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Generalized Veltman models with a root

Mladen Vuković∗

Abstract. Provability logic is a nonstandard modal logic. Inter-
pretability logic is an extension of provability logic. Generalized Veltman
models are Kripke like semantics for interpretability logic. We consider
generalized Veltman models with a root, i.e. r-validity, r-satisfiability
and a consequence relation. We modify Fine’s and Rautenberg’s proof
and prove non–compactness of interpretability logic.
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1. Introduction

The idea of treating a provability predicate as a modal operator goes back to Gödel.
The same idea was taken up later by Kripke and Montague, but only in the mid-
seventies was the correct choice of axioms, based on Löb’s theorem, seriously con-
sidered by several logicians independently: G. Boolos, D. de Jongh, R. Magari,
G. Sambin and R. Solovay. There are two key results in application of modal logic
to the study of provability in arithmetic and related theories: de Jongh-Sambin
fixed point theorem and Solovay’s arithmetic completeness theorems.

The system GL (Gödel, Löb) is a modal propositional logic. The axioms of
system GL are all tautologies, ✷(A → B) → (✷A → ✷B), and ✷(✷A → A) → ✷A.
The inference rules of GL are modus ponens and necessitation A/✷A.

R. Solovay 1976. proved arithmetical completeness of modal system GL. Many
theories have the same provability logic - GL. It means that the provability logic
GL cannot distinguish some properties, as e.g. finite axiomatizability, reflexivity,
etc. Some logicians considered modal representations of other arithmetical proper-
ties, for example interpretability, Πn-conservativity, interpolability ... Modal logics
for interpretability were first studied by P. Hájek (1981) and V. Švejdar (1983).
A. Visser (1990) introduced the binary modal logic IL (interpretability logic). The
interpretability logic IL results from the provability logic GL, by adding the binary
modal operator 	.

Roughly, the theory S interprets the theory T if there is a natural way of trans-
lating the language of S into the language of T in such a way that the translations
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of all the axioms of T become provable in S. We write S ≥ T if this is the case. A
derived notion is that of relative interpretability over a base theory T. Let A and
B be arithmetical sentences. We say that A interprets B over T if T +A ≥ T +B.
For precise definitions, see e.g. [7].

The language of the interpretability logic contains propositional letters p0, p1, . . . ,
the logical connectives ¬, ∧, ∨,→ and ↔, the unary modal operator ✷ and the
binary modal operator 	. We use ⊥ for false and � for true. The axioms of the
interpretability logic IL are the axioms of GL and:

(J1) ✷(A → B) → (A 	 B)

(J2) ((A 	 B) ∧ (B 	 C)) → (A 	 C)

(J3) ((A 	 C) ∧ (B 	 C)) → ((A ∨ B) 	 C)

(J4) (A 	 B) → (♦A → ♦B)

(J5) ♦A 	 A

where ♦ stands for ¬✷¬ and 	 has the same priority as → . The deduction rules of
IL are modus ponens and necessitation.

Arithmetical semantic of interpretability logic is based on the fact that each
sufficiently strong theory S has arithmetical formulas Pr(x) and Int(x, y). Formula
Pr(x) expressing that ’x is provable in S’ (i.e. formula with Gödel number x is
provable in S). Formula Int(x, y) expressing that ’S + x interprets S + y.’ An
arithmetical interpretation is a function ∗ from modal formulas into arithmetical
sentences preserving Boolean connectives and satisfying

(✷A)∗ = Pr(�A∗�), (A 	 B)∗ = Int(�A∗�, �B∗�)

(�A∗� denote Gödel number of formula A∗). A modal formula A is valid in S if
S  A∗ for each arithmetical interpretation ∗. A modal theory T is sound w.r.t.
S if all its theorems are valid in S. The theory T is complete w.r.t. S if it proves
exactly those formulas that are valid in S. The soundness of IL was already known
and amounts to noticing that all the axioms are PA-valid and the rules of inference
preserve PA-validity.

