≤ m) without loss of generality.
Therefore, we obtain the following.

Theorem 1. If a = ah is odd with a ≥ 3 and gcd(aj , a) = 1 (1 ≤ j ≤ m,
j �= h), then

Aa =
2
a

(a−1)/2∑
k=1

cos
(

4bk+
∑(a−1)/2

l=1 (2lk−a)(sl−sa−l)

2a π

)
(a−1)/2∏

l=1

(
2 sin

lk

a
π

)sl+sa−l

.

This form seems still very complicated, but we can calculate Aa very easily when
a is small even if the number m is very big.

Corollary 1. When a = 3, we have

A3 =
2∑

k=1

A
(1)
k ζ−bk

3 =
1
3

2∑
k=1

ζ−bk
3

(1− ζa2k
3 )(1− ζa3k

3 ) · · · (1− ζamk
3 )

=
2

3(m+1)/2
cos
(

2
3
b − s1 − s2

6

)
π .

Proof. When a = 3, we have l = k = 1, and 2 sin(lk/a)π =
√

3. ✷

Corollary 2. When a = 5, we have

A5 =
2
5

2∑
k=1

cos 4bk+(2k−5)(s1−s4)+(4k−5)(s2−s3)
10 π(

2 sin k
5π
)s1+s4 (2 sin 2k

5 π
)s2+s3

.

Remark 1. Notice that

(
2 sin

π

5

)(
2 sin

2π
5

)
=

√
5−√

5
2

√
5 +

√
5

2
=

√
5

for further calculations.
Corollary 3. When a = 7, we have

A7 =
2
7

3∑
k=1

cos 4bk+(2k−7)(s1−s6)+(4k−7)(s2−s5)+(6k−7)(s3−s4)
14 π(

2 sin k
7π
)s1+s6 (2 sin 2k

7 π
)s2+s5 (2 sin 3k

7 π
)s3+s4

.
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Remark 2. It is convenient to use relations

2 sin
π

7
· 2 sin

2π
7

· 2 sin
3π
7

=
√

7 and sin
2π
7

+ sin
3π
7

− sin
π

7
=

√
7

2
.

for further calculations.
Let a be even with a ≥ 4. By the assumption, sl = 0 if l is even or l = a/2. In

a similar manner we obtain

Aa =
1
a

a−1∑
k=1

ζ−bk

(1 − ζk)s1(1− ζ3k)s3 · · · (1 − ζ(a−1)k)sa−1

=
1
a

a−1∑
k=1

ζ−bk
∏2�a/4�−1

l=1 e(a−2(2l−1)k)(s2l−1−sa−2l+1)iπ/(2a)∏2�a/4�−1
l=1

(
2 sin (2l−1)k

a π
)s2l−1+sa−2l+1

=
2
a

a/2−1∑
k=1

cos
(∑2�a/4�−1

l=1 (a−2(2l−1)k)(s2l−1−sa−2l+1)−4bk

2a π

)
∏2�a/4�−1

l=1

(
2 sin (2l−1)k

a π
)s2l−1+sa−2l+1

+
(−1)b

a · 2m−1
.

Notice that the last term arises for k = a/2.
Theorem 2. If a = ah is even with a ≥ 4 and gcd(aj , a) = 1 (1 ≤ j ≤ m,

j �= h), then

Aa =
2
a

a
2−1∑
k=1

cos
(

4bk+
∑2�a/4�−1

l=1 (2(2l−1)k−a)(s2l−1−sa−2l+1)

2a π

)
2�a/4�−1∏

l=1

(
2 sin

(2l − 1)k
a

π

)s2l−1+sa−2l+1

+
(−1)b

a · 2m−1
.

5. Examples

Suppose that m = 3. Then

N(a1, a2, a3; b) =
a2
1 + a2

2 + a2
3 + 3(a1a2 + a2a3 + a3a1)

12a1a2a3
+

a1 + a2 + a3

2a1a2a3
b

+
1

2a1a2a3
b2 +

1
a1

a1−1∑
k=1

ζ−bk
a1

(1− ζa2k
a1 )(1 − ζa3k

a1 )

+
1
a2

a2−1∑
k=1

ζ−bk
a2

(1− ζa3k
a2 )(1 − ζa1k

a2 )
+

1
a3

a3−1∑
k=1

ζ−bk
a3

(1− ζa1k
a3 )(1 − ζa2k

a3 )
.
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Let a1 = 3, a2 = 5 and a3 = 7. For a1 = 3, by Corollary 1 with s1 = s2 = 1 we
have

A3 =
2
9
cos

2
3
bπ .

For a2 = 5, by Corollary 2 with s1 = s4 = 0 and s2 = s3 = 1 we have

A5 =
2
5

2∑
k=1

cos 4bk
10 π

(2 sin 2k
5 π)2

=
2
25

(
(2 sin

π

5
)2 cos

2b
5

π + (2 sin
2π
5

)2 cos
4b
5

π

)
.

For a3 = 7, by Corollary 3 with s1 = s2 = s4 = s6 = 0 and s3 = s5 = 1 we have

A7 =
2
7

3∑
k=1

cos 2b+1
7 π

(2 sin 2k
7 π)(2 sin 3k

7 π)

=
2

7
√

7

(
2 sin

π

7
cos

2b + 1
7

π + 2 sin
2π
7

cos
2(2b + 1)

7
π

−2 sin
3π
7

cos
3(2b + 1)

7
π

)
.