Axioms (J1)–(J3) are clear. Axiom (J4) says that relative interpretability yields
relative consistency results. Axiom (J5) is the arithmetized completeness theo-
rem: PA plus the assertion that a given theory is consistent interprets the given
theory. The system IL is natural from the modal point of view, but arithmeti-
cally incomplete. For example, IL does not prove the formula W i.e. (A 	 B) →
(A 	 (B ∧ ✷(¬A))), which is valid in every adequate theory. Various extensions of
the system IL are obtained by adding new axioms. These new axioms are called
principles of interpretability.

A. Visser showed arithmetical completeness for the relation of relative inter-
pretability over finitely axiomatized theories. A. Berarducci and V. Shavrukov
independently showed arithmetical completeness for the relation of relative inter-
pretability over theories like Peano arithmetic and Zermelo-Fraenkel set theory.
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We are only interested in IL as a system of modal logic. So, we do not study
arithmetical interpretations. We introduce our notation and some basic facts, fol-
lowing [7]. Now we define Veltman models. Then we quote de Jongh-Veltman’s
theorem.

Definition 1 [de Jongh and Veltman]. An ordered quadruple

W = (W, R, {Sw : w ∈ W}, )

is called the IL-model (Veltman model), if it satisfies the following conditions:

a) (W, R) is a GL-frame, i.e. W is a nonempty set, and R is a transitive and
reverse well-founded relation;

b) For every w ∈ W is Sw ⊆ W [w], where W [w] = {x ∈ W : wRx};
c) The relation Sw is reflexive and transitive, for every w ∈ W ;

d) If wRw′Rw′′ then w′Sww′′;

e)  is a forcing relation. We emphasize only the definition

w A	B if and only if ∀v((wRv & v A) ⇒ ∃u(vSwu & u B)).

Theorem 1 [de Jongh and Veltman]. For every modal formula F we have

IL F if and only if W |= F for all IL-models W.

The Veltman models are a basic semantics for interpretability logic. But, when
we study correspondences between principles of interpretability we use other se-
mantics. In [8] and [9] we use generalized Veltman semantics.

Definition 2 [de Jongh]. An ordered triple (W, R, {Sw : w ∈ W}) is called
the ILset-frame, and denoted by W , if we have:

a) (W, R) is a GL-frame;

b) Every w ∈ W satisfies Sw ⊆ W [w]× P(W [w])\{∅};
c) The relation Sw is quasi-reflexive for every w ∈ W, i.e. wRx implies xSw{x};
d) The relation Sw is quasi-transitive for every w ∈ W, i.e. if xSwY and

(∀y ∈ Y )(ySwZy) then xSw(∪y∈Y Zy);

e) If wRw′Rw′′ then w′Sw{w′′};
f) If xSwY and Y ⊆ Z ⊆ W [w] then xSwZ.

Definition 3 [de Jongh]. An ordered quadruple (W, R, {Sw : w ∈ W}, ) is
called the ILset-model (generalized Veltman model), and denoted by W , if we have:

(1) (W, R, {Sw : w ∈ W}) is an ILset-frame ;



108 M.Vuković

(2)  is the forcing relation between elements of W and formulas of IL, which
satisfies the following:

(2a) w � and w � ⊥ are valid for every w ∈ W ;
(2b)  commutes with the Boolean connectives;
(2c) w ✷A if and only if ∀x(wRx ⇒ x A);
(2d) w A 	 B if and only if

∀v((wRv & v A) ⇒ ∃V (vSwV & (∀x ∈ V )(x B))).

Definition 4. Let W=(W, R, {Sw : w ∈ W}, ) be an ILset-model.
We say that a formula F is true in the model W at a state w ∈ W if we have

w F. We say that a formula F holds in the model W if we have w F, for all
w ∈ W. This fact we denote by W |= F.

We say that a set of formulas Γ is true in the model W at a state w ∈ W if we
have w F, for all F ∈ Γ (notation: w Γ). We say that a set of formulas Γ holds
in the model W if we have w Γ, for all w ∈ W. This fact we denote by W |= Γ.

A formula F is valid if we have W |= F, for all ILset-model W . A formula F
is satisfiable if there is an ILset-model W and some state w ∈ W such that w F.

A set of formulas Γ is satisfiable if there is an ILset-model W and some state
w ∈ W such that w Γ.

Let Γ be a set of formulas, and F a single formula. We say that F is local
semantic consequence of Γ (notation: Γ |= F ) if for all models W and all w ∈ W ,
if w Γ then w F.

It is easy to check the soundness of the system IL w.r.t. ILset-models, i.e. if
IL F then W |= F, for all ILset-model W . In [8] we proved the completeness of
the system IL w.r.t. generalized Veltman models.

2. Models with a root

In this section we consider generalized Veltman models with a root. These models
are important when we consider compactness. At the beginning we would like to
emphasize that we do not consider generalized Veltman models which are tree (or
tree-like) models. Generalized Veltman models with a root contain a special node.

Definition 5. Let W=(W, R, {Sw : w ∈ W}, ) be an ILset-model and w0 ∈ W
such that W [w0] = W\{w0}. We say that the state w0 is a root of the model W .
Then we say that W is a model with root, and we denote W w0 .

We say that a formula F is r-true in the model W w0 if we have w0 F. This
fact we denote by W |=r F. We say that a set of formulas Γ is r-true in the model
W if we have w0 Γ (notation: W |= Γ).

A formula F is r-valid if we have w0 F, for all models W with a root w0. We
say that a formula F is r-satisfiable if there exists an ILset-model W with the root
such that W |=r F. A set of formulas Γ is r-satisfiable if there exists an ILset-model
W with the root such that W |=r Γ.

Let Γ be a set of formulas, and F a single formula. We say that F is r-local
semantic consequence of Γ (notation: Γ |=r F ) if for all models W with a root, if
w0 Γ then w0 F.
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Proposition 1. A formula F is valid if and only if F is r-valid.
Proof. If a formula is valid then it is obviously r-valid.
Let us suppose that W=(W, R, {Sw : w ∈ W}, ) is an ILset-model such that

W �|= F. There is a node w0 ∈ W such that w0 � F. We define:

W ′ = {w0} ∪ W [w0]
R′ = R ∩ W ′ × W ′

S′
v = Sv, for every v ∈ W ′.

Let ′ denote the restriction of the forcing relation  on the set W ′.
It is easy to check that W w0=(W ′, R′, w0, {S′

v : v ∈ W ′}, ′) is an ILset-model
with the root w0.

By induction on the complexity of a formula we can prove the following equiva-
lence. For every formula B and every v ∈ W ′ we have v ′ B if and only if v B.
Obviously, the last fact implies w0 � ′ F, i.e. W w0 �|=r F. ✷

By using the Proposition 1 we get the following extension of de Jongh, Veltman
theorem.

Proposition 2. Let F be a formula. Then the following are equivalent.

a) IL F ;

b) for each finite generalized Veltman model W we have W |= F ;

b) for each finite generalized Veltman model W with the root w0 we have W |=r F.

Proposition 3. A formula F is satisfiable if and only if F is r-satisfiable. A
set of formulas Γ is satisfiable if and only if Γ is r-satisfiable.

Proof. Let F be a satisfiable formula, and let W be an ILset-model and w0 ∈ W
such that w0 |= F. In the same way as in the proof of the Proposition 1 we can define
the ILset-model W w0 with the root such that W w0 |=r F. So, the formula F is
r-satisfiable.

If F is an r-satisfiable formula, it is obviously that F is satisfiable formula. ✷

Proposition 4. Let Γ be a set of formulas and F a formula. Then we have

Γ |=r F if and only if Γ |= F.