Therefore, we obtain

N(3, 5, 7; b) =
1

210
b2 +

1
14

b +
74
315

+
2
9

cos
2
3
bπ

+
2
25

(
(2 sin

π

5
)2 cos

2b
5

π + (2 sin
2π
5

)2 cos
4b
5

π

)

+
2

7
√

7

(
2 sin

π

7
cos

2b + 1
7

π + 2 sin
2π
7

cos
2(2b + 1)

7
π

−2 sin
3π
7

cos
3(2b + 1)

7
π

)
.

With the notation due to Cayley (Cf. [9]), (x0, x1, . . . , xk−1)pcrkb = xi if b ≡ i
(mod k), this result matches the Comtet’s one [4, pp.114–115],

N(3, 5, 7; b) =
1

210
b2 +

1
14

b +
74
315

+
1
9
(2,−1,−1)pcr3b

+
1
5
(2,−1, 0, 0,−1)pcr5b +

1
7
(1, 0,−2, 2,−2, 0, 1)pcr7b .

It is quite easy to find

N(1, 2, 3; b) =
1
12

b2 +
1
2
b +

47
72

+
(−1)b

8
+

2
9

cos
2
3
bπ

for a1 = 1, a2 = 2 and a3 = 3 (Cf. [4, p.110]).

If each aj is small, it is not difficult to obtain the exact form of N(a1, . . . , am; b),
even though the number m becomes large. For example, let a1 = 2, a2 = 3, a3 = 5,



204 T.Komatsu

a4 = 7, a5 = 11, a6 = 13, a7 = 17 and a8 = 19. Then one can get

N(2, 3, 5, 7, 11, 13, 17, 19; b) =
1

48886437600
b7 +

1
181396800

b6 +
419

698377680
b5

+
43

1272960
b4 +

21901069
20951330400

b3 +
174869

10077600
b2 +

134507
978120

b +
810672961
2176761600

+
(−1)b

256
+

2
81

√
3

cos
(

2
3
b +

1
6

)
π

+
2

125
√

5

((
2 sin

π

5
)3 cos

4b − 1
10

π +
(
2 sin

2π
5
)3 cos

8b + 3
10

π

)

+
2

49
√

7

((
2 sin

π

7
)2

cos
4b + 7

14
π +

(
2 sin

2π
7
)2

cos
8b + 7

14
π

−(2 sin
3π
7
)2 cos

12b + 7
14

π

)

+
2

121

5∑
k=1

(
2 sin

kπ

11
)2(2 sin

4kπ

11
)
cos

4bk − 11
22

π

+
2

169

6∑
k=1

(
2 sin

kπ

13
)2(2 sin

3kπ

13
)(

2 sin
4kπ

13
)(

2 sin
5kπ

13
)
cos

(4b + 24)k − 39
26

π

+
2

289

8∑
k=1

(
2 sin

kπ

17
)2(2 sin

3kπ

17
)(

2 sin
4kπ

17
)(

2 sin
5kπ

17
)(

2 sin
6kπ

17
)

·(2 sin
7kπ

17
)(

2 sin
8kπ

17
)2 cos

(4b + 18)k − 51
34

π

+
2

361

9∑
k=1

(
2 sin

kπ

19
)2(2 sin

3kπ

19
)(

2 sin
4kπ

19
)2(2 sin

5kπ

19
)(

2 sin
6kπ

19
)

·(2 sin
7kπ

19
)(

2 sin
8kπ

19
)(

2 sin
9kπ

19
)2 cos

(4b + 2)k − 19
38

π

=
1

48886437600
b7 +

1
181396800

b6 +
419

698377680
b5 +

43
1272960

b4

+
21901069

20951330400
b3 +

174869
10077600

b2 +
134507
978120

b +
810672961
2176761600

+
(−1)b

256
+

1
81

(1,−1, 0)pcr3b +
1
25

(1,−1, 1,−1, 0)pcr5b

+
1
49

(0,−1,−2, 4,−4, 2, 1)pcr7b +
1
11

(0,−1, 2,−1, 0, 0, 0, 0, 1,−2, 1)pcr11b

+
1
13

(3,−3, 1,−1, 1, 0, 1, 0,−1, 0,−1, 1,−1)pcr13b

+
1
17

(4,−4, 2,−2, 0, 2,−2, 4,−4, 3,−1, 3,−3, 3,−3, 1,−3)pcr17b

+
1
19

(2, 2,−2, 5,−5, 3,−1, 2, 0, 0, 0,−2, 1,−3, 5,−5, 2,−2,−2)pcr19b .
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We omit the detail calculations above. For example, use the relation

(a−1)/2∏
k=1

(
2 sin

kπ

a

)
=

√
a .

Let a1 = 137, a2 = 251 and a3 = 256, which triple is an example much used in
the literature (see e.g. [13]). By Theorems 1 and 2 one gets

N(137, 251, 256; b) =
1

17606144
b2 +

161
4401536

b +
182817

35212288

+
2

137

68∑
k=1

cos
(

2b−41
137 k − 1

)
π(

2 sin 18k
137π

)(
2 sin 23k

137π
) +

2
251

125∑
k=1

cos 2b−109
251 kπ(

2 sin 5k
251π

)(
2 sin 114k

251 π
)

+
1

128

127∑
k=1

cos
(

b−62
128 k − 1

)
π(

2 sin 5k
256π

)(
2 sin 119k

256 π
) +

(−1)b

1024
.

It seems nearly impossible to continue this calculation by hand only. For exam-
ple, Mathematica or Maple calculations can show immediately

N(137, 251, 256; 4948) = 0, N(137, 251, 256; 4949) = 2

and so on. In fact, G(137, 251, 256) = 4948.
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