Proof. Assume that we have Γ |=r F. Let W= (W, R, {Sv : v ∈ W}, ) be an
ILset-model and w0 ∈ W such that w0 |= Γ. In the same way as in the proof of the
Proposition 1 we can define an ILset-model W w0 with the root w0 such that for
all v ∈ Ww0 and for every formula B we have:

v
′
B if and only if v B (∗)

Then we have w0 ′ Γ. But, W w0 is an ILset-model with the root. So, the
assumption Γ |=r F and the fact W w0 |=r Γ imply w0 ′ F. By means of the fact
(∗) we have w0 F.

The converse is obviously true. ✷
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3. Non-compactness of the interpretability logic w.r.t. gen-
eralized Veltman semantics

We usually use the compactness in a proof of completeness of a modal system. In
this section we prove that the system IL is not compact w.r.t. generalized Veltman
semantics. So, we can not use maximal consistent sets in proofs of completeness
and Craig interpolation lemma for system IL. Areces, Hoogland and de Jongh in
[1] use adequate sets of formulas for proving interpolation property of the system
IL. We modify Fine’s and Rautenberg’s proof of non–compactness of the system
GL (see [4]).

Proposition 5. The interpretability logic is not compact with respect to gener-
alized Veltman semantics, i.e. there exists a set of formulas Γ such that each finite
subset of Γ is satisfiable, but the set Γ is not satisfiable.

Proof. Let

Γ = {♦P0, ✷(P0 → ♦P1), ✷(P1 → ♦P2), ✷(P2 → ♦P3), . . . }

Let Γ′ be a finite subset of Γ. Let n ∈ N be the greatest number such that
✷(Pn → ♦Pn+1) ∈ Γ′. We define:

W = {0, 1, 2, . . . , n + 1, n + 2},
R = {(i, j) : i < j, i, j ∈ W},
xSwV if and only if w < x, V ⊆ W and (∀y ∈ V )(x ≤ y),
i Pi−1, for all i = 1, . . . , n + 2.

It is easy to check that W=(W, R, 0, S, ) is an ILset-model with the root such
that W0 r Γ′. So, we have proved that each finite subset of Γ is r-satisfiable. The
Proposition 3 implies that each finite subset of Γ is satisfiable.

Let us suppose that the set Γ is satisfiable. By the Proposition 3 we have that the
set Γ is r-satisfiable. Then there is an ILset-model with a root W= (W, R, w0, {Sw :
w ∈ W}, ) such that W |=r Γ, i.e. w0 Γ. Specially we have w0 ♦P0. So, there
is a state w1 ∈ W such that w0Rw1 and w1 P0. The facts w0 ✷(P0 → ♦P1)
and w1 P0 imply w1 ♦P1. The last fact implies that there exists a state w2 ∈ W
such that w1Rw2 and w2 P1. We can analogously continue. So, there exists a
sequence of states (wn) such that

w0Rw1Rw2Rw3 . . .

It is impossible, because the relation R is reverse well-founded. ✷

We would like to mention that the set Γ in the proof of the last proposition is
consistent. Let us suppose that there exists a formula F such that Γ IL F and
Γ IL ¬F. By the definition of deduction in the system IL there is a finite subset
Γ′ of Γ such that Γ′  F and Γ′  ¬F. We know that each finite subset of Γ is
satisfiable. So, the set of formulas Γ′ is satisfiable. It is easy to see that we have
Γ′ |= F and Γ′ |= ¬F. It is impossible.

The non–compactness of the system IL implies that there exist a set Γ and a
formula F such that Γ |= F, but there is not a finite subset Γ′ of Γ such that Γ′ |= F.
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(For example, let Γ be the set from the proof of the last proposition, and let F be
the formula P ∧ ¬P ).

The non–compactness of the system IL implies that the strong completeness
theorem is not true for IL, i.e. there are a set Γ and a formula F such that Γ |= F,
but Γ � F. (We can use the set Γ from the proof of the last proposition, again.)

At the end we would like to emphasize that we have proved non–compactness
of interpretability logic w.r.t. generalized Veltman semantics. All modal logics are
compact w.r.t. Kripke models by using standard translation and compactness of
first-order logic (see e.g. [2]).
